0

5
1

文字

分享

0
5
1

從什麽時候開始,冬天變得越來越熱——用統計學的「改變點」及「紀錄」探討台北暖冬的異常現象

林澤民_96
・2021/02/09 ・4346字 ・閱讀時間約 9 分鐘 ・SR值 541 ・八年級

台灣這幾天比較冷,但暖冬仍然是全球暖化過程中一個明顯的趨勢。一般以為全球暖化始於 19 世紀末葉先進國家積極工業化的時候,但世界各地工業化的進程不同,暖化的趨勢也會有所差異。當工業化在全球範圍內日益普及,各地暖化趨勢便益見明顯,但還要等到 20 世紀下半葉這趨勢才明顯到引起各國的注意。

始於19世紀末葉先進國家積極工業化造成的全球暖化,使暖冬成爲明顯的趨勢。圖/作者林澤民提供

在美國,一直要到 1988 年氣候變化才正式成為官方關切的議題。這一年的 6 月 23 日,NASA 太空研究所(GISS)主任 James E. Hansen 在參議院能源及自然資源委員會作證指出:「全球暖化的程度已經顯著到讓我們確信溫室效應與暖化趨勢具有因果關係。依我的意見,我們已經偵測出了溫室效應,而且這效應正在影響我們的氣候。」

以筆者居住的德州奧斯汀市而言,氣溫紀錄始於 19 世紀末期。我用統計學「改變點」(change point)的方法分析每年最高溫及最低溫的時間序列,檢測出年低溫最顯著的改變點在 Hansen 作證之後 3 年的 1991 年,而年高溫的改變點還要更後,在 1998 年。這與筆者個人體驗大致相符。

台北氣溫變化趨勢的改變點

「改變點」的檢測是時間序列分析的統計方法,它用來判定時間序列的資料產生過程是否有不連續點的存在。它在 1930 年代就曾被產業界用來監控產品的製造過程,其後經過數學家的深入研究,在近 20 年來蓬勃發展,廣泛被應用於環保、疫情、醫療、軍事、反恐等各領域。筆者個人就曾用類似的研究方法發現美國歷史上,選民的投票行為在二十世紀 20-30 年代之間曾經發生過質性的變化。去年五月,頂級學術期刊 Science 也有研究論文檢測新冠肺炎在德國傳播趨勢的改變點,肯定了政府干預措施的有效性。CBS 電視影集「數字」(Numb3rs)甚至有一集演出「夢幻棒球」玩家用改變點方法檢測大聯盟球員使用禁藥提高打擊率的故事。

台灣的氣溫紀錄也始於 19 世紀末。根據 Jasmine Kuo 提供的台北市年低溫歷史資料,台北市每年最低溫的改變點在 1975 年,而年高溫的改變點則要到 2001 年。台北市年低溫的改變比奧斯汀要早,這也許跟地形、地理位置、人口、以及工業化程度有關。

-----廣告,請繼續往下閱讀-----

理論上,年高溫及年低溫都不是常態分布,而是呈現所謂極端值分布(extreme value distribution)。圖一及圖二以上述改變點為斷點,分別估計年高溫及年低溫在各自改變點前、後的極端值分布。這兩張圖讓我們清楚看出改變點前後的明顯差異:改變點之後,年高溫及年低溫的分布均明顯往高溫方向移動。年高溫在 2001 之後的平均值增加了攝氏 1.44 度,而年低溫在 1975 之後的平均值則更誇張地增加了將近兩倍的 2.81 度!

年高溫在 2001 之後的平均值增加了攝氏 1.44 度。圖/轉自作者部落格
年低溫在 1975 之後的平均值誇張地增加了將近兩倍的 2.81 度!圖/轉自作者部落格

時間序列資料產生過程的變化除了可以用改變點的統計方法來檢測斷點以外,也可以用 「紀錄」(record)發生的機率理論來分析異常現象。事實上,事件發生頻率的改變也是改變點研究的數學方法之一。本文以下即以紀錄理論進一步探討台北市年低溫在 1975 年之後新紀錄節節升高的現象。

破紀錄次數的機率分布説明台北市年低溫變遷出現異常

台北市 1897-2020 年低溫時間序列顯示,1897 年台北市的最低溫是攝氏 5 度。以此為資料中的第一個紀錄,124 年來,有 9 個新的紀錄出現,分別是:1899(7.2度),1905(7.6度),1909(8.1度),1912(8.2度),1976(8.5度),1983(9.3度),1988(10度),2017(10.4度),2019(11.6度)。見圖三時間序列中的黑點。

從 1897 到 2020 百年之間,臺北市的低溫「記錄」有越來越高的趨勢。圖/轉自作者部落格

124 年間有 10 個紀錄是正常現象嗎?這個問題,可以用機率理論做精確的回答。

-----廣告,請繼續往下閱讀-----

機率理論對「記錄」的研究有很完整的系統。其數學繁複,但相當有趣,有興趣的讀者可以找相關書籍來看,例如 Jiri Andel(2001)的 Mathematics of Chance

這個理論從一個前提出發:觀察序列中的資料是遵循相同機率分布而且相互獨立(iid,編按:Independently and identically distributed)的隨機變數。在這個假設之下,我們可以導出在 n 個資料點中有 r 個紀錄(包括第一個資料點)的機率分布。這個前提可以說是「正常」狀況的「虛無假設」:它代表觀察序列中資料的產生過程完全相同,沒有任何異常現象或動態趨勢。如果我們的經驗資料與這個假設之下的機率分布不相諧,根據傳統次數主義(frequentist)統計推論的方法,我們可以在一定的統計水平之下拒絕虛無假設而判定異常現象的存在。

若研究假設有方向性時,采用單尾檢定(右圖);若研究假設不特別強調方向性,只注意是否有差異,則通常采用雙尾檢定(左圖)。圖/towardsdatascience

以台北市年低溫的歷史資料來說,我們可以算出在 n = 124 個觀察值的序列資料中出現 r (r = 1,2,3,…,124)個紀錄的機率分布,然後從這分布算出 r 大於或等於 10 的右尾機率。如果這個機率小於相約成俗的顯著水平 0.05,我們判定歷史資料與虛無假設不相諧,從而排除台北市年低溫變遷沒有異常現象的前提。依照傳統統計推論,我們可以做出台北市年低溫變遷有異常現象的結論

以 Rn 代表在 iid 假設之下,n = 124 個序列資料中有 r 個紀錄的隨機變數,圖四便是 Rn = r 的機率分布。從這個機率分布我們可以算得 Rn 的期望值是 E ( Rn ) = 5.40,變異量是 Var ( Rn ) = 3.76,也很容易直接算得右尾機率 P (Rn ≥ 10) = 0.025。因為這個機率小於 0.05,單尾檢定讓我們得到台北市年低溫屢破歷史上限紀錄是異常現象的結論。(如果一定要用雙尾檢定,這個結論就有點勉強。)

-----廣告,請繼續往下閱讀-----
從臺北市低溫歷史資料中出現不同「記錄」機率分佈的單尾檢定,可判斷臺北市的低溫屢破歷史上限紀錄是異常現象。圖/轉自作者部落格

Rn 的機率分布並不容易算,有一個遞歸公式,當 n 較大時,需要很大的計算能量或很久的時間才算得出。要迅速算出,必須用到所謂「第一類史特靈數」(Stirling Numbers of the First Kind)。如果你的軟體沒有這個函數,可以利用這兩個很漂亮的公式來算 Rn 的期望值和變異量:

利用這兩個公式也可算出當 n = 124 時,E ( Rn ) = 5.40,Var ( Rn ) = 3.76。如果我們假設 Rn 的分布是常態分佈,則可以輕易算出以以期望值為中心的 95% 信心區間為(1.49,8.88)。因為經驗值 10 個紀錄在信心區間之外,這個分析也支持台北市年低溫變化異常的結論。不過因為 Rn 的分布並非常態,這個分析並不精確。

新紀錄等待時間的機率急遽下降

應用紀錄之機率理來分析台北市氣溫變化也可以看出 1975 年前後是一個轉捩點。

在 1897 年之後的 9 個新紀錄當中,出現在 1975 年之後短短 45 年之間的就有 5個,平均每 9 年就有一個新紀錄。而在 1976 年前的 80 年中,則平均要將近 16 年才有新的紀錄。事實上,1912 年的紀錄保持了 64 年才被打破。

-----廣告,請繼續往下閱讀-----

也許你會說 1897-1912,在短短 16 年之間不是就有 4 個新紀錄嗎?然而新紀錄的頻率在紀錄開始之時本來就會比較頻繁,日久後要破紀錄會越來越難。紀錄的機率理論可以算在一定時間之內舊紀錄會被打破的機率,其公式如下:

這公式所求的是在第 r – 1 個紀錄發生之後,下一個紀錄的等待時間小於或等於 m 之機率。表一之第六行顯示:從第一個紀錄發生在 1897 年開始,第二個紀錄等待了兩年就發生了,按照上式,第二個紀錄在 2 年之內發生的機率為 0.67。第二個紀錄發生在 1899 年之後,第三個紀錄等待了 6 年發生,而其在 6 年之內發生的機率也是 0.67。第三個紀錄發生在 1905 年之後,第四個紀錄要等待 13 年才發生,而其在 13 年之內發生的機率是 0.31。依此類推。這些機率都不小,雖然紀錄頻頻被打破,並不令人意外。尤其是第五個紀錄發生在 1912 年之後,第六個紀錄要等 64 年才在 1976 年發生,因為等了夠久了,其在這一段期間發生的機率是很高的(0.80)。

1976 年以後極小機率事件頻發,在統計上説明氣候確實出現異常。圖/轉自作者部落格

但從 1976 年以後,這個等到下一個紀錄的機率就急遽下降了。第七個紀錄在 7 年內發生,其機率是 0.08;第八個紀錄在 5 年內發生,其機率是 0.08;第九個紀錄等了 29 年,其機率稍大,但它發生之後,第十個紀錄只等了 2 年就發生,其機率小於 0.03。這樣的小機率事件發生了,如果還說氣候沒有異常,在統計學理上是無法接受的。如果我們換一個角度來看,把 1976 年當作氣候質變之後的第一個紀錄,則其後發生在 1983、1988、2017 的新紀錄其等待時間的機率(0.88,0.38,0.69)都不小,不算奇怪。只有 2019 的紀錄還在 0.05 的水平之內,不過這也可以說氣候變化越來越厲害了。

從新紀錄的等待時間來探討氣候變遷還可以看看新紀錄發生的平均時間。不過很奇妙的是:機率理論告訴我們,新紀錄雖然一定會發生(發生的機率為 1),其發生時間的期望值或理論平均數卻是無窮大,即使第二個紀錄也是一樣。以第二個紀錄為例,其發生時間為 2,3,4,…,t,…年的機率分別為 1/2,1/6,1/12,… 1 / t ( t – 1 ),…,所以期望值為 1 + 1/2 + 1/3 + … + 1 / ( t – 1 ) + …。這是有名的無窮和諧數列,它不是收斂數列,其和無窮大。其它的紀錄也是一樣。

-----廣告,請繼續往下閱讀-----

不過我們雖然不能算發生時間的期望值,卻能算中位數,也就是發生機率最接近 1/2 的時間點。表一的第七行列出各紀錄發生時間的中位點。我們可以看到,一直到 1976 年的第六個紀錄為止,中位時間點都還算合理。此後,第七個紀錄的中位發生點要在 1897 年算起的第 424 年,第七個紀錄在第 1166 年,第九個紀錄在第 3200 年,第十個紀錄在第 8717 年。這些紀錄的中位發生時間在這麼久遠之後,如果說沒有氣候變化,誰能相信?

附帶一提,1897 – 2020 之間台北市年低溫往下探的紀錄,包括 1897 年的第一個紀錄,124 年之間只有三個:1897(5度),1898(3.3度),1902(-0.2度)。從 1902 年以來,118 年之中,-0.2 度的紀錄沒有被突破!(不過 P ( Rn ≤3 ) = 0.162 並不足以作為氣溫變化異常的統計證據。)

  1. 齊斯.德福林(Keith Devlin)、蓋瑞.洛頓(Gary Lorden)著,蘇俊鴻、蘇惠玉等譯。2016。〈改變點偵測:災難即將發生的證據何時開始浮現?〉,《案發現場:FBI警探和數學家的天作之合》(The Numbers behind Numb3rs: Solving Crime with Mathematics)第四章。八旗文化。
  2. Jiri Andel, 2001. “Records.” Chapter 4 of Mathematics of Chance. Wiley.
  3. 盧孟明、卓盈旻等著。2012。〈台灣氣候變化:1911-2009年資料分析〉。中央氣象局。
-----廣告,請繼續往下閱讀-----
文章難易度
林澤民_96
37 篇文章 ・ 245 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

4
2

文字

分享

0
4
2
看電影學統計:「多重宇宙」與統計學「隨機變異」的概念
林澤民_96
・2023/03/15 ・2854字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

「多重宇宙」是我教統計時常用到的名詞,我用它來解釋隨機變異(stochastic variation)的概念:

例如民調抽得一個樣本,此樣本的受訪者固然是一群特定人士,但理論上我們可以抽出許多許多樣本,這些樣本之間雖然會有隨機變異,但樣本彼此的宏觀性質仍會相近。這些不同的隨機樣本,可以以「多重宇宙」一詞來形容。即使事實上只有一個樣本(一個宇宙),我們可以想像在多重宇宙的每個宇宙裡,都有一個微觀上隨機變異的樣本存在。

一個樣本(一個宇宙),在多重宇宙裡,每個宇宙都有一個微觀上隨機變異的樣本存在。 圖/IMDb

什麼是隨機樣本?

其實,數理統計學中「隨機樣本」(random sample)的概念指的是「一組獨立且同一分布的隨機變數」(a set of independently and identically distributed random variables)

在這個定義之下,樣本的每一個單位(資料點)都不是固定不變的數值,而是一個依循某機率分布的隨機變數。「隨機樣本」的要求是樣本所有的 N 個單位不但要互相獨立,而且要依循同一的機率分布。

我們可以想像我們平常所謂「一個樣本」的 N 個觀察值,每一個觀察值背後都有一個產生這個數值的隨機變數,也可以說所謂「一個樣本」其實只是這「一組獨立且同一分布的隨機變數」的一個「實現」(realization)。那麼,不同的樣本就是這「一組獨立且同一分布的隨機變數」的不同「實現」。這樣了解之下的不同樣本、不同「實現」,我喜歡把它們稱為「多重宇宙」。

-----廣告,請繼續往下閱讀-----

多重宇宙中的隨機變異,是我們在分析一個樣本的資料時必須作統計推論的原因。

比如我們分析本屆所有 113 位立委的議事行為,既然立委一共只有 113 人,我們分析的對象不就是立委的母體嗎?那是不是就不必做統計推論?

不是!原因是我們仍然可以想像有多重宇宙存在,每個宇宙都有 113 位立委,而同一位立委在不同的宇宙裡其議事行為會有隨機變異。正是因為這隨機變異的緣故,我們即使分析的是所謂「母體」,我們仍然要做統計推論。

圖/IMDb

「多重宇宙」的概念可以說就是「假如我們可以重來」的反事實思想實驗。被分析的單位不是在時間中重來一次,而是在多重宇宙的空間中展現「假如我們可以重來」的隨機變異的可能性。

名為 Monday 的這集 X 檔案電視劇中,主角的夢境不斷重複,每次夢境的結構大致類似,但細節卻有所不同,這正是「多重宇宙—隨機變異」概念的戲劇化。

-----廣告,請繼續往下閱讀-----

【媽的多重宇宙】(Everything Everywhere All at Once)也是。

「看,這是你的宇宙,一個漂浮在存在宇宙泡沫中的泡泡。周圍的每個氣泡都有細微的變化。但你離你的宇宙越遠,差異就越大。」——【媽的多重宇宙】對白

這是說:變異程度越小的是離你越近的宇宙,程度越大的是離你越遠的宇宙。這裡所謂變異的程度,在統計學裡可以用誤差機率分布的標準差來衡量。

什麼是隨機變異?

關於「隨機變異」這個概念,我最喜歡的例子是研究所入學申請的評審。

例如有 120 人申請入學,我詳細閱讀每人投遞的申請資料(包括性別、年齡等個人特質還有 SOP、大學成績單、GRE 分數、推薦信等),然後打一個 Y=0~100 的分數。全部評閱完畢,我便得到一份 N=120 的資料。這個資料包括了所有的申請者,那麼它是樣本呢?還是母體?

-----廣告,請繼續往下閱讀-----

如果我要分析我自己評分的決定因素,我會把分數 Y 回歸到性別、年齡等個人特質以及資料中可以量化的變數,例如大學成績平均分數(GPA)和 GRE 分數。跑這個迴歸時,需不需要做統計推論,看迴歸係數是不是有統計的顯著性?

我的看法是這份 N=120 的資料是樣本而不是母體,做迴歸分析當然要做統計推論。

那麼我資料的母體是什麼?

迴歸分析資料的母體其實是所謂「母體迴歸函數」(population regression function),也就是通常所說的「資料產生過程」(data generating process, DGP)。

這個 DGP 就是我在評閱每份資料時腦海中的思考機制,它考量了許多量化和質化的變數,賦予不同的權重,然後加總起來產生 Y。

分析資料的母體,也就是常說的「資料產生過程」。 圖/envato.elements

量化變數的權重就是母體迴歸函數的係數,質化變數則是母體迴歸函數的係數的誤差項。如果有很多質化變數攏總納入誤差項,我們通常可以根據中央極限定理,假設誤差項是呈現常態分布的隨機變數。這個誤差項就是「隨機變異」的來源。

評審入學申請,我通常只把所有資料評閱一次。這一次評審結果,會有幾家歡樂幾家愁,這便構成了一個「宇宙」。如果我第二天又把所有 120 份資料重新評分一遍,得到第二個樣本。因為我腦中的「資料產生過程」包括隨機變數,這個新樣本保證跟第一個樣本會有差異。用白話說:我的評分機制不精確,我自己甚至不知道我給每個量化變數多少權重,而且第二次評閱所用的權重也會跟第一次不盡相同,更不用說質化變數如何影響我的評分了。

-----廣告,請繼續往下閱讀-----

這第二個樣本,申請者的排比不會跟第一個樣本一樣,雖然也是幾家歡樂幾家愁,歡樂與愁悶的人也可能不一樣。這是第二個宇宙。依此類推,我們可以想像同樣的120位申請者,因為我「資料產生過程」的隨機變異,活在多重宇宙裡。

這些宇宙有的差異不大,根據【媽的多重宇宙】的說法,它們的泡泡互相之間的距離就較近,差異較大的宇宙,距離就較遠。如果申請者可以像電影所述那樣做宇宙跳躍,他們會看到自己在不同宇宙裡的命運。

我擔任德州大學政府系的研究部主任時,常耽心有申請者拿我們入學評審委員的評分資料去做迴歸分析。如果分析結果顯示種族、性別等變數有統計顯著性,說不定會被拿去控告我違反所謂「平權行動」(affirmative action)的相關法律。如果沒有顯著性,我就不耽心了。

多重宇宙之間會不會有「蝴蝶效應」?也就是宇宙跳躍時,隨機變異產生的微小差異,會不會造成新舊宇宙生命路徑的決然不同?

-----廣告,請繼續往下閱讀-----

在【媽的多重宇宙】中,伊芙琳只要當初做了一個不同的決定,以後的生命便可能跟現世(home universe)有很不一樣的命運。這在統計學也不是不可能。時間序列分析中,有些非線性模式只要初始值稍微改變,其後在時間中的路徑便會與原來的路徑發散開來。

你做時間序列分析時,會不會想想:時間序列資料究竟是樣本還是母體?如果你的研究興趣就只限於資料期間,那要不要做統計推論?當然要的,因為隨機變異的緣故。

如果你今年申請外國研究所不順利,也許在另一個宇宙裡,你不但獲名校錄取,得到鉅額獎學金,而且你的人生旅途將自此一路順遂,事業婚姻兩得意呢。

-----廣告,請繼續往下閱讀-----
林澤民_96
37 篇文章 ・ 245 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

0

2
2

文字

分享

0
2
2
假藥也能治療?安慰劑效應的原因:「不」隨機化實驗!——《統計,讓數字說話》
天下文化_96
・2023/03/03 ・1932字 ・閱讀時間約 4 分鐘

  • 作者:墨爾 David S. Moore、諾茨 William I. Notz
  • 譯者:鄭惟厚、吳欣蓓

實驗法中「隨機化」的必要性

隨機化比較實驗是統計學裡面最重要的概念之一。它的設計是要讓我們能夠得到釐清因果關係的結論。我們先來弄清楚隨機化比較實驗的邏輯:

  • 用隨機化的方法將受試者分組,所分出的各組在實施處理之前,應該各方面都類似。
  • 之所以用「比較」的設計,是要確保除了實驗上的處理外,其他所有因素都會同樣作用在所有的組身上。
  • 因此,反應變數的差異必定是處理的效應所致。

我們用隨機方法選組,以避免人為指派時可能發生的系統性偏差。例如在鐮形血球貧血症的研究中,醫師有可能下意識就把最嚴重的病人指派到羥基脲組,指望這個正在試驗的藥能對他們有幫助。那樣就會使實驗有偏差,不利於羥基脲。

從受試者中取簡單隨機樣本來當作第一組,會使得每個人被選入第一組或第二組的機會相等。我們可以預期兩組在各方面都接近,例如年齡、病情嚴重程度、抽不抽菸等。舉例來說,隨機性通常會使兩組中的吸菸人數差不多,即使我們並不知道哪些受試者吸菸。

實驗組與對照組除主要測量變數外,其餘條件必需盡可能相似。圖/envatoelements

新藥研究上不隨機分組帶來的後果:安慰劑效應

如果實驗不採取隨機方式,潛藏變數會有什麼影響呢?安慰劑效應就是潛藏變數,只有受試者接受治療後才會出現。如果實驗組別是在當年不同時間進行治療,所以有些組別是在流感季節治療,有些則不是,那麼潛藏變數就是有些組別暴露在流感的程度較多。

-----廣告,請繼續往下閱讀-----

在比較實驗設計中,我們會試著確保這些潛藏變數對全部的組別都有相似的作用。例如為了確保全部的組別都有安慰劑效應,他們會接受相同的治療,全部的組別會在相同的時間接受相同的治療,所以暴露在流感的程度也相同。

要是告訴你,醫學研究者對於隨機化比較實驗接受得很慢,應該不會讓你驚訝,因為許多醫師認為一項新療法對病人是否有用,他們「只要看看」就知道。但事實才不是這樣。有很多醫療方法只經過單軌實驗後就普遍使用,但是後來有人起疑,進行了隨機化比較實驗後,卻發覺其效用充其量不過是安慰劑罷了,這種例子已經不勝枚舉。

曾有人在醫學文獻裡搜尋,經過適當的比較實驗研究過的療法,以及只經過「歷史對照組」實驗的療法。用歷史對照組做的研究不是把新療法的結果和控制組比,而是和過去類似的病人在治療後的效果做比較。結果,納入研究的 56 種療法當中,用歷史對照組來比較時,有 44 種療法顯示出有效。然而在經過使用合適的隨機化比較實驗後,只有 10 種通過安慰劑測試。即使有跟過去的病人比,醫師的判斷仍過於樂觀。

過去醫學史上常出現新藥實際沒療效,只能充當安慰劑效果的情況。圖/envatoelements

目前來說,法律已有規定,新藥必須用隨機化比較實驗來證明其安全性及有效性。但是對於其他醫療處置,比如手術,就沒有這項規定。上網搜尋「comparisons with historical controls」(以歷史對照組來比較)這個關鍵字,可以找到最近針對曾使用歷史對照組試驗的其他醫療處置,所做的研究。

-----廣告,請繼續往下閱讀-----

對於隨機化實驗有一件重要的事必須注意。和隨機樣本一樣,隨機化實驗照樣要受機遇法則的「管轄」。就像抽一個選民的簡單隨機樣本時,有可能運氣不好,抽到的幾乎都是相同政治傾向一樣,隨機指派受試者時,也可能運氣不好,把抽菸的人幾乎全放在同一組。

我們知道,如果抽選很大的隨機樣本,樣本的組成和母體近似的機會就很大。同樣的道理,如果我們用很多受試者,加上利用隨機指派方式分組,也就有可能與實際情況非常吻合。受試者較多,表示實驗處理組的機遇變異會比較小,因此實驗結果的機遇變異也比較小。「用足夠多的受試者」和「同時比較數個處理」以及「隨機化」,同為「統計實驗設計」的基本原則。

實驗設計的原則
統計實驗設計的基本原則如下:
1. 要控制潛在變數對反應的影響,最簡單的方法是同時比較至少兩個處理。
2. 隨機化:用非人為的隨機方法指派受試者到不同的實驗處理組。
3. 每一組的受試者要夠多,以減低實驗結果中的機遇變異。

——本文摘自《統計,讓數字說話》,2023 年 1 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。