0

0
0

文字

分享

0
0
0

傳統工藝與現代科技能有什麼火花?到竹山玩就對啦!

PanSci_96
・2014/11/10 ・1057字 ・閱讀時間約 2 分鐘 ・SR值 450 ・四年級

-----廣告,請繼續往下閱讀-----

文/歐葳

智活玩家第一站到了鹿谷鄉初鄉活動中心,剛下車就看到林正敏教授親切的招呼玩家,林教授邀請大家稱呼他敏哥,他將是這兩天的智慧生活導遊!

沿著樓梯走上活動中心,南開科技大學數位生活創意系的學生已經準備好場地了,玩家們依序在門口領取自己的名牌和這次的活動手冊後就陸續入座,準備用中餐。

來到初鄉的第一餐,就是具有地方特色的筍包。熱騰騰的內餡被黃澄色與紅紫色的番薯皮包裹著,小心的剝開後迎面撲來的是鮮肉與綠竹筍淡淡的香氣,刺激著腦中深處的美好記憶。輕咬一口,皮的甜味與內餡的香味誘惑不禁使人的一口接一口,筍子的清香和著番薯的甘甜讓內外鹹甜勻稱的交合,讓每個人吃過不禁大讚:「好特別的味道啊!」除此之外,還有大排長龍的人氣米糕,搭著店家特製的招牌酸菜,智活團隊貼心準備的道地好滋味,讓玩家們不用揮汗等待就能吃到好料,一面慢慢品嘗、一面喝著冷泡茶,聽敏哥和大家介紹接下來行程的規劃,準備迎接地一個挑戰——竹編QR code。

-----廣告,請繼續往下閱讀-----

在正式動手做之前,敏哥先用簡報與大家介紹竹山從日誌時期就開始的竹編發展史,也娓娓道出了竹編QR code的出現機緣,原來是在一次智活聯盟發表會後靈機一動想出來的,完全沒有接觸過竹子工藝的敏哥帶著想將現代科技與傳統技藝結合的想法拜訪陳宜妙工藝師,討論三小時後才終於有了這樣特別的跨界合作成品。

聽完竹藝的歷史發展後,施志成工藝師便和玩家介紹起手上的竹編材料,這次使用的兩種竹片分別是白色的水煮竹跟黑色的煙燻竹,每一片編織用的竹材都是手工削出來的。除了介紹活動使用的材料,老師也跟玩家們分享了兩個竹製品的故事,分別是小時候的竹床和牛車的牛軛擔,讓大家知道竹子在古早時期用途十分廣泛,並且也更清楚知道竹子除了有柔軟的一面,也能是非常堅固的喔!

緊接著陳宜妙老師就一個步驟一個步驟帶領大夥動動手囉!看著大大小小的玩家們無不興奮地排起專屬自己的QR code,認真地按照圖表一黑一白,將竹片緊密交織在一起,大家認真的樣子,好像完全不會累,就怕會不小心錯看一格,成品就無法掃描辨識了。

現場除了玩家與工藝師以外,還有近十個南開科大生創系的學生也穿梭在裡頭,不時幫忙調整作品、協助解決竹編新手的大大小小問題,玩家手上的竹片也終於逐漸有了成品的樣子,空氣中開始有了些微緊張的氛圍、興奮的話語,玩家們的手機紛紛打開掃描程式,既期待又怕受傷害的「試用」今日作品,希望自己能做出能用的作品。

-----廣告,請繼續往下閱讀-----

由於QR code的辨識在技術上十分講求精確,因此要竹編一次成功並不是件簡單的事情,多半要藉由不斷微調才能成為一個真正能用的標碼,玩家們不禁大呼:竹編真的不簡單,需要好多耐心與細心!

文章難易度
PanSci_96
1226 篇文章 ・ 2337 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

2

10
3

文字

分享

2
10
3
「掃」一下、「嗶」一聲、乘客滿出來!電子票證如何辦到隨刷隨進?
鳥苷三磷酸 (PanSci Promo)_96
・2021/08/09 ・3366字 ・閱讀時間約 7 分鐘

本文由 交通部鐵道局 委託,泛科學企劃執行。

悠遊卡「嗶」一下上公車、 eTag 不需等待就能收取高速公路通行費、防疫期間進出公共場所「掃」一下完成實聯制登記,甚至買完高鐵車票後還能用手機取得專屬 QR CODE 快速通關!隨著科技進步和智慧型手機的興起,人們開始以電子票證取代傳統紙本票卷,只要一支手機或是一張卡就能到達任何你想去的地方。

臺灣目前常用的電子票證主要有兩大類,高鐵、台鐵 APP 訂票取票後的專屬 QR CODE ,和使用無線射頻辨識 RFID 的感應交通票卡(像是悠遊卡、一卡通),究竟這兩種方便又快速的電子票證技術是怎麼運作的呢? 

「掃」出資訊海—— QR CODE

QR 為 Quick Response 的縮寫,最早在 1994 年,由日本汽車零件業者 Denso Wave 的技術室長原昌宏發明,他認為一維條碼能夠包含的資訊量太少,一件產品都要印上數十個條碼才足以應付需求,對當時追求商品小型化的日本很不方便。原昌宏的團隊便將兩個一維條碼疊加在一起,讓 X 軸、 Y 軸都帶有訊息,進化成二維條碼,不只可以更快速追蹤產線上的產品, QR CODE 還有多角度辨識、容錯能力高等優點。

相較於產品包裝上只能呈現英文、數字資料的一維條碼,二維條碼能夠承載更多資料。圖/envato elements

QR CODE 三大優點:高存量、高容錯、易辨識

QR CODE 呈現正方形黑白兩色,每一格黑白格子都是一個位元,黑色方格代表 1 ,白色方格代表 0 ,掃碼時機器只要判斷反光與否,就能將黑白圖像轉換為二進位數、數字、字母、日語假名等訊息組合,經過轉譯後就能代表一串代碼、一句話或是一個網址。 QR Code 發展至今一共有 40 種版本,以結構、尺寸和校正標記位置區分,每一種版本的儲存密度都不完全相同,最大的版本 40 為 177×177 模組,可容納高達7089字元。

-----廣告,請繼續往下閱讀-----

在 QR CODE 的 3 個角落有像「回」字的正方圖案是幫助解碼軟體定位的座標,以鮮少出現在印刷品的特殊比例 1:1:3:1:1 作為定位標記,只要掃描裝置偵測到這個特殊比例就能算出條碼位置,使用者不需像傳統一維條碼一樣必須精確對準條碼才掃得到, QR CODE 以任何角度掃描都能正確讀取資料,加速識別作業。

定位圖形無論從哪個方向來看都是 1:1:3:1:1 的比例。圖/Denso Wave

除了中規中矩的黑白 QR CODE, 你一定也有看過插入商標或是特殊形狀的二維條碼,為什麼缺了一角的 QR CODE 還能掃描的到呢?因為 QR CODE 有很高的容錯能力,當某部分資訊缺失的時候,解碼系統會透過里德-所羅門碼(Reed-solomon codes)的原理自動填補缺失的部分,讓整體資訊依然可以完整辨識,容忍錯誤發生。 QR Code 的容錯能力分為 4 個等級,條碼圖形面積愈大就能分割出更細緻的里德 – 所羅門碼區塊,避免單一區塊「猜」太多密碼,容錯等級最高甚至可修正 30 %的缺失條碼。

QR Code 的容錯能力可以容許一定程度範圍內的資訊流失,就算破損、髒污,或是插入圖片、 logo 擋住部分條碼,也都能正確辨識。試著用手擋住部分條碼,是不是也掃得出來呢?圖/泛科學製作

QR Code 的快速掃描和容錯能力,能夠廣泛地運用在產品追蹤、物品識別和文件管理方面,使識別作業更便捷,「車票」也是其中之一!高鐵發售的每張電子票證都含有一個獨一無二的 QR Code ,經過閘門條碼感應區解碼就可以直接通關,享受快速方便又環保的乘車體驗!

從高鐵「T Express」APP 取得的電子票證可以存有你的乘車資訊,不用擔心與別人重複訂位,高鐵公司也可以防止車票被重複使用。圖/台灣高鐵

「嗶」一下,扣款成功—— RFID

RFID (Radio Frequency IDentification) 全名為無線射頻辨識,是透過無線電訊號識別特定目標並讀取相關數據的無線通訊技術,我們日常所用的各式電子票卡多半都使用這種技術,或是其衍伸用於智慧型手機的感應式電子票證 NFC(Near-field communication,近距離無線通訊)。

-----廣告,請繼續往下閱讀-----

RFID 最早出現在第二次世界大戰時期同盟國和德軍的敵友識別系統(Identification Friend or Foe,IFF)。以應答機(Transponder)偵聽詢問信號,然後回覆識別暗號,軍隊以此技術識別飛機、車輛或友軍部隊,並確定受詢問方的方位和距離。儘管當時 RFID 已被廣泛使用於軍事、航空用途,人們日常生活還是很難接觸到 RFID ,直到 2003 年美國最大零售商 Walmart 宣布他們的前 100 家供應商將被要求在所有進貨的貨箱和托盤上貼上 RFID 標籤以減少盤點貨物的時間,其他企業、零售商紛紛開始效法,使 RFID 頓時成為商品管理的新模式。RFID 發展至今,包括日常使用的悠遊卡、門禁卡、商品防盜標籤和寵物晶片,都是使用 RFID 的技術。

RFID 標籤非常輕薄,可製作成商品貼紙或是放進悠遊卡裡。圖/Amazon

你是否曾疑惑:悠遊卡沒電池,為何能付款或是傳送資訊?

我們常用的電子票卡多半屬於無電源的被動式標籤,利用感應器(Reader,像是公車讀卡機)發送特定頻率的電磁訊號,當訊號夠強時,就會觸發感應範圍內的 RFID 標籤(Tag),RFID 標籤內部為電路板和天線的組合,標籤接收電磁波後會藉由電磁感應產生電流,供應 RFID 標籤上的晶片運作並發出電磁波將特定編碼回應給感應器。感應器若成功解碼,則回傳主機(Host)請求驗證資料再給予回應。RFID 系統以「辨識」為主要功能,接收到「有效回應」才算驗證成功,就像拿悠遊卡靠近公車讀卡機可以扣款,而你的公司門禁卡不行,是因為讀卡機無法解開公司門禁卡回傳的編碼,無法驗證有效性就會顯示扣款失敗。

悠遊卡(easycard)RFID的內部天線、半導體及晶片構造。

相對於傳統條碼, RFID 標籤帶有遠距離讀寫、具穿透性、可同時讀取多個標籤和重複利用等優勢。透過調整感應器發送的電磁波頻率,來選擇觸發特定頻帶的標籤和控制讀取範圍:像是悠遊卡、一卡通是 13.56MHz 的高頻帶(HF)標籤,感應器可讀取在 1 公尺以內的 RFID 條碼;高速公路 eTag則是採用特高頻帶(UHF)標籤,不僅可讀取範圍增加到 5 ~ 10 公尺,還能同時讀取 1000 個RFID 條碼,就算中間有其他物質阻擋(像是卡片放在錢包裡、颱風天上高速公路),RFID一樣都可以讀取。

RFID 標籤最大的優勢其實是重複利用,過往的條碼都是一對一的組合,只要印刷上去就無法更改,使用過後必須報廢,而 RFID 可以更新電路板內儲存的資料,讓同樣一個標籤衍生出不同的編碼,拓展用途。當然這也代表有心人士可以串改標籤中的資料,因此大多數電子票卡會多加一層密鑰保護內部資料。除此之外,由於 RFID 標籤無須直接與感應器接觸,使用者也有可能在不知情的情況下被他人讀取標籤內儲存的資訊,構成安全隱憂。

-----廣告,請繼續往下閱讀-----
悠遊卡、一卡通屬於電子貨幣,內涵的編碼有密鑰保護,不容易被有心人士複製。圖/悠遊卡

目前,高鐵除了能用「T Express」APP 訂位立即取得專屬 QR CODE 快速通關,也開放悠遊聯名卡或一卡通聯名卡這兩款 RFID 電子票證來搭乘自由座喔!

現在搭乘高鐵只要感應手機、便利商店車票上的二維條碼,或悠遊聯名卡、一卡通聯名卡,都可作為驗票工具,輕鬆過關。圖/台灣高鐵

參考資料:

  1. Denso Wave
  2. Wikipedia – QR CODE
  3. Cool3C – QR Code發展與歷史介紹:運作原理、特色、編碼結構分析
  4. 台灣高鐵
  5. Wikipedia – Radio-frequency identification
  6. YouTube – What is RFID? How RFID works? RFID Explained in Detail
  7. Walmart and RFID: The Relationship That put RFID on the Map
所有討論 2
鳥苷三磷酸 (PanSci Promo)_96
200 篇文章 ・ 308 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
2

文字

分享

0
0
2
給 QR Code 來點「給我漂漂拳」:QR Code的原理是什麼?它有辦法更漂亮嗎?
活躍星系核_96
・2018/06/08 ・6521字 ・閱讀時間約 13 分鐘 ・SR值 579 ・九年級

  • 文/施登騰 │ 中國科技大學互動娛樂設計系助理教授,右手寫文物藝術鑑賞,左手寫展示科技新知,古今複合型大學老師

到處都是 QR Code

QR Code 過時了嗎?好像還沒有,根據筆者最近的個人經驗感覺 QR Code 的使用其實 還是相當的普及與頻繁,而且在某些場合中它的存在感反而變得更明顯了。

比如說在參加學校會議的時候,要拿著手機開啟讀碼軟體、掃描 QR Code 後登入出席報到頁面;會議結束回程搭火車的時候,又在桃園車站看到大幅的 QR Code 看板,密密麻麻地等著要把某人的手機連線某個鐵路局服務網站去。似乎冥冥中被召喚著要再來更認識 QR Code 這玩意了。

QR碼的圖像存在就是一種數位連結的意象。圖/作者提供。

先談「二維碼」的視覺意象

QR Code 也被叫做「二維碼」,所以從這名稱來看,還有什麼視覺意象可以談的呢?

確實,QR Code 這種圖表一直被我個人嫌棄。它呈現滿滿的人機對話的數位冷冽感,圖樣差異性相當細微、只有機器能辨識,而在眼裏看到的,卻是相仿的類似圖案。所以即使知道它能提供鏈結,在文化歷史古蹟、博物館展區、美術館展覽提供通往深度/擴增數位資訊。但就是覺得它的存在破壞了美感,特別是在古蹟、博物館、美術館等場域。

-----廣告,請繼續往下閱讀-----

QR Code該是沒有任何美學可言的吧?!

抱著這樣的疑問去查找相關論文,乖乖,還真找到不少文章。有些學者提出所謂的Aesthetic QR Code(美學式QR碼)」(如下圖),但只使用「Aesthetic QR Code」的英文原名或中文譯名,其實找不到圖例。要使用關鍵字「Visual QR Code」或者是「視覺碼」就可以找到與圖片合併的 QR Code。有家製作「Visual QR Code」的新創公司~ Visualead非常成功,甚至讓大陸的阿里巴巴花了150億美金把這家公司買下。

杭州電子科技大學學者提出的各式 Aesthetic QR Code。圖片來源

話說 Aesthetic QR Code(美學式QR碼)的論文研究些什麼呢?

其實,這些論文所提出的「Aesthetic QR Code Solution(美學式 QR 碼解決方案)」主要是在不超過 QR Code 「容錯能力」的情況下,以雙重圖像(Binary Image)或是插入圖像(Input Image)」的方式製作所謂的 Aesthetic/Visual QR Code(有美感/圖像化的 QR code)。使用技術術語,就是「Embedding a picture」。而從整體圖像上來說,QR Code 的基本形式還在,但加入了視覺化圖像的內容。

那「容錯能力」是什麼呢?這就必須從QR Code的結構說起了。

-----廣告,請繼續往下閱讀-----

下面是在維基百科上使用的圖,用來說明 QR Code 的圖碼基本構成。讓我們把重點放在灰色區塊的「資料與糾錯碼訊息」上,其中的「糾錯碼(Error Correction Codeword)」就是與「資料碼(Data Codeword)」共同組成資訊區,用於執行修正錯誤功能的字碼。

這「糾錯」一詞很「大陸用語」的,雖然個人是在很喜歡的演員~葛優所主演的「大腕」這部電影的逗趣劇情中學到「糾錯」這個詞的,但下面還是改用「容錯」去代表原文 Error Correction 字意的「修正錯誤」。

這張圖常用來說明QR Code的圖像結構,本文的重點在於灰色部分,也就是「資料與糾錯碼訊息」。圖片來源

QR Code 在辨識上有設定所謂的「容錯功能」,在部分字碼發生破損或無法辨識時,仍可恢復數據去辨識QR Code 所儲存的內容。在執行「容錯功能」的優劣上,有 7%~30% 的容錯能力(Error Correction Capacity,或譯作容錯能力)差異,分為四種級別,分別代表不同高低的容錯能力(進一步了解):

-----廣告,請繼續往下閱讀-----
  • 等級「L」:7% 字碼可被修正
  • 等級「M」:15% 字碼可被修正
  • 等級「Q」:25% 字碼可被修正
  • 等級「H」:30% 字碼可被修正

但是,前面提及的「Aesthetic QR Code Solution(美學式QR碼解決方案)」是在不超過 QR Code 的容錯能力情況下進行。也就是說,既然 QR Code 在判讀上有 7%~30% 的容錯率,那其中一個方法就是在可容許範圍內,加入「雙重圖像(Binary Image)」或是「插入圖像(Input Image)」。

所以,網路上就有些教學,介紹如何使用繪圖軟體自製「視覺碼」。有興趣了解的人,可以看看這個介紹

網路上以Photoshop製作視覺碼的示範。圖片來源

讓你的 QR碼也美美的

但既然有學者特地提出討論「Aesthetic QR Code Solution(美學式QR碼解決方案)」,就肯定不僅僅只有運用「工人」智慧、還小心地不超過容錯率這種簡單的作法。

-----廣告,請繼續往下閱讀-----

在杭州電子科技大學與逢甲大學學者所提出的「An aesthetic QR code solution based on error correction mechanism」(根據容錯率計算機制完成之美學式 QR 碼)這篇期刊論文中提出特殊的運算技術去自動產生視覺碼(或學者所說的「美學式QR碼」),而且是透過「建構字碼編排(Construct codeword layout)」、「取得顯著圖(Obtain saliency map)」、「選擇最佳可變區(Select best changeable regions)」、「提出分層替換規則(Propose hierarchy replacement rules)」等4個步驟去運算生成的。

根據兩岸學者論文中提供的成果來看,成效確實是相當好的。特別是「選擇最佳可變區(Select best changeable regions)」這個關鍵技術,使得所製作出來的「視覺碼」,甚至比坊間的商業技術都更為優越且清晰。

下圖是節錄自論文的圖片,最上排的「美學式QR碼解決方案」技術所完成的「美學式QR碼」、中間那排是使用其他類似研究學者的技術所完成的、最下面那排則是使用前面所提到,被阿里巴巴重金收購的Visualead 技術所完成的。其他兩個技術所完成的雙重圖像式視覺碼與「美學式QR碼」有不小的差距。

不同技術所完成之視覺碼範例。圖片來源

-----廣告,請繼續往下閱讀-----

然而,這些視覺碼其實並沒有解決QR碼的視覺設計問題,因為其在圖像構成上,仍屬於複合圖像(雙重圖像,Binary Image),也就是「QR碼+圖」,QR碼的形狀仍有絕對的存在。所以,要談「QR碼的視覺意象」,仍必須從視覺設計的角度去看看是否已有解決方案。

以 QR code 作為視覺意象

經過查找許多的網路資料,可以整理出設計師給的答案,就是下面幾張圖所代表的類型。

在以下的圖片說明中,我會特別標示實際掃瞄測試的結果,畢竟有些視覺碼雖然很有設計感,卻在掃描使用上發生問題,甚至失去其基本功能。這些也是視覺碼要兼具美感與功能奮戰的目標。以下就舉例幾張 QR碼的設計佳構作為「視覺意象」的介紹,更多可點選此網址

以下這張圖可掃描連結微信qq,在設計上仍保留「定位標記」跟「校正圖塊」的必要形式,但資料與糾錯碼都十分具有圖像設計感了,可以看出與前面所介紹之視覺碼的差異。

-----廣告,請繼續往下閱讀-----

可掃描連結微信qq,在設計上仍保留「定位標記」跟「識別圖塊」的必要形式,但資料與糾錯碼都十分具有設計感了。圖片來源

以下這張圖可掃描連結至微信App下載網址,同樣保留「定位標記」跟「校正圖塊」的必要形式,但「資料與糾錯碼區」是以海盜為圖像設計概念,與前圖一樣都有電腦繪圖的設計美感了。

圖片來源

以下這張圖可掃描連結至微信qq,「定位標記」跟「校正圖塊」已成功隱入設計中,以蒙娜麗莎為主的設計概念更為完整,卻仍兼具QR碼功能。

-----廣告,請繼續往下閱讀-----

圖片來源

以下這張的原圖是個動畫gif檔,但我試過至少3款讀碼軟體仍然無法判讀,所以就單純從設計來看。可看出這是個很有向量圖設計感的2.5 D圖標,基本上保留QR碼原形,並且反向讓QR碼插入圖像中,而不是坊間普及的「QR碼+Logo」的插入圖片形式。

圖片來源

既然無法掃描執行 QR碼功能,上圖其實就非屬 QR碼。我相信這絕非此動態圖的設計原旨,但既然要以 QR碼去橋接數位服務與訊息,功能價值還是遠遠在設計價值上的,這也就是「Form Follow Function」(形式服務功能)的功能性設計概念,畢竟QR碼的其中一個很重要的功能是「Call to Action」(行動呼籲設計),是連結啟動許多數位服務的關鍵元素,所以接下來就談談「再想想 QR碼的實務用途」。

再想 QR碼的實務用途

上面圖片所見的功能用途,應該算是 QR碼的使用特例,圖中的 QR碼海報也確實可以掃瞄連結到一家專營QR碼海報商品的「QR Canvas」公司網站。但這不是「再想想QR碼的實務用途」這個部分要談論與介紹的。就如前述,既然要談QR碼能連結啟動許多數位服務,具備「Call To Action(CTA)」(行動呼籲設計)的關鍵因素,就從使用情境與引導動機這方面去探討。

先從 2012 年威尼斯藝術雙年展,俄羅斯館的競賽作品《iCity》談起。該建築的內部在天花板、牆壁、地板都鑲滿 QR碼,就像個裝置藝術展。只不是此作品是一個虛擬展品,入目所見的全是可透過行動裝置判讀的巨大 QR 碼,連結到城市「Skolkovo (斯科爾科沃)」的訊息。斯科爾科沃號稱為「俄羅斯矽谷」,承載了一個國家的科技創新夢想。

整個展布的 QR碼的遵循著「簡單直接 (Keep it simple and straightforward)」的原則,在展間的訪客都能一目瞭然這些 QR碼的用途:連結與提供數位資訊。

圖片來源:http://www.notcot.com/archives/2012/09/russian-ar-code-madness.php

圖片來源:https://creators.vice.com/en_au/article/535evx/qr-codes-cover-every-inch-of-russias-pavilion-at-the-venice-architecture-biennale-2012

從實務運用的角度來看,不虛掩地且直覺地使用 QR 碼,當然是最直接有效的,畢竟 QR 碼的功能用途就是「Call To Action(CTA)」,為了要去橋接後端的「數位服務」。因此要讓「CTA」產生效果,就要有策略地,有步驟地去促成。我將「CTA」目標分為「參與目標」與「執行目標」,且認為缺一不可。分列如下:

  • 「使參與某事(Ask someone to participate)以QR碼提供「快速連結」去達成此「參與目標」。
  • 「使執行某事(Get someone to do something)由QR碼橋接「數位服務」去達成此「執行目標」。

QR碼能提供資訊量真的不大(請見下圖),所以常用的資訊是:「網路連結」、「電郵信箱」 、「電話號碼」、「聯絡資料」、「行事曆活動」、「地點」、「Wi-Fi」等項目,但一旦接續後面的數位服務,就能延伸出更多的用途。

舉例來說,QR碼「網路連結」讓使用者可以「下載App」、「造訪網站首頁」、「在FB粉絲頁按讚」、「登錄為用戶」。若以使用情境來舉例,QR碼「網路連結」讓使用者可以「在賣場查詢產品履歷」、「在促販現場取得電子兌換卷」、「從名片即時連結公司網站」、「從平面設計連結影片播放」、「看著廣告傳單掃描上網訂購商品」、「掃描手機上的QR碼通過車站或機場閘門」等等。

圖片來源

所以,QR碼的功能,其實有著 0 與 1 的極端差異。

因為如果能誘使使用者掃瞄連結、啟用服務,QR碼就是個具有強大數位能量的中介圖標;如果沒能讓使用者掃瞄、啟用連結,QR碼不過是具有簡潔二維圖像的平面圖標。是否掃瞄連結?能否掃描連結?差很多。

而要能讓QR碼功能啟用,執行4個策略:

  • 要有「行動誘因」、「標示清晰」的設計,好讓QR碼提供快速連結去啟用並達成「CTA的參與目標」
  • 也要有「實質承諾」、「計畫策略」,好讓QR碼橋接數位服務去啟用並達成「CTA的執行目標」。

「行動誘因」、「標示清晰」、「實質承諾」、「計畫策略」的這 4 個執行策略,是導入「How to Create the Perfect Call to Action」(如何做出完美的行動呼籲設計)這篇部落格分享文中所提出的「完美 CTA 的4個成分」,並加以變化歸類。有興趣者可以點選閱讀,這邊就不再贅述。

由於「實質承諾」、「計畫策略」是牽涉 QR碼所連結之後端數位服務,這顯然已非此分享要討論的,所以還是把焦點放「行動誘因」、「標示清晰」的設計上。我先根據使用經驗與案例分析試著整理出工作要點如下,以後也會陸續在教學與產學案中在檢視修正:

  • 要以簡潔直接為原則(Keep it simple and straightforward)
  • 要用設計引起動機(Designed the motivation)
  • 要用引起動機的動詞標語(Use a stimulative verb on the tag)
  • 要讓CTA成分吸睛(Make CTA Ingredients stand out)
  • 要展現具有吸引力的激勵誘因(Show the incentive)
  • 要設計資訊圖像(Design infographic images)
  • 要重複與強調(Repeated and emphasized)

其實 QR碼絕少個別存在,即使是印在紙上並以文字註明用途,也一定會貼附在我們空間中的建築、物品、產品、印刷品、衣服甚或人體上。不論尺寸大小、不拘二維碼或視覺碼,在行動網絡世界中,一個個 QR碼就是一個數位連結的承諾,以實體行動裝置去接通。

運用 QR碼的「虛+實」

下面這張圖中看到的是一個校園的長椅,而上面的 QR碼連結的,則是該校學生的藝術創作品分享。所以,接下來談談 QR碼的「虛+實」,作為這篇分享的總結。

圖片來源

下面的影片就是個很有趣的「虛+實」應用,後來引起不少類似作品的仿效。DM上人物的嘴巴被手機加上 QR碼的圖像遮住了;觀眾以手機掃描照片上的 QR碼,就可以連結到影片檔,把手機放在照片的嘴巴部分,播放影片就可以看到照片上的人「說話」。很喜歡類似這樣的簡易、且直覺化的數位科技用法。

下學期(2018 年 2 月)筆者規劃中國科技大學的「遊戲化應用與設計」課程,正打算導入難易度不同的數位技術,其中包括 QR碼。課程預計讓學生創意運用手機創造虛實整合的遊戲化應用:關卡、獎勵、勳章、計分都是遊戲化應該包括的機制,但課程前段將讓學生專注於內容設計,盡量減少數位技術的干擾與負擔。

此時能夠連通「虛+實」QR碼就很適合,之前在筆者臉書分享過的《NFC 近場通訊》也會用在課程中。雖然「NFC 近場通訊」也很適合作為「虛+實」的應用,「NFC 近場通訊」是個實體小裝置與 QR字碼圖標不同,其使用方式也與 QR碼有別,先了解一下:

  • 資料傳輸可分享圖文、網址、通訊錄、電話號碼、樂曲、影片或相片等資料,並可作為支付、驗核、電子票證等類資訊的發送、接收、與確認。
  • 使用方式:可進行非接觸式點對點資料傳輸,範圍是0~20公分。此即NFC重要的近場高頻無線通訊技術基礎上的特殊數位資料傳送方式。
  • 對接形式NFC 裝置與標籤的對接傳輸形式主要是以下圖所示之兩類,也就是「『NFC手機』+『NFC Tag』」或「『NFC手機』與『NFC手機』」等。

目前已規劃 Scavenger hunt 類的尋寶遊戲,就將引導學生使用關卡、獎勵、勳章、計分機制去設計「校園尋寶(Campus Scavenger hunt)」。預計將先使用低數位開發負擔的「QR碼」與「NFC  標籤」讓學生掌握基本的且有趣的「虛+實」應用,再次第導入更為複雜的、技術難度更高的數位科技應用。

之後也會持續分享與學生在「QR碼」與「NFC 標籤」的技術研發與創意應用成果。而更多的具有藝術設計感的視覺碼也會陸續出現在互動系的「互動科技媒體中心實驗室」中。敬請期待!!!









活躍星系核_96
752 篇文章 ・ 126 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia