5

602
8

文字

分享

5
602
8

相關、因果,傻傻分不清楚

活躍星系核_96
・2022/03/10 ・3495字 ・閱讀時間約 7 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

本文轉載自 Liou YanTing 臉書【相關、因果,傻傻分不清楚】

文/劉彥廷

你一定曾經在網路上看過類似像這樣的研究:

  • 「婚禮花費越高,離婚率越高」
  • 「家中藏書越豐富,小朋友越聰明」
  • 「性生活越活躍的人,越少生病,身體越健康」
  • 「抽雪茄的人更長壽」

不曉得你看到這些訊息時,第一反應會是什麼?

是嘴角上揚,莞爾而笑;還是點點頭,對結論表示贊同;又或者是眉頭緊蹙,心想:「嗯……好像哪裡怪怪的。」面對這些試圖告訴你「兩個事件關聯性」的資訊,有思辨習慣的人,會如何思考、解讀它們呢?

今天,就來和你分享一下,要正確理解這些訊息,得先有個概念,叫做——「相關,並不等於因果」。

圖/劉彥廷

冰淇淋銷售量與溺死人數

重要的事多說一遍:「相關,不等於因果。」

舉個經典的案例,「研究發現,冰淇淋銷售量越高,溺水死亡人數越多」,也就是「冰淇淋銷量」和「溺死人數」這兩個事件,或者說變數——呈現了「高度正相關」。

相信看到這樣的訊息,任何心智能力正常的人,都不會下結論說:冰淇淋「造成」了溺水。因為所有人都知道,「冰淇淋銷量」與「溺死人數」雖然有相關,但它們並沒有因果關係。

那問題就來了,「為什麼沒有因果關係的兩個事件,彼此會有相關呢?」

聰明的你,一定已經想到了。在這個例子的背後,藏著另一個變因,叫做——「季節」。在夏天,冰淇淋賣得好,銷售量高;同時,在夏天,去玩水的人比較多,意外溺水身亡的人也比較多。這兩個「獨立的事件」,同時並列在一起,就讓「冰淇淋銷量」和「溺死人數」有了相關性。

一旦我們將「季節」這個變因排除,用科學語言來說,叫做「控制住」——兩個事件的相關性就消失了。

表面上相關的史丹佛棉花糖實驗

在日常生活中,有些事件的相關性很單純,就像冰淇淋與溺水的例子,不會讓人誤判,讓人真的以為它們有因果關係。但有很多例子,就沒這麼容易判斷了,甚至,連受過專業訓練的科學家也會誤判。例如你可能聽過的經典實驗——「史丹佛棉花糖」實驗。

史丹佛大學的研究人員找了一群孩子,讓他們單獨待在房間中,並在面前放置一顆棉花糖,接著告訴他們:「如果你能堅持 15 分鐘,不把這顆棉花糖吃掉,你就能得到兩顆棉花糖。」

之後,研究人員對這些孩子們進行了多年的追蹤,並得出一個結論:「那些沒有在一開始吃掉棉花糖的小朋友,也就是擁有『延遲滿足能力』的小朋友,有更好的人生表現。」

這個實驗的結論以及它帶來的啟發,對兒童教育有著極大的影響。許多家長、老師都不約而同的,開始強調要訓練、培養孩子的「延遲滿足能力」。你在博客來搜尋「棉花糖」這幾個關鍵字,也能查到一堆親子教養的書籍。

但你知道嗎?這個實驗結論已經被證明是有問題的了!

後來有研究團隊又重複做了實驗,但這次,他們特別將「家庭背景」這項因素控制起來,結果發現,「延遲滿足能力」與「未來成就」的相關性就不見了。

什麼意思呢?翻譯成白話文就是:決定小朋友未來成就的主要因素,並不是什麼延遲滿足的能力,而是你家裡有沒有錢啊!

那些家裡有錢的小朋友,對他們來說,平常有太多機會可以吃到好吃的糖果、零食,當然實驗時,更容易忍住不吃棉花糖;而家裡越有錢,將來越有機會取得成功,這不是很理所當然的事情嗎?

你看,連這麼有名的實驗,都會犯「相關不等於因果」的錯誤。那我們應該如何正確地看待,這些「表面上有相關」的兩個事件呢?

有相關的五種可能性

當我們說 A 和 B 有相關時,從邏輯的角度來看,有五種可能,接下來我們會依序來舉例說明一下。

圖/劉彥廷

相關不是因果,是 A 造成 B,還是 B 造成 A?

舉個例子,研究發現「性生活越活躍的人,越少生病,身體越健康」。

這則訊息最直觀的解讀也許是,「性生活會讓人更健康」,這叫 A 造成了 B。但有沒有可能反過來是 B 造成了 A 呢?也就是──不是性生活讓人健康,而是越健康的人,才可能有活躍、高頻率的性生活啊!

這樣的思考、解讀,是不是也是一種可能,而且更合理呢?

並非是完整的原因,A 造成 B,但 C 也會造成 B

這種情況簡單來說,就是「一果多因」。我們在現實世界遇到的許多問題,都屬於這一類型。

舉個例子,如果想要證明「死刑具有嚇阻力」,你覺得,需要什麼樣的數據或資料呢?以下是兩種常見的答案:

  • 第一種,上網找已經廢除死刑的國家,比較這個國家在廢除死刑前後,犯罪率的變化。如果在廢除死刑後,犯罪率有顯著的上升,那麼就證明了——「死刑的確具有嚇阻力」。
  • 第二種,上網找找看,有沒有「曾經」廢除死刑,但之後又恢復死刑的國家,比較這個國家在恢復死刑前後,犯罪率的變化。如果在恢復死刑後,犯罪率有顯著的下降,那麼就證明了——「死刑的確具有嚇阻力」。

這兩種答案,雖然切入的角度不一樣,但背後的思考邏輯都相同,都是試圖以死刑和犯罪率的「因果關係」,來證明死刑具有嚇阻力。

但如果我們再多想一層,這兩組數據,真的可以證明「死刑和犯罪率具有因果關係」嗎?要知道,犯罪是一個複雜的社會問題,影響犯罪率高低的原因有很多,而有沒有死刑,只是眾多原因之一,並不是唯一。

所以,以第一組數據來說,一個國家在廢除死刑後,犯罪率上升。除了廢死這個原因,導致了犯罪率上升外,還有沒有可能有其他原因?比如說,在廢除死刑時,剛好遇到了金融海嘯,或是某個重大災難,導致社會動盪不安、失業率上升,犯罪率也連帶跟著上升。

同樣道理,對於第二組數據來說,一個國家在恢復死刑後,犯罪率下降。除了死刑導致犯罪率下降這種解釋外,有沒有一種可能是,犯罪率下降的原因,是因為這個國家基礎教育做得好、人民素質足夠高,即便沒有死刑,犯罪率也會下降。

在沒有「排除」、「控制」影響犯罪率的「其他變因」之前,如何保證犯罪率的上升或下降,真的是因為死刑存廢所造成的呢?

C 造成 A,同時,C 也會造成 B

前面提到的「冰淇淋與溺水」、「棉花糖實驗」都是這樣的例子,也就是存在一個「隱藏變因」C,同時影響了 A 和 B,以下我再提幾個例子:

  • 像是「家中藏書越豐富,小朋友越聰明」,你覺得是大量的藏書,讓孩子變得更聰明了,還是有其他隱藏變因,會讓家中藏書更豐富,同時,也會讓小朋友更聰明呢?
  • 又或者是「哈佛畢業生薪水比它校畢業生高」,你覺得是念哈佛,會讓你薪水更高,還是有其他隱藏變因,會讓你容易申請上哈佛,同時,也容易拿到較高的薪水呢?

聰明的你,一定能想到答案。

偽相關,又稱「純屬巧合」

這種純屬巧合的相關,也被稱為「偽相關」。美國有個網站,就蒐集了許多偽相關的數據案例,其中有不少讓人哭笑不得的例子。

例如:「影星尼可拉斯凱吉拍過的電影」和「游泳池溺死人數」,呈現高度正相關;「美國小姐的年齡」和「因取暖設備喪命的人數」,也呈現高度正相關。

看到「有關聯性」,先別急著下定論

行文至此,也寫了快 3000 字。

感謝你願意看完這篇文章,在注意力稀缺的時代,要在社群媒體上看完一篇 3000 字的文章,實屬不易;希望你的大腦還承受得住,沒有當機。

最後總結整理一下,以後若看到一則訊息,試圖告訴你「兩個事件的關聯性」時,在接受它之前,不妨試著先在腦中思考這幾個問題:

  1. 是前者造成了後者,還是,後者造成了前者其實也說得通呢?——就像「性生活和身體健康」的例子。
  2. 有沒有其他可能的原因,也會造成同樣結果?——就像死刑嚇阻力的例子。
  3. 有沒有隱藏變因會同時影響兩者?——就像「冰淇淋和溺水」和經典的「棉花糖實驗」的例子。
  4. 有沒有可能是純屬巧合?
圖/GIPHY
文章難易度
所有討論 5
活躍星系核_96
752 篇文章 ・ 106 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
寵物過敏原有很多種,避免飲食過敏困擾,可選擇單一/特殊肉種寵物飼料
鳥苷三磷酸 (PanSci Promo)_96
・2023/06/06 ・2173字 ・閱讀時間約 4 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

本文由 新萃 Nutri Source 委託,泛科學企劃執行。

你有發現家裡的狗狗經常舔自己四肢,或是身上出現不明紅疹?當心這可能是過敏反應。寵物和人類一樣,也會有過敏反應,過敏可依照「來源」分為三種:吸入性過敏、接觸性過敏和食物性過敏。

寵物的過敏源有哪些?

不管是哪一種過敏反應,在人的身上都比較容易發現和排除。但狗狗的過敏卻很難處理,如果是接觸性或吸入性過敏,即使你把家裡打掃得很乾淨,還是無法排除帶狗出去散步時可能接觸到的環境過敏原。因此,對飼主來說,最容易控制的是食物性過敏。

食物性過敏是怎麼發生的呢?其實,「食物過敏」這個詞並不太準確。正確的臨床醫學用詞是「食物不良反應」(Adverse Food Reaction, 簡稱AFR)(Jackson, H. , 2009),指的是吃下食物後身體產生各種不良反應。並進一步分為食物過敏(Food Allergy)和食物不耐受(Food Intolerances)兩種。

如果你看過動漫作品《工作細胞》,你就會知道過敏其實只是免疫系統對特定成分產生的過度反應,因此全名為「過分敏感」;而食物不耐受則並非免疫性反應,而是消化系統無法代謝或對該生物體有毒,例如狗不能吃洋蔥或巧克力,否則會致死等等。

由於寵物沒有選擇權,只能吃飼主提供的食物,如果飼料中恰好有會造成牠 AFR 的成分,就可能產生各種症狀。除了腸胃發炎和拉肚子外,最明顯的外在症狀就是皮膚問題,包括搔癢、脫毛和紅疹等。後者容易被誤判為皮膚性疾病,讓許多飼主狂跑獸醫院的同時,獸醫也難以對症下藥。

雖然曾有研究透過讓醫師用血液或唾液是否檢測出 IgE 抗體來判斷狗是否過敏(Ermel, R et al.,1997),但最新的研究卻發現,無論使用無論血清的 IgE 抗原或是唾液裡的 IgM 或 IgA 抗原都無法有效檢測出狗狗的過敏來源(Udraite Vovk Let al., 2019 & Lam ATH et al., 2019),甚至會造成偽陽性誤判。因此,目前學界公認唯一能識別食物過敏原的方法就是「食物排除法」(Food Elimination Method)。

以食物排除法,找出毛孩的食物過敏原!

食物排除法的原理相當簡單粗暴,類似我們過去在學校做的實驗一樣,抓出「控制組與對照組」。首先,將狗狗的食物換成牠沒吃過、單一來源且易消化的高蛋白質或水解蛋白質;同時嚴格限制牠對其他食物接觸,包括其他人餵食或路上亂吃等可能性都要注意,此為「對照組」,如此持續 8~12 週,觀察皮膚是否有改善。如果確實有改善,那就證明了確實是 AFR 而非皮膚病。

下一步我們可以進行「食物挑戰」,在每餐食物中逐一嘗試可能的過敏原(例如常見的牛肉、雞蛋等),有如「控制組」,等到症狀又出現,就可以確認哪種食物成分是過敏原,未來就可以在飼料中排除,讓狗狗健康快樂地成長。

這個方法需要飼主的大力配合和耐心紀錄,不僅要在漫長的試驗期,更需要在控制期一一排除所有不可能之後,才能找到答案。而其中最困難的部分,也是實驗的基礎可能是第一步:「提供狗狗牠從未吃過,且肉品單一的蛋白質」,這點對多數飼主來說幾乎是不可能的任務,因為大部分的寵物飼料成分都很複雜。不要說狗狗了,搞不好你連自己沒吃過什麼恐怕都不知道。

飼料成分多而雜,可選單一肉種飼料降低過敏。

那該怎麼進行食物排除法呢?別擔心,沒有找不到的肉品,只有勇敢的狗狗。市面上已經有了針對過敏狗狗的低敏飼料,新萃推出了一系列低敏肉,包含單一肉種的袋鼠肉、鹿肉以及野豬等相比牛豬羊等較不容易取得的肉類,是進行食物排除法第一步測試的首選。

此外,新萃牌無論哪種飼料都有美國專利 Good 4 Life® 奧特奇專利保健元素,能促進飼料中的營養都被狗狗完整吸收。不僅過敏的狗狗能吃,有消化不良症的狗狗也適用。

新萃商品選擇的是單一/特殊肉種的成分,低敏感肉品讓寵物吃了更安心。

參考資料

  1. Thus for the purpose of this discussion, although the term food allergy is used throughout, it should be recognized that this term is a presumptive clinical diagnosis and adverse food reaction is a more accurate term for these canine cases. – Consensus
  2. Jackson, H. (2009). Food allergy in dogs – clinical signs and diagnosis.. Companion Animal Practice.
  3. Assessment of the clinical accuracy of serum and saliva assays for identification of adverse food reaction in dogs without clinical signs of disease – PubMed (nih.gov)
  4. Lam ATH, Johnson LN, Heinze CR. Assessment of the clinical accuracy of serum and saliva assays for identification of adverse food reaction in dogs without clinical signs of disease. J Am Vet Med Assoc. 2019 Oct 1;255(7):812-816. doi: 10.2460/javma.255.7.812. PMID: 31517577.
  5. Direct mucosal challenge with food extracts confirmed the clinical and immunologic evidence of food allergy in these immunized dogs and suggests the usefulness of the atopic dog as a model for food allergy. – Consensus
  6. Ermel, R., Kock, M., Griffey, S., Reinhart, G., & Frick, O. (1997). The atopic dog: a model for food allergy.. Laboratory animal science.
  7. https://www.moreson.com.tw/moreson/blog-detail/furkid-knowledge/pet-knowledge/dog-food-allergen-TOP10/
  8. 狗狗因為食物過敏而搔癢不舒服,為什麼做「過敏原檢測」沒什麼用?
  9. 【獸醫診間小教室】狗狗皮膚搔癢難改善?小心食物過敏! – 汪喵星球 (dogcatstar.com)
  10. 寵物知識+/毛孩對什麼食物過敏?獸醫:驗血完全不準!診斷法只有一個 | 動物星球 | 生活 | 聯合新聞網 (udn.com)
  11. Is there a gold-standard test for adverse food reactions? – Veterinary Practice News
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
172 篇文章 ・ 276 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

3
6

文字

分享

2
3
6
逼近上帝視角——用「統計學」探討因果關係
研之有物│中央研究院_96
・2022/06/15 ・4930字 ・閱讀時間約 10 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/郭雅欣、簡克志
  • 美術設計/蔡宛潔

因果關係怎麼研究?

在日常生活的經驗裡,我們往往習慣以主觀的角度來認定因果關係的存在,但在數理統計的協助下,因果關係可以擁有科學定義,並且可以驗證。中央研究院「研之有物」專訪院內統計科學研究所黃彥棕研究員,他的主要研究便是以數理統計的方式來探討因果關係(例如生物體的複雜機轉)。有了統計方法,人類也能接近上帝視角,找出因果關係的存在。

中研院統計所研究員黃彥棕,擅長以數理統計的方式來思考因果關係。圖/研之有物

以數理統計驗證因果關係

我們絕大多數人相信「凡事必有因果」這句話,例如今天腹瀉,是因為昨天晚餐吃壞肚子;考試沒考好,是因為書念得不夠。但是仔細想想,造成今天拉肚子的原因,除了昨天的晚餐之外,還有沒有別的可能?影響考試成績的因素,除了書念得夠不夠之外,考試環境、考題難易度也都會影響。

所以,我們究竟該如何確定兩件事有因果關係?有沒有什麼科學方法,可以讓我們帶著十足的把握,說出「X 就是造成 Y 結果的原因」這樣的話語?

中研院統計所研究員黃彥棕,擅長以數理統計的方式來思考因果關係,除此之外他更進一步在數學上探討「X 透過何種機制造成 Y」,也就是所謂的「因果中介效應」。有興趣的讀者,可以參考「研之有物」之前專訪黃彥棕老師的文章〈喝酒臉紅易罹癌?小時候家裡窮會胖?統計學家黃彥棕來解答〉。

回到因果關係,黃彥棕說到:「因果關係是屬於上帝視角。」也就是說,兩件事之間究竟有無因果關係,理論上只有全知者才知道,而我們能做的,是以數理統計的方式,「從人類視角盡可能地逼近上帝視角,來判斷因果關係是否存在。」

何謂因果關係?

為什麼說「因果存在與否只有上帝才知道」?因果關係建立在「反事實」,如果有一個事實是「打疫苗,就不容易感染 COVID-19」,則我們必須驗證是否「不打疫苗,就容易感染 COVID-19」,這就是反事實。有了事實與反事實的比對,我們才能說「打疫苗」與「不易感染 COVID-19」有因果關係。

不過,除非有時光機或平行宇宙,否則我們不可能讓全世界的人打疫苗,並觀察感染情況;然後又讓全世界的人都不打疫苗,並再次觀察染病狀況。只有全知者才能同時觀察這兩個平行宇宙,得知因果關係。黃彥棕說,身處現實世界的我們,只能盡可能地逼近這個結果。

用數學語言來描述因果關係,最被廣泛使用的架構是由美國統計學家 Donald Rubin 提出的反事實結果(counterfactual outcome)或潛在結果(potential outcome)。值得一提的是,過去 Rubin 也曾與 2021 年諾貝爾經濟學獎得主 Joshua Angrist 和 Guido Imbens 共同發表重要論文〈使用工具變量確認因果效應〉。

以下我們就以疫苗和傳染病為例,以反事實架構來說明「X 導致 Y」的群體因果效應。先假設 X 為民眾施打疫苗與否( 0:不打疫苗,1:打疫苗),而 Y 為得傳染病與否(0:不染病,1:染病),並使用期望值 E 來描述群體平均效應,詳細如下圖。

為了要取得因果關係,我們必須有兩個獨立的平行世界,分別是 X=1 和 X=0,再去比較這兩個世界中 X 如何導致 Y 的發生。圖/研之有物
(資料來源|黃彥棕)

如果我們觀察到 E[Y(X=1)]=0.1,也就是有打疫苗的人染病機率是 10 %。那麼在反事實因果推論的基礎上,我們必須檢驗 E[Y(X=0)] 等於多少,也就是不打疫苗的染病機率。只要 E[Y(X=1)] ≠ E[Y(X=0)],就代表 X 和 Y 之間具有因果關係。

然而,實務上打完疫苗的人不可能再回復到沒打疫苗的狀態,因此我們沒有辦法再次對同一群母體樣本做實驗來驗證因果關係,僅能退而求其次,「盡量貼近」因果關係。那麼,要怎麼做呢?

有反事實的對照,才有因果關係。

逼近神的因果視角

如果我們把全世界的人分成兩半,其中一半打疫苗、另一半不打疫苗,然後用打疫苗的那一半代表一個宇宙(事實),不打疫苗的代表另一個宇宙(反事實),不就創造出兩個平行宇宙了嗎?

這是一種很直觀的逼近方法,但若要讓一半的人能夠代表一整個宇宙,則有一個重要的前提:這兩個宇宙裡的人是隨機分配的,也就是這兩群人在各個層面都很相似,例如年齡、性別、健康狀況甚至政治傾向等,以專業術語來說就是必須具有可互換性(exchangeability)。藥廠在做疫苗人體實驗時,就必須以非常嚴謹的方式讓受試者盡可能達到隨機分配,才能得到「疫苗是否有效」的科學結果。

不過,在大多數狀況下,我們很難做到隨機分配。舉例來說,臺灣開放施打 COVID-19 疫苗後,截至 2021 年 10 月 29 日為止,有將近 1700 萬人施打第一劑疫苗,但我們不能把這 1700 萬人視為有打疫苗的宇宙,而另一群沒打疫苗的 600 萬人視為沒打疫苗的宇宙,因為打不打疫苗是人民自由選擇的結果,有很多因素會影響個人選擇,例如比較有健康意識,或是比較年輕、不擔心副作用的人,可能就比較傾向打疫苗。

即使統計結果顯示出打疫苗的人,感染 COVID-19 的比例真的比較低,我們也很難分辨是因為打疫苗,還是他們本來就比較年輕?或本來就比較健康?「這是所謂的『觀察型研究』,容易出現因果推論謬誤的原因。」黃彥棕說。

然而,我們可以用數理統計的方式逼近真實的因果效應,例如控制年齡、健康狀況——兩方都取 50~60 歲的年齡層,並且都是沒有心血管疾病的人等。黃彥棕說:「我們依據自己的背景知識,知道有哪些因素會影響隨機性,然後使用統計的方式,把它們抓出來做控制。」

理論上統計學家可以把所有可能造成偏誤的因子都舉出來,透過一層層地篩選、限縮,最後得出許多個小小的族群,讓隨機性成立。

之後,透過每一組小小的隨機族群(例如年齡 50~60 歲、沒有心血管疾病、男性、具健康意識……等,統稱為 C),讓 Y 的發生和特定條件 C 之下的 X 群體無關,我們就可以得到逼近兩個平行宇宙的資料(有打疫苗、沒打疫苗),最後再把各族群的結果加權平均回來。就可以貼近上帝視角的因果效應。

以數學語言來說,就是讓條件期望值(E[Y|X=x , C=c)])的計算透過加權平均等同於反事實結果之期望值(E[Y(X=x)])的效果。我們沒有時光機,無法透過事實/反事實結果之期望值檢驗全體打疫苗和不打疫苗的因果關係(E[Y(X=1)] ≠ E[Y(X=0)] 嗎?);但是我們可以透過各種條件的篩選和限縮,去計算每個具備可互換性小群體的條件期望值,最後加權平均回來,檢視打疫苗與得病與否的因果關係(∑c E[Y|X=1 , C=c]*P(C=c) ≠ ∑c E[Y|X=0 , C=c]*P(C=c)嗎?),這才是實務上的作法。

問題來了,要怎麼知道我們是否窮舉了所有可能造成偏誤的因子?我們的確不知道,只有上帝知道,這是個假設,而且是個很難驗證的假設。

實務上,我們不可能同時觀察 X=1 和 X=0 的世界,只能分別獲得 X 和 Y 的相關性。要如何從相關性去檢視因果關係呢?透過統計學上的篩選和限制,我們如果可以讓 X=1 vs. X=0 的隨機性成立,就可以進一步驗證 X 和 Y 的因果關係。為方便說明,圖片的數學式為簡單條件期望值計算,不考慮加權平均。圖/研之有物(資料來源|黃彥棕)

「在控制了年齡、性別、健康狀況等條件的情況下,我們希望可以讓隨機性成立。」

黃彥棕的研究讓因果關係在嚴謹的數學架構下,得以辨證、溝通,而不是只仰賴直觀的思考。因果的存在變得更加科學化,而這也使因果的探討可以進入更深的層次。

被競爭結果和時間擾亂的因果關係

更進階的因果探討層次,是將時間因素考慮進來。黃彥棕以「B 型肝炎」造成「肝癌」,然後導致「死亡」為例,若想探討這三者間的因果關係時,會發生一個問題,那就是有 B 型肝炎的人,有可能容易因猛爆性肝炎而直接死亡,而這樣的個案在統計上,因為他並沒有得到肝癌,而對「肝癌」這個中介因子造成了「保護」的效果。

「這就是肝癌和死亡這兩個競爭結果造成的影響,而這個競爭關係又會隨著時間推移而改變。肝癌、死亡有時間進程關係,一旦 B 型肝炎患者因猛爆性肝炎死亡了,他就不可能再得肝癌。」更清楚地說,B 型肝炎患者可能還「來不及」得肝癌,就因猛爆性肝炎直接跳到死亡。在界定 B 型肝炎與肝癌之間的因果關係時,這樣的結果會造成偏誤。

黃彥棕將時間因素考慮進來的方法,是把整個時程切割成非常多小段,在每個小段創造一個反事實架構,也就是分析每一位在某小段時間活著的 B 型肝炎患者,把他們分成已得到肝癌及還沒得到肝癌,並考慮這兩組患者在下一個瞬間死亡的可能性,再將這些結果積分起來,得到在隨機過程架構之下的平行宇宙們。

「我等於是在每一個瞬間都製造多個平行宇宙(無 B 肝/無肝癌、無 B 肝/有肝癌、有 B 肝/無肝癌、有 B 肝/有肝癌)出來,這樣做可以避免前面說的蓋牌效應。但你可以想像我所得到的平行宇宙數量……嗯,就跟《奇異博士》看到的差不多。」

「我認為我在這領域的部分貢獻,或許是提出了這樣一個會隨著時間推移的反事實架構。」黃彥棕說。他的論文發表出來後不久,也引起了期刊的興趣,邀請了相關領域的許多專家,探討他所提出的因果模型。

研究因果的動機

談起對因果關係研究的動機,黃彥棕說,以前在醫學系實習時,會看到開同樣的藥給病人,有些病人會好,有些人不會。這種「不確定性」開始讓他覺得好奇。他說:「我可以接受事情就是會有隨機性,但還是很想搞清楚這樣的不確定性是怎麼來的。」

最近,黃彥棕也發現許多人會把「預測」和「因果」搞混,尤其是現在人工智慧(AI)發展出的預測模型表現愈來愈好,有些做 AI 預測模型的人,會誤以為能夠用預測表現良好的模型,來得到因果關係。

舉例來說,一個模型可以透過一個人是否抽菸,來預測他得肺癌的機率,也可以透過一個人身上是否攜帶著打火機,來預測肺癌機率。「但我們知道抽菸與肺癌有因果關係,而帶打火機與否應該是不會造成任何增加肺癌風險的生物效應的。」黃彥棕說。

「抽菸」與「帶打火機」都能成為 AI 模型預測肺癌時採用的因子,但顯然並非代表它們與肺癌都有因果關係。黃彥棕接著說:「雖然預測未必需要因果關係,但是,決策就需要因果關係的支持。若要降低肺癌風險,政府較合理的做法是下令禁菸,而不是禁打火機。但要看到因果是比較困難的,它先天上的限制使它難以驗證,這個挑戰也是因果推論的迷人之處。」

最後,黃彥棕切身感受到因果關係的重要性,尤其是藥廠研發藥物或是臨床醫學等領域的應用。而他在反事實架構上考慮時間因素的突破,讓因果推論的知識又更往前推進。反事實因果推論的數學模型,讓人類能夠有深刻的思考,去檢視深藏在直觀表面之下的因果性與相關性。

延伸閱讀

所有討論 2
研之有物│中央研究院_96
272 篇文章 ・ 2672 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
1

文字

分享

0
1
1
還在「真相永遠只有一個」?那你就太小看這世界複雜的因果關係了!——《像科學家一樣思考》
商周出版_96
・2020/05/20 ・2687字 ・閱讀時間約 5 分鐘 ・SR值 494 ・六年級

  • 作者/史坦利.萊斯 (Stanley A. Rice);譯者/李延輝

在日本,有些人會做森林浴,也就是沐浴在森林的香氣中。這種作法一般認為可以降低血壓,並減少唾液中壓力激素皮質醇的數量。有些研究者將壓力減少歸功於揮發性化學物質,例如樹木釋放的單松烯(monoterpenes)。

這讓我們與所有科學中最重要的觀念之一面對面:相關不等於因果。

兩個變數可能互有關係,例如高血壓和缺少單松烯,以及低血壓和存在單松烯。但這並不是說單松烯會降低血壓。我們的大腦會有偏見,將相互關係解釋為因果關係,可以說是不經思考就這樣做。可能在森林裡真正發生的是其他因素讓人放鬆。單松烯並不是人們到森林裡唯一感受到的事物。在其他所有方面,他們都很放鬆。沒有忙碌的時間表、沒有噪音、沒有其他人,只有陰影和沙沙的聲音。

是什麼原因,讓我們在森林中感到放鬆?圖/pixabay

愛德華.威爾遜(Edward O. Wilson)可能是世界上最知名的科學家,他率先稱心靈感受到身處自然中的快樂為熱愛生命(biophilia)。這也是一種偏見:大家預期在森林中感到放鬆。喔,還有單松烯。研究人員注意到這個問題。他們在受控條件下,對實驗室老鼠餵食單松烯,並發現和對照組相比,牠們會產生和人類類似的生理效應。

統計分析本身無法解決這項問題。統計方法可以計算相關係數,告訴你是否顯著,但僅止於此。所以雖然《新英格蘭醫學雜誌》(New England Journal of Medicine)於 2012 年刊登了一篇論文,聲稱吃巧克力會讓你變聰明(噢,我們不都這樣希望嗎!),但作者看到的是虛假相關。較聰明的人做的很多事和他人不同,顯然其中包括吃巧克力在內。

多重因果關係 vs. 階層式因果關係

人在森林裡會因為多重原因而放鬆,其中一種可能是揮發性化學物質。這是多重因果關係的一個例子。還有另外一種方式造成結果可能有一種以上的原因。這些原因可能以階層方式彼此互為因果,而這就是階層式因果關係(hierarchical causation)。

到底是人要射擊我?還是槍要射擊我?又或是這個圖片要射擊我?圖/giphy

假設有人拿槍要射你,你很自然就會說那個人要射你。但你也可以說槍要射你,或者子彈要射你,或化學及物理定律(將爆炸的動力加在子彈上)要射你。要是上帝真的掌管自然定律,你甚至可以說上帝要射你。這就是各階層的原因。這聽起來有點像〈這是傑克蓋的房子〉。

你知道的,就是歌詞像下面這樣的兒歌:「傑克蓋的房子裡有麥芽,麥芽被一隻老鼠吃了,老鼠被一隻貓咬死了,貓又被一條狗追了,這就是追貓的那條狗。」這似乎很異想天開,但容我提醒你,數十億的產業可能就建構在階層式因果關係刻意扭曲的結果上。

美國槍枝遊說就為美國境內好幾億的槍支辯護(估計數字從兩億到三億不等),聲稱「槍不會殺人,人才會」。當然,沒有人會說槍從櫃子裡跑出來殺人。人才會用槍殺人。

複雜因果關係:熊出沒,快逃?

現實由複雜的階層式和多重因果關係層層組成。

想像一下一個在路上遇到熊的健行者。接下來會發生什麼事?熊會攻擊嗎?還是會轉身離開?攻擊會致命,還是只是造成輕傷?有諸多因素同時在起作用。

遇到熊怎麼辦?先尖叫就對了(怕.gif)圖/giphy

  • 有些因素和個人相關。

遇到熊的時候,那個人在做什麼?還有其他人在場嗎?那個人或那些人對熊採取什麼行動?有可以嚇跑熊的東西嗎?

  • 再來就是和熊有關的因素。

熊接下去會做什麼取決於物種(黑熊可能比灰熊危險性低)、性別、情緒、饑餓狀態、個別行為模式(顯然有些熊精神失常)、附近有多少其他的熊、熊之前是否遇過人類、面對人類經驗好壞、熊在自己的族群是主宰者還是順從者、熊是否看到或聞到人等等。如果是母熊,牠有沒有小熊反應會很不一樣。

  • 另外還有環境因素:反應可能取決於棲息地、時節、一天當中的時間等。

當然,你沒有時間去思考這些問題。有些人說遇到熊的時候,你應該讓自己看起來塊頭大一點,但這只會讓熊認為有更大塊的肉等著牠吃。

冬天往南方遷徙的鳥兒都不遷徙了?

飛呀!溫暖的南方正等著我。圖/giphy

幾乎到處都可以找到多重因果關係。舉例而言,全球暖化造成溫帶的冬天較暖,帶來的結果之一就是候鳥物種中有許多種類的鳥,現在因為冬天較短、較暖而待在家園。但那不是唯一的原因。

過去,鳥類必須在冬天遷徙才能找到食物,但現在成千上萬的人有餵鳥器。或許有些鳥停止遷徙並不是因為冬天變暖,也是因為有了餵鳥器。餵鳥器不太可能對鳥類遷徙產生重大影響,因為它們能提供的食物明顯少於整個鳥類族群所需。但餵鳥器是一些鳥停止遷徙的多重原因之一。

所以誰是因,誰是果?真相到底是什麼?

最後,有時候很難區別哪個因素是因、哪個是果。究竟何者為因、何者為果可能對世界關係重大。

大家都知道,人口成長率高的國家貧窮問題也很嚴重。(這並不是說這些國家很貧窮。它們可能有一小群富裕的上層階級,但許多人很貧窮,導致多數人覺得心安的平均富裕程度。)順理成章的假設是:人會貧窮是因為小孩太多。但如果真是這樣,人類未來將會一片黯淡。

要是你把食物和醫藥給了窮人,他們就會有更多小孩,最後你們貧窮的程度就會一樣,只是多了更多窮人。想解決貧困問題的方法最後只會製造更多貧困。這是經濟學家肯尼斯.博爾丁(Kenneth Boulding)所說的「完全悲觀的定理」。

有可能扭轉因果關係嗎?圖/pixabay

但要是扭轉因果關係,說貧窮造成高出生率呢?這一開始聽起來很荒謬,但設想一個住在鄉下的家庭,他們沒有任何經濟保障,健康也堪慮。假如這種家庭只有兩個小孩,兩個可能都會死掉。在較多小孩的家庭中,有可能其中一個小孩會找到好工作,提供資源給整個家庭。

要是這聽起來還是很不可思議,那就思考一下自然淘汰的問題,本書之後有一章就在討論自然淘汰。自然淘汰會獎賞個人而非團體。人口過多的國家可能會很貧困,但自然淘汰會有利於在競爭遊戲中獲勝的個人(及家庭)。如果真是這樣,提供食物和醫藥實際上就會造成出生率下降,因為父母會選擇生少一點小孩。(這也預設社會中可以這樣選擇,例如有節育措施。)

——本文摘自泛科學 2020 年 5 月選書《像科學家一樣思考》,2020 年 4 月,商周出版

商周出版_96
111 篇文章 ・ 349 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。