2

10
3

文字

分享

2
10
3

「掃」一下、「嗶」一聲、乘客滿出來!電子票證如何辦到隨刷隨進?

鳥苷三磷酸 (PanSci Promo)_96
・2021/08/09 ・3366字 ・閱讀時間約 7 分鐘

本文由 交通部鐵道局 委託,泛科學企劃執行。

悠遊卡「嗶」一下上公車、 eTag 不需等待就能收取高速公路通行費、防疫期間進出公共場所「掃」一下完成實聯制登記,甚至買完高鐵車票後還能用手機取得專屬 QR CODE 快速通關!隨著科技進步和智慧型手機的興起,人們開始以電子票證取代傳統紙本票卷,只要一支手機或是一張卡就能到達任何你想去的地方。

臺灣目前常用的電子票證主要有兩大類,高鐵、台鐵 APP 訂票取票後的專屬 QR CODE ,和使用無線射頻辨識 RFID 的感應交通票卡(像是悠遊卡、一卡通),究竟這兩種方便又快速的電子票證技術是怎麼運作的呢? 

「掃」出資訊海—— QR CODE

QR 為 Quick Response 的縮寫,最早在 1994 年,由日本汽車零件業者 Denso Wave 的技術室長原昌宏發明,他認為一維條碼能夠包含的資訊量太少,一件產品都要印上數十個條碼才足以應付需求,對當時追求商品小型化的日本很不方便。原昌宏的團隊便將兩個一維條碼疊加在一起,讓 X 軸、 Y 軸都帶有訊息,進化成二維條碼,不只可以更快速追蹤產線上的產品, QR CODE 還有多角度辨識、容錯能力高等優點。

相較於產品包裝上只能呈現英文、數字資料的一維條碼,二維條碼能夠承載更多資料。圖/envato elements

QR CODE 三大優點:高存量、高容錯、易辨識

QR CODE 呈現正方形黑白兩色,每一格黑白格子都是一個位元,黑色方格代表 1 ,白色方格代表 0 ,掃碼時機器只要判斷反光與否,就能將黑白圖像轉換為二進位數、數字、字母、日語假名等訊息組合,經過轉譯後就能代表一串代碼、一句話或是一個網址。 QR Code 發展至今一共有 40 種版本,以結構、尺寸和校正標記位置區分,每一種版本的儲存密度都不完全相同,最大的版本 40 為 177×177 模組,可容納高達7089字元。

-----廣告,請繼續往下閱讀-----

在 QR CODE 的 3 個角落有像「回」字的正方圖案是幫助解碼軟體定位的座標,以鮮少出現在印刷品的特殊比例 1:1:3:1:1 作為定位標記,只要掃描裝置偵測到這個特殊比例就能算出條碼位置,使用者不需像傳統一維條碼一樣必須精確對準條碼才掃得到, QR CODE 以任何角度掃描都能正確讀取資料,加速識別作業。

定位圖形無論從哪個方向來看都是 1:1:3:1:1 的比例。圖/Denso Wave

除了中規中矩的黑白 QR CODE, 你一定也有看過插入商標或是特殊形狀的二維條碼,為什麼缺了一角的 QR CODE 還能掃描的到呢?因為 QR CODE 有很高的容錯能力,當某部分資訊缺失的時候,解碼系統會透過里德-所羅門碼(Reed-solomon codes)的原理自動填補缺失的部分,讓整體資訊依然可以完整辨識,容忍錯誤發生。 QR Code 的容錯能力分為 4 個等級,條碼圖形面積愈大就能分割出更細緻的里德 – 所羅門碼區塊,避免單一區塊「猜」太多密碼,容錯等級最高甚至可修正 30 %的缺失條碼。

QR Code 的容錯能力可以容許一定程度範圍內的資訊流失,就算破損、髒污,或是插入圖片、 logo 擋住部分條碼,也都能正確辨識。試著用手擋住部分條碼,是不是也掃得出來呢?圖/泛科學製作

QR Code 的快速掃描和容錯能力,能夠廣泛地運用在產品追蹤、物品識別和文件管理方面,使識別作業更便捷,「車票」也是其中之一!高鐵發售的每張電子票證都含有一個獨一無二的 QR Code ,經過閘門條碼感應區解碼就可以直接通關,享受快速方便又環保的乘車體驗!

從高鐵「T Express」APP 取得的電子票證可以存有你的乘車資訊,不用擔心與別人重複訂位,高鐵公司也可以防止車票被重複使用。圖/台灣高鐵

「嗶」一下,扣款成功—— RFID

RFID (Radio Frequency IDentification) 全名為無線射頻辨識,是透過無線電訊號識別特定目標並讀取相關數據的無線通訊技術,我們日常所用的各式電子票卡多半都使用這種技術,或是其衍伸用於智慧型手機的感應式電子票證 NFC(Near-field communication,近距離無線通訊)。

-----廣告,請繼續往下閱讀-----

RFID 最早出現在第二次世界大戰時期同盟國和德軍的敵友識別系統(Identification Friend or Foe,IFF)。以應答機(Transponder)偵聽詢問信號,然後回覆識別暗號,軍隊以此技術識別飛機、車輛或友軍部隊,並確定受詢問方的方位和距離。儘管當時 RFID 已被廣泛使用於軍事、航空用途,人們日常生活還是很難接觸到 RFID ,直到 2003 年美國最大零售商 Walmart 宣布他們的前 100 家供應商將被要求在所有進貨的貨箱和托盤上貼上 RFID 標籤以減少盤點貨物的時間,其他企業、零售商紛紛開始效法,使 RFID 頓時成為商品管理的新模式。RFID 發展至今,包括日常使用的悠遊卡、門禁卡、商品防盜標籤和寵物晶片,都是使用 RFID 的技術。

RFID 標籤非常輕薄,可製作成商品貼紙或是放進悠遊卡裡。圖/Amazon

你是否曾疑惑:悠遊卡沒電池,為何能付款或是傳送資訊?

我們常用的電子票卡多半屬於無電源的被動式標籤,利用感應器(Reader,像是公車讀卡機)發送特定頻率的電磁訊號,當訊號夠強時,就會觸發感應範圍內的 RFID 標籤(Tag),RFID 標籤內部為電路板和天線的組合,標籤接收電磁波後會藉由電磁感應產生電流,供應 RFID 標籤上的晶片運作並發出電磁波將特定編碼回應給感應器。感應器若成功解碼,則回傳主機(Host)請求驗證資料再給予回應。RFID 系統以「辨識」為主要功能,接收到「有效回應」才算驗證成功,就像拿悠遊卡靠近公車讀卡機可以扣款,而你的公司門禁卡不行,是因為讀卡機無法解開公司門禁卡回傳的編碼,無法驗證有效性就會顯示扣款失敗。

悠遊卡(easycard)RFID的內部天線、半導體及晶片構造。

相對於傳統條碼, RFID 標籤帶有遠距離讀寫、具穿透性、可同時讀取多個標籤和重複利用等優勢。透過調整感應器發送的電磁波頻率,來選擇觸發特定頻帶的標籤和控制讀取範圍:像是悠遊卡、一卡通是 13.56MHz 的高頻帶(HF)標籤,感應器可讀取在 1 公尺以內的 RFID 條碼;高速公路 eTag則是採用特高頻帶(UHF)標籤,不僅可讀取範圍增加到 5 ~ 10 公尺,還能同時讀取 1000 個RFID 條碼,就算中間有其他物質阻擋(像是卡片放在錢包裡、颱風天上高速公路),RFID一樣都可以讀取。

RFID 標籤最大的優勢其實是重複利用,過往的條碼都是一對一的組合,只要印刷上去就無法更改,使用過後必須報廢,而 RFID 可以更新電路板內儲存的資料,讓同樣一個標籤衍生出不同的編碼,拓展用途。當然這也代表有心人士可以串改標籤中的資料,因此大多數電子票卡會多加一層密鑰保護內部資料。除此之外,由於 RFID 標籤無須直接與感應器接觸,使用者也有可能在不知情的情況下被他人讀取標籤內儲存的資訊,構成安全隱憂。

-----廣告,請繼續往下閱讀-----
悠遊卡、一卡通屬於電子貨幣,內涵的編碼有密鑰保護,不容易被有心人士複製。圖/悠遊卡

目前,高鐵除了能用「T Express」APP 訂位立即取得專屬 QR CODE 快速通關,也開放悠遊聯名卡或一卡通聯名卡這兩款 RFID 電子票證來搭乘自由座喔!

現在搭乘高鐵只要感應手機、便利商店車票上的二維條碼,或悠遊聯名卡、一卡通聯名卡,都可作為驗票工具,輕鬆過關。圖/台灣高鐵

參考資料:

  1. Denso Wave
  2. Wikipedia – QR CODE
  3. Cool3C – QR Code發展與歷史介紹:運作原理、特色、編碼結構分析
  4. 台灣高鐵
  5. Wikipedia – Radio-frequency identification
  6. YouTube – What is RFID? How RFID works? RFID Explained in Detail
  7. Walmart and RFID: The Relationship That put RFID on the Map
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
鳥苷三磷酸 (PanSci Promo)_96
208 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
0

文字

分享

0
2
0
地震之島的生存法則!921地震教育園區揭開台灣的防災祕密
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/20 ・4553字 ・閱讀時間約 9 分鐘

為什麼台灣會像坐在搖搖椅上,總是時不時地晃動?這個問題或許有些令人不安,但卻是我們生活在這片土地上的現實。根據氣象署統計,台灣每年有 40,000 次以上的地震,其中有感地震超過 1,000 次。2024年4月3日,花蓮的大地震發生後,台灣就經歷了超過 1,000 次餘震,這些數據被視覺化後形成的圖像,宛如台北101大樓般高聳穿雲,再次引發了全球對台灣地震頻繁性的關注。

地震發生後,許多外國媒體擔心半導體產業會受影響,但更讓他們稱奇的是,台灣竟然能在這麼大的地震之下,將傷害降到這麼低,並迅速恢復。不禁讓人想問,自從 25 年前的 921大地震以來,台灣經歷了哪些改變?哪些地方可能再發生大地震?如果只是遲早,我們該如何做好更萬全的準備?

要找到這些問題的答案,最合適的地點就在一座從地震遺跡中冒出的主題博物館:國立自然科學博物館的 921地震教育園區。

圖:跑道捕捉了地震的瞬間 / 圖片來源:劉志恆/青玥攝影

下一個大地震在哪、何時?先聽斷層說了什麼

1999年9月21日凌晨1點47分,台灣發生了一場規模7.3的大地震,震央在南投縣集集鎮,全台 5 萬棟房子遭震垮,罹難人數超過 2,400 人。其中,台中霧峰光復國中校區因車籠埔斷層通過,地面隆起2.6公尺,多棟校舍損毀。政府決定在此設立921地震教育園區,保留這段震撼人心的歷史,並作為防災教育的重要基地。園區內兩處地震遺跡依特性設置為「車籠埔斷層保存館」和「地震工程教育館」。

-----廣告,請繼續往下閱讀-----

車籠埔斷層保存館建於原操場位置,為了保存地表破裂及巨大抬升,所以整體設計不採用樑柱結構,而是由82根長12公尺、寬2.4公尺、重約10噸的預鑄預力混凝板組成,外觀為曲線造型,技術難度極高,屬國內外首見,並榮獲多項建築獎。而地震工程教育館保留了原光復國中受損校舍,讓民眾親眼見證地震的驚人破壞力,進一步強調建築結構與安全的重要性。毀損教室旁設有由園區與「國家地震工程研究中心」共同策劃的展示館,透過互動展示,讓參觀者親手操作,學習地震工程相關知識。

國立自然科學博物館地質學組研究員蔣正興博士表示,面積上,台灣是一個狹長的小島,卻擁有高達近4000公尺的山脈,彰顯了板塊激烈擠壓、地質活動極為活躍的背景。回顧過去一百年的地震歷史,從1906年的梅山地震、1935年的新竹-台中地震,到1999年的921大地震,都發生在台灣西部,與西部的活動斷層有密切關聯,震源位於淺層,加上人口密度較高,因此對台灣西部造成了嚴重的災情。

而台灣東部是板塊劇烈擠壓的區域,地震震源分佈更廣。與西部相比,雖然東部地震更頻繁,但由於人口密度相對較低,災情相對較少。此外,台灣東北部和外海也是地震多發區,尤其是菲律賓海板塊往北隱沒至歐亞板塊的隱沒地震帶,至沖繩海槽向北延伸,甚至可能影響到台北下方,發生直下型地震,這種地震因震源位於城市正下方,危害特別大,加上台北市房屋非常老舊,若發生直下型地震,災情將非常嚴重。

除了台北市,蔣正興博士指出在台灣西部,我們特別需要關注的就是彰化斷層的影響,該斷層曾於1848年發生巨大錯動。此外,我們也需要留意西南部的地震風險,如 1906 年的梅山地震。此兩條活動斷層距今皆已超過 100 年沒活動了。至於東部,因為存在眾多活動斷層,當然也需要持續注意。

-----廣告,請繼續往下閱讀-----

我們之所以擔心某些斷層,是因為這些區域可能已經累積了相當多的能量,一旦達到臨界點,就會釋放,進而引發地震。地質學家通常會沿著斷層挖掘,尋找過去地震的證據,如受構造擾動沉積物的變化,然後透過定年技術來確定地震發生的時間點,估算出斷層的地震週期,然而,這些數字的計算過程非常複雜,需要綜合大量數據。

挑戰在於,有些斷層的活動時間非常久遠,要找到活動證據並不容易。例如,1906年的梅山地震,即使不算久遠,但挖掘出相關斷層的具體位置仍然困難,更不用說那些數百年才活動一次的斷層,如台北的山腳斷層,因為上頭覆蓋了大量沉積物,要找到並研究這些斷層更加困難。

儘管我們很難預測哪個斷層會再次活動,我們仍然可以預先對這些構造做風險評估,從過往地震事件中找到應變之道。而 921 地震教育園區,就是那個可以發現應變之道的地方。

圖:北棟教室毀損區 / 圖片來源:劉志恆/青玥攝影

921 後的 25 年

在園區服務已 11 年的黃英哲擔任志工輔導員,常代表園區到各地進行地震防災宣導。他細數 921 之後,台灣進行的六大改革。制定災害防救法,取代了總統緊急命令。修訂了建築法規,推動斷層帶禁限建與傳統校舍建築改建。組建災難搜救隊伍,在面對未來災害時能更加自主應對。為保存文化資產,增設了歷史建築類別,確保具有保存價值的建築物得到妥善照料。

-----廣告,請繼續往下閱讀-----

最後,則是推行防災教育。黃英哲表示,除了在學校定期進行防災演練,提升防災意識外,更建立了921地震教育園區,不僅作為教育場所,也是跨部門合作的平台,例如與交通部氣象署、災害防救辦公室、教育部等單位合作,進行全面的防災教育。園區內保留了斷層線的舊址,讓遊客能夠直觀地了解地震的破壞力,最具可看性;然而除此之外,園區也是 921 地震相關文物和資料的重要儲存地,為未來的地震研究提供了寶貴的資源。

堪稱園區元老,在園區服務將近 19 年,主要負責日語解說工作的陳婉茹認為,園區最大的特色是保存了斷層造成的地景變化,如抬升的操場和毀壞的教室場景,讓造訪的每個人直觀地感受地震的威力,尤其是對於年輕的小朋友,即使他們沒有親身經歷過,也能透過這些真實的展示認識到地震帶來的危險與影響。

陳婉茹回憶,之前有爸媽帶著小學低年級的小朋友來參觀,原本小朋友並不認真聽講,到處跑來跑去,但當他看到隆起的操場,立刻大聲說這他在課本看過,後來便聚精會神地聽完 40 分鐘的解說。

圖:陳婉茹在第一線負責解說工作 / 圖片來源:921地震教育園區

除了每看必震撼的地景,園區也透過持續更新策展,邀請大家深入地震跟防災的各個面向。策展人黃惠瑛負責展示設計、活動規劃、教具設計等工作。她提到,去年推出的搜救犬特展和今年的「921震災啓示展」與她的個人經歷息息相關。921 大地震時的她還是一名台中女中的住宿生,當時她儘管驚恐,依舊背著腿軟的學姊下樓,讓她在策劃這些展覽時充滿了反思。

-----廣告,請繼續往下閱讀-----

在地震體驗平臺的設計中,黃惠瑛強調不僅要讓觀眾了解災害的破壞力,更希望觀眾能從中學到防災知識。她與設計師合作,一樓展示區採用了時光機的概念,運用輕鬆、童趣的風格,希望遊客保持積極心態。二樓的地震體驗平臺結合六軸震動臺和影片,讓遊客真實感受921地震的情境。她強調,這次展覽的目標是全民,設計上避免了血腥和悲傷的元素,旨在讓觀眾帶著正向的感受離開,並重視防災意識。

圖:地震體驗劇場 / 圖片來源:921地震教育園區

籌備今年展覽的最大挑戰是緊迫的時間。從五月開始,九月完成,為了迅速而有效地與設計師溝通,黃惠瑛使用了AI工具如ChatGPT與生成圖像工具,來加快與設計師溝通的過程。

圖:黃惠瑛與設計師於文件中討論設計/ 圖片來源:921地震教育園區

蔣正興博士說,當初學界建議在此設立地震教育園區,其中一位重要推手是法國地質學家安朔葉。他曾在台灣指導十位台灣博士生,這些博士後來成為地質研究的中堅力量。1999年921大地震後,安朔葉教授立刻趕到台灣,認為光復國中是全球研究斷層和地震的最佳觀察點,建議必須保存。為紀念園區今年成立20週年,在斷層館的展示更新中,便特別強調安朔葉的貢獻與當時的操場圖。

此外,作為 20 週年的相關活動,今年九月也將與日本野島斷層保存館簽署合作備忘錄(MOU),強化合作並展示台日合作歷史。另一重頭戲則是向日本兵庫縣人與自然博物館主任研究員加藤茂弘致贈感謝狀,感謝他不遺餘力,長期協助園區斷層保存館的剖面展品保存工作。

-----廣告,請繼續往下閱讀-----
右圖:法國巴黎居禮大學安朔葉教授。左圖:兵庫縣立人與自然博物館主任研究員加藤茂弘
/ 圖片來源:921地震教育園區

前事不忘,後事之師

盡力保存斷層跟受創校舍,只因不想再重蹈覆徹。蔣正興博士表示,921地震發生在車籠埔斷層,其錯動形式成為全球地質研究的典範,尤其是在研究斷層帶災害方面。統計數據顯示,距離車籠埔斷層約100公尺內,住在上盤的罹難率約為1%,而下盤則約為0.6%。這說明住在斷層附近,特別是上盤,是非常危險的。由於台灣主要是逆斷層活動,這一數據清楚告訴我們,在上盤區域建設居住區應特別小心。

2018年花蓮米崙斷層地震就是一個例證。

在921地震後,政府在斷層帶兩側劃設了「地質敏感區」。因為斷層活動週期較長,全球大部分地區難以測試劃設敏感區的有效性,但台灣不同,斷層活動十分頻繁。例如 1951 年,米崙斷層造成縱谷地震,規模達 7.3,僅隔 67 年後,在 2018 年再次發生花蓮地震,這在全球是罕見的,也因此 2016 年劃設的地質敏感區,在 2018 年的地震中便發現,的確更容易發生地表破裂與建築受損,驗證了地質敏感區劃設的有效性。

圖:黃英哲表示曾來園區參訪的兒童寄來的問候信,是他認真工作的動力 / 圖片來源:921地震教育園區

在過去的20年裡,921地震教育園區不僅見證了台灣在防災教育上的進步,也承載著無數來訪者的情感與記憶。每一處地震遺跡,每一項展示,都在默默提醒我們,那段傷痛歷史並未走遠。然而,我們對抗自然的力量,並非源自恐懼,而是源自對生命的尊重與守護。當你走進這座園區,感受那因地震而隆起的操場,或是走過曾經遭受重創的教室,你會發現,這不僅僅是歷史的展示,更是我們每一個人的責任與使命。

-----廣告,請繼續往下閱讀-----

來吧,今年九月,走進921地震教育園區,一起在這裡找尋對未來的啓示,為台灣的下一代共同築起一個更堅固、更安全的家園。

圖:今年九月,走進921地震教育園區 / 圖片來源:劉志恆/青玥攝影

延伸閱讀:
高風險? 家踩「斷層帶、地質敏感區」買房留意
「我摸到台灣的心臟!」法國地質學家安朔葉讓「池上斷層」揚名國際
百年驚奇-霧峰九二一地震教育園區|天下雜誌

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
從半導體到量子晶片:台灣成為全球量子科技的核心力量!
PanSci_96
・2024/10/14 ・2209字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

台灣首台量子電腦誕生:量子時代的到來

2024 年 1 月,台灣自主研發的第一台量子電腦正式於中央研究院誕生,儘管僅具備5個量子位元(qubits),卻為台灣在全球量子電腦競技場上佔據一席之地揭開了序幕。這一具有歷史性意義的事件不僅代表台灣科技能力的進步,也喚醒了人們對量子電腦的未來潛力的無限期待。

量子電腦,不再僅是科幻小說中的幻想,而是實實在在的科技新星,逐漸改變人類面對複雜問題的解決方式。台灣,身為全球半導體製造的重要支柱,正在迎接量子電腦進入量產的時代,而這將與材料學、晶片製程技術緊密相關。當量子技術進一步發展,台灣的製程技術無疑能為這場科技革命提供關鍵助力。

但在我們深入了解量子電腦的潛力之前,必須先理解它的基本運作原理。畢竟,要瞭解該投資哪些量子概念股,或者選擇哪些科系來掌握未來的科技趨勢,我們首先需要清楚量子電腦究竟是如何運作的。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

什麼是量子電腦?從電晶體到量子位元

2019 年,Google 推出了 53 量子位元的量子電腦「梧桐」(Sycamore),並宣告達成「量子霸權」,即其量子電腦在短短 200 秒內完成了傳統超級電腦需要 1 萬年才能處理的計算任務。這標誌著量子計算能力的突破,為計算科學開啟了全新的紀元。

-----廣告,請繼續往下閱讀-----

量子電腦之所以強大,是因為它利用了量子力學的「疊加」與「糾纏」現象。傳統電腦使用二進制的「0」和「1」來進行計算,而量子位元可以同時處於「0」和「1」的狀態,這使得量子電腦能在同一時間進行更多複雜的計算,大大提高了運算效率。

這樣的技術突破意味著,我們不再只依賴電子流過電晶體來實現運算,而是可以直接操控單一電子或其他粒子,讓它們同時攜帶 0 與 1 的信息,從而極大地提升了計算能力。

掌握電子的挑戰:從不確定性到操控技術

量子力學的另一個特性——不確定性原理——使得控制電子變得非常困難。電子極其微小,甚至無法用肉眼觀察。當我們試圖「觀察」一顆電子時,光子的介入會改變電子的狀態,這種不確定性使得同時測量電子的位置和動量幾乎不可能。

這種量子現象的捉摸不定,給科學家們帶來了巨大的挑戰。然而,正是這些現象,讓科學家們探索出了全新的計算方式——量子計算。在這一領域,超導體成為了實現量子位元的關鍵技術。

-----廣告,請繼續往下閱讀-----

超導體與量子電腦的結合:解鎖未來的關鍵

2023 年 7 月,韓國科學家宣布發現了一種名為 LK-99 的高溫超導體,這一發現引起了全球的轟動,因為超導體具備零電阻和磁浮現象,與量子力學有著密切的聯繫。超導體是未來量子電腦的潛在材料,它能夠在極低溫下讓電子以「庫柏對」的形式運動,這些電子對能夠在原子之間暢通無阻,產生零電阻效應。

通過利用「約瑟夫森效應」,兩個超導體之間夾入絕緣體,可以讓電子對穿越絕緣體,形成「超導電流」。這種穿隧效應是量子電腦中量子位元的重要基礎,讓我們能夠構建出穩定且有效的量子系統。

然而,現有的超導量子電腦仍面臨兩個主要挑戰。首先,超導現象只能在接近絕對零度的極低溫環境下出現,這意味著要在家庭或企業中大規模應用量子電腦,仍需克服極端溫控的技術難題。其次,超導量子位元非常容易受到外界干擾而失去量子狀態,這使得量子計算的穩定性成為一個尚未解決的問題。

由美國國家標準技術研究所研發的約瑟夫森接面陣列晶片。圖/wikimedia

量子電腦的多元發展:超導不是唯一的答案

儘管超導體被廣泛應用於當前的量子電腦技術中,但它並不是唯一的發展途徑。其他量子計算技術也在不斷進步,包括基於離子阱技術、光子學量子電腦等。

-----廣告,請繼續往下閱讀-----

離子阱技術利用激光操控單一原子來進行計算,這種技術具有極高的精度和穩定性,但也面臨著技術複雜性和成本的問題。而光子學量子電腦則利用光子來承載和傳輸信息,具有快速且易於擴展的潛力,然而,目前的光子學技術還存在一定的技術障礙,尤其是在量子糾纏狀態的穩定性上。

因此,量子計算的未來發展並不會只依賴一種技術,而是可能出現多元化的方案,根據不同的應用場景,選擇最合適的技術路徑。

台灣的量子未來:機遇與挑戰並存

隨著全球對量子技術的關注不斷提升,台灣有望在這一領域佔據重要地位。台灣的半導體技術、材料科學研究和製造實力,無疑為量子電腦的發展提供了堅實的基礎。從傳統的半導體製程轉換到量子晶片製造,台灣擁有豐富的技術積累與創新潛力。

然而,量子電腦技術的發展速度迅猛,台灣必須在全球競爭中不斷推動自主研發能力。未來,量子電腦的應用範圍將涵蓋人工智能、金融運算、材料科學、新藥開發等領域,這將進一步改變現有的產業結構和科技生態。

-----廣告,請繼續往下閱讀-----

對於投資者和學生來說,理解量子電腦的運作原理與未來趨勢,將是未來掌握科技變革的關鍵。而量子電腦的崛起,也標誌著下一場技術革命的序幕已經開啟。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

3
1

文字

分享

0
3
1
「光」革新突破半導體極限 矽光子晶片即將上陣
宜特科技_96
・2024/09/22 ・3808字 ・閱讀時間約 7 分鐘

矽光子是近年熱門議題,晶圓大廠計劃將先進封裝整合 CPO 及矽光子技術,預計兩年後完成並投入應用。早在 2020 年,Intel  就指出矽光子將是先進封裝發展的關鍵,如今矽光子已真正成為半導體產業的核心研發方向。面對這次「電」轉「光」的新革命,您準備好了嗎?

本文轉載自宜特小學堂〈光革新突破半導體極限 矽光子晶片即將上陣〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

隨著半導體積體電路技術的不斷發展,我們見證了摩爾定律的演進,元件尺寸的微縮和新材料的應用,都是為了提高單位面積內的元件數量,以加速 IC 的運算速度,同時改善散熱效能和節省能源。然而,隨著尺寸的微縮接近物理極限,製程技術面臨挑戰,良率問題也隨之浮現。

因應這一挑戰,專家開始探索將不同功能的 IC 集合成單一晶片、採用 3D 堆疊封裝技術等新途徑,但這些技術的核心仍然是用金屬線連接各個元件。自從晶片問世以來,「電子」一直是主要的訊號傳輸媒介,它的傳輸速度直接決定了晶片的性能。近年來高效能運算(HPC)、人工智慧(AI)、雲端數據等需求爆炸性成長,如何能突破限制實現更高效能的傳輸呢?於是大家把目光轉向了「光子」,藉由更快速的「光子」引入,是否可以加快元件的運作呢?

什麼是矽光子(Silicon photonics,簡稱 SiPh)?

矽光子(Silicon photonics,簡稱 SiPh) 是一種結合電子與光子的技術,是將光路微縮成一小片晶片,利用光波導在晶片內傳輸光信號。若能將處理光訊號的光波導元件整合到矽晶片上,同時處理電訊號和光訊號,便可達到縮小元件尺寸、減少耗能、降低成本的目標,但目前矽光子仍有許多技術難題需克服。

光通訊運用的「光纖」系統,能於世界各地以每秒數萬億 bit 的速度傳送數據,1968 年貝爾實驗室工程師很早就想到了。到了 21 世紀初發現光子技術不僅能在國與國之間做數據的傳遞,亦可在數據中心甚至是 CPU 之間,乃至於在晶片與晶片之間做數據傳輸。之所以採用「光」是因為玻璃(SiO2)對於光來說是透明的,不會發生干擾的現象,基本上,可以透過在 SiO2 中,結合能夠傳遞電磁波的光波導(Waveguide)通路來高速地傳輸數據。

-----廣告,請繼續往下閱讀-----

而矽(Si)材料的折射率(Refractive index)對比在紅外線的波長下高達 3.5,這也意味著,它比許多其他光學中所用的材料,更能有效地控制光的彎折或減速。一般光學傳輸的波長是 1.3 和 1.55 微米,在這兩個波段下矽材料不會吸收光線,因此光線能夠直接穿透矽材料。這種相容性使矽基設備能夠長距離傳輸大量數據,不會明顯失去訊號。

因此,矽光子技術透過原本 CMOS 矽(Si)的成熟技術,結合光子元件製程,可以使處理器核心之間的資料傳輸速度提高數百倍以上,且耗能更低;CPO(共同封裝光學)則是利用矽光子技術,將光通訊元件和交換器做整合,放在同一個模組內,這樣能縮短傳輸路徑,並在高速傳輸時,降低延遲與功耗。現今各大廠的目標是透過CPO和矽光子,實現更高效的光電封裝整合,大幅提升傳輸性能。

除了前面提到高效運算跟人工智慧需求不斷增加,光學雷達、生醫感測也非常適合使用光子元件,世界前幾大 IC 製造商都相繼發表矽光子是未來 IC 技術的關鍵及趨勢,本文將與大家分享相關文獻,了解矽光子元件組成與決定效能的關鍵。

矽光子元件組成,材料以「鍺」為首選

矽光子元件的基本組成是使用能將「光」轉換成「電」訊號的 p-i-n diode(PIN二極體)光電偵測器,加上傳輸訊號的光波導(Wave guide)與電訊號轉成光子的調變器(Modulator)、耦合器(Coupler)等所組合成的一個單晶片,斷面的結構大致如圖一所示。

-----廣告,請繼續往下閱讀-----
圖一:完整的 CEA LETI 矽光子單晶片平台用於結合被動和主動作用元件的橫剖面示意圖。[1]

其中最關鍵的製造技術即在圖一最右側 PIN 二極體,首選的半導體材料為鍺(Ge),因為鍺具有準直接能隙(Quasi-Direct band gap)且僅有 0.8eV 小於光子能量,能夠有效吸收光並轉換成電訊號,並且對於光的吸收係數很高,更適合用於光電偵測器,是一種非常好的取代材料。

PIN 是由一組高摻雜P (p+)型區和N (n+)型區之間夾著一層本質(Intrinsic)區所組成。在負偏壓下二極體的空乏寬度(Depletion width, Wd)會擴展至整個本質層。如圖二下能帶結構所示,當入射到本質層中的光子被吸收後,於導電和價電帶間產生電子–電洞對的漂移而形成電流。在矽光子元件的研發中最重要的方向,就是在不影響常規 CMOS 元件的特性下透過調整光電偵測器 PIN 的製程,且能使效能與頻寬達到最佳化。

圖二:PIN 二極體與負偏壓下受光效應產生的能帶結構示意圖。[2]

如何辨別 Ge-PIN 的品質?

先以圖三簡單的說明一顆單晶片的設計,Ge-PIN 光電偵測器與 Si -光波導的相對位置,(a)圖為剖面結構示意圖,光波導位於本質層下方,(b)圖為正面 Layout。

圖三:光子元件中 PIN 偵測器與光波導之(a)剖面結構相對位置圖,(b)為正面 Layout。[3]

因為 Ge-PIN 的品質差異會影響到偵測器的光電效能,鍺(Ge)的磊晶製程與 矽(Si)之間會有晶格不匹配與離子植入產生的差排缺陷等影響品質,圖四是Ge-PIN藉由穿透式電子顯微鏡(TEM)的觀察,可以明顯看出在本質層(Intrinsic)與 P 區均呈現亮區,代表沒有明顯缺陷,反觀在右側的 N 區則呈現暗灰色,這應該是源自於離子植入製程所產生的晶格缺陷。(延伸閱讀:破解半導體差排軌跡  TEM 技術找出晶片漏電真因

-----廣告,請繼續往下閱讀-----
圖四:TEM 觀察 Ge-PIN 的斷面結構影像。[4]

此外,藉由 EDS 來分析波導中的矽(Si)是否有朝向 Ge-PIN 擴散的情形。圖五為鍺(Ge)層中沿著波導方向矽(Si)的含量分佈。矽(Si)摩爾百分比從接觸窗(Window)最高約 35%,向輸入側減少至低於 EDS 檢測極限的 2%,約是在 11mm 的位置處,表示發生明顯的擴散現象。

圖五:EDS 分析從接觸窗(0mm)到光電偵測器的輸入端(15mm)矽(Si)的分佈。[5]

如何觀察影響光電偵測器效能空乏區寬度的大小?

矽光子元件主要是採用與矽基產品相同的 CMOS製程,藉由掃描電容顯微鏡(SCM)的分析技術可以量測 PIN 在不同製程條件下,觀察本質層中空乏區寬度(Wd)的變化,圖六說明經由 SCM 二維載子分布圖(Mapping)影像以及從一維載子線分佈(Line Profile),分別能區分 P/N 接面(Junction)的位置與 Wd 的示意圖。

圖六:PIN 的斷面 SCM 2D  載子 mapping  影像與 1D line profile。 [6]

圖七:在圖三(B)中 x3 位置的斷面 SCM (a)2D mapping 影像與(b)1D Line profile。 [7]

在圖三中 X3 與 X4 兩位置區域的剖面 SCM 一維載子分布的結果於圖八中,可以量得 p/n 接面位置偏移了約 215nm (兩條虛線間距)。上述都是透過 SCM,可觀測出空乏區寬度(Wd)的變化,而空乏區的寬度決定電流流過的多寡,將會直接影響到元件品質與性能。

-----廣告,請繼續往下閱讀-----
圖八:SCM 一維載子分布圖顯示 X3 和  X4 兩位置之間的 p/n 接面位置的偏移。[8]

本文中談到離子植入產生的晶格缺陷或是矽波導朝向本質層擴散現象,以及 N/P dopant 擴散速率的差異影響 Wd 寬度等,這些要素皆決定了矽光子元件的品質,都是目前研發單晶片矽光子製程技術,所需面對的課題。

此外,在設計 Waveguide 材料或形狀,以及其他相關製程的研發中,均可藉由奈米材料分析技術如 TEM、EDS 與 SCM 等,宜特科技擁有大量材料分析實戰經驗,可以提供客戶有效的濃度分布的數據分析,並以此依據改善研發製程細節。

事實上,現有相關矽光子產品大多是將數位交換晶片與光收發模組(Transceiver)利用先進封裝包裝在一起,就是使用我們前面所說的 CPO(Co-Packaged Optics)的方式來商品化,但這種產品仍有能耗與體積的問題,未來採用「矽光子單晶片」才能真正達到短小節能的目標,矽光子技術可以提供高速、節能的整合解決方案,從而徹底改變資料中心、人工智慧、電信、感測和成像以及生物醫學應用等行業。

宜特科技長期觀察半導體產業趨勢,我們認為儘管矽光子技術存在整合和設備製造相關的挑戰,相信各家大廠仍會持續加速研發腳步,在全球共同努力下,突破摩爾定律關鍵技術的誕生終將指日可待。

-----廣告,請繼續往下閱讀-----

本文出自 宜特科技

參考文獻

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

宜特科技_96
8 篇文章 ・ 4 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室