0

5
1

文字

分享

0
5
1

從什麽時候開始,冬天變得越來越熱——用統計學的「改變點」及「紀錄」探討台北暖冬的異常現象

林澤民_96
・2021/02/09 ・4352字 ・閱讀時間約 9 分鐘 ・SR值 541 ・八年級

台灣這幾天比較冷,但暖冬仍然是全球暖化過程中一個明顯的趨勢。一般以為全球暖化始於 19 世紀末葉先進國家積極工業化的時候,但世界各地工業化的進程不同,暖化的趨勢也會有所差異。當工業化在全球範圍內日益普及,各地暖化趨勢便益見明顯,但還要等到 20 世紀下半葉這趨勢才明顯到引起各國的注意。

始於19世紀末葉先進國家積極工業化造成的全球暖化,使暖冬成爲明顯的趨勢。圖/作者林澤民提供

在美國,一直要到 1988 年氣候變化才正式成為官方關切的議題。這一年的 6 月 23 日,NASA 太空研究所(GISS)主任 James E. Hansen 在參議院能源及自然資源委員會作證指出:「全球暖化的程度已經顯著到讓我們確信溫室效應與暖化趨勢具有因果關係。依我的意見,我們已經偵測出了溫室效應,而且這效應正在影響我們的氣候。」

以筆者居住的德州奧斯汀市而言,氣溫紀錄始於 19 世紀末期。我用統計學「改變點」(change point)的方法分析每年最高溫及最低溫的時間序列,檢測出年低溫最顯著的改變點在 Hansen 作證之後 3 年的 1991 年,而年高溫的改變點還要更後,在 1998 年。這與筆者個人體驗大致相符。

台北氣溫變化趨勢的改變點

「改變點」的檢測是時間序列分析的統計方法,它用來判定時間序列的資料產生過程是否有不連續點的存在。它在 1930 年代就曾被產業界用來監控產品的製造過程,其後經過數學家的深入研究,在近 20 年來蓬勃發展,廣泛被應用於環保、疫情、醫療、軍事、反恐等各領域。筆者個人就曾用類似的研究方法發現美國歷史上,選民的投票行為在二十世紀 20-30 年代之間曾經發生過質性的變化。去年五月,頂級學術期刊 Science 也有研究論文檢測新冠肺炎在德國傳播趨勢的改變點,肯定了政府干預措施的有效性。CBS 電視影集「數字」(Numb3rs)甚至有一集演出「夢幻棒球」玩家用改變點方法檢測大聯盟球員使用禁藥提高打擊率的故事。

台灣的氣溫紀錄也始於 19 世紀末。根據 Jasmine Kuo 提供的台北市年低溫歷史資料,台北市每年最低溫的改變點在 1975 年,而年高溫的改變點則要到 2001 年。台北市年低溫的改變比奧斯汀要早,這也許跟地形、地理位置、人口、以及工業化程度有關。

-----廣告,請繼續往下閱讀-----

理論上,年高溫及年低溫都不是常態分布,而是呈現所謂極端值分布(extreme value distribution)。圖一及圖二以上述改變點為斷點,分別估計年高溫及年低溫在各自改變點前、後的極端值分布。這兩張圖讓我們清楚看出改變點前後的明顯差異:改變點之後,年高溫及年低溫的分布均明顯往高溫方向移動。年高溫在 2001 之後的平均值增加了攝氏 1.44 度,而年低溫在 1975 之後的平均值則更誇張地增加了將近兩倍的 2.81 度!

年高溫在 2001 之後的平均值增加了攝氏 1.44 度。圖/轉自作者部落格
年低溫在 1975 之後的平均值誇張地增加了將近兩倍的 2.81 度!圖/轉自作者部落格

時間序列資料產生過程的變化除了可以用改變點的統計方法來檢測斷點以外,也可以用 「紀錄」(record)發生的機率理論來分析異常現象。事實上,事件發生頻率的改變也是改變點研究的數學方法之一。本文以下即以紀錄理論進一步探討台北市年低溫在 1975 年之後新紀錄節節升高的現象。

破紀錄次數的機率分布説明台北市年低溫變遷出現異常

台北市 1897-2020 年低溫時間序列顯示,1897 年台北市的最低溫是攝氏 5 度。以此為資料中的第一個紀錄,124 年來,有 9 個新的紀錄出現,分別是:1899(7.2度),1905(7.6度),1909(8.1度),1912(8.2度),1976(8.5度),1983(9.3度),1988(10度),2017(10.4度),2019(11.6度)。見圖三時間序列中的黑點。

從 1897 到 2020 百年之間,臺北市的低溫「記錄」有越來越高的趨勢。圖/轉自作者部落格

124 年間有 10 個紀錄是正常現象嗎?這個問題,可以用機率理論做精確的回答。

-----廣告,請繼續往下閱讀-----

機率理論對「記錄」的研究有很完整的系統。其數學繁複,但相當有趣,有興趣的讀者可以找相關書籍來看,例如 Jiri Andel(2001)的 Mathematics of Chance

這個理論從一個前提出發:觀察序列中的資料是遵循相同機率分布而且相互獨立(iid,編按:Independently and identically distributed)的隨機變數。在這個假設之下,我們可以導出在 n 個資料點中有 r 個紀錄(包括第一個資料點)的機率分布。這個前提可以說是「正常」狀況的「虛無假設」:它代表觀察序列中資料的產生過程完全相同,沒有任何異常現象或動態趨勢。如果我們的經驗資料與這個假設之下的機率分布不相諧,根據傳統次數主義(frequentist)統計推論的方法,我們可以在一定的統計水平之下拒絕虛無假設而判定異常現象的存在。

若研究假設有方向性時,采用單尾檢定(右圖);若研究假設不特別強調方向性,只注意是否有差異,則通常采用雙尾檢定(左圖)。圖/towardsdatascience

以台北市年低溫的歷史資料來說,我們可以算出在 n = 124 個觀察值的序列資料中出現 r (r = 1,2,3,…,124)個紀錄的機率分布,然後從這分布算出 r 大於或等於 10 的右尾機率。如果這個機率小於相約成俗的顯著水平 0.05,我們判定歷史資料與虛無假設不相諧,從而排除台北市年低溫變遷沒有異常現象的前提。依照傳統統計推論,我們可以做出台北市年低溫變遷有異常現象的結論

以 Rn 代表在 iid 假設之下,n = 124 個序列資料中有 r 個紀錄的隨機變數,圖四便是 Rn = r 的機率分布。從這個機率分布我們可以算得 Rn 的期望值是 E ( Rn ) = 5.40,變異量是 Var ( Rn ) = 3.76,也很容易直接算得右尾機率 P (Rn ≥ 10) = 0.025。因為這個機率小於 0.05,單尾檢定讓我們得到台北市年低溫屢破歷史上限紀錄是異常現象的結論。(如果一定要用雙尾檢定,這個結論就有點勉強。)

-----廣告,請繼續往下閱讀-----
從臺北市低溫歷史資料中出現不同「記錄」機率分佈的單尾檢定,可判斷臺北市的低溫屢破歷史上限紀錄是異常現象。圖/轉自作者部落格

Rn 的機率分布並不容易算,有一個遞歸公式,當 n 較大時,需要很大的計算能量或很久的時間才算得出。要迅速算出,必須用到所謂「第一類史特靈數」(Stirling Numbers of the First Kind)。如果你的軟體沒有這個函數,可以利用這兩個很漂亮的公式來算 Rn 的期望值和變異量:

利用這兩個公式也可算出當 n = 124 時,E ( Rn ) = 5.40,Var ( Rn ) = 3.76。如果我們假設 Rn 的分布是常態分佈,則可以輕易算出以以期望值為中心的 95% 信心區間為(1.49,8.88)。因為經驗值 10 個紀錄在信心區間之外,這個分析也支持台北市年低溫變化異常的結論。不過因為 Rn 的分布並非常態,這個分析並不精確。

新紀錄等待時間的機率急遽下降

應用紀錄之機率理來分析台北市氣溫變化也可以看出 1975 年前後是一個轉捩點。

在 1897 年之後的 9 個新紀錄當中,出現在 1975 年之後短短 45 年之間的就有 5個,平均每 9 年就有一個新紀錄。而在 1976 年前的 80 年中,則平均要將近 16 年才有新的紀錄。事實上,1912 年的紀錄保持了 64 年才被打破。

-----廣告,請繼續往下閱讀-----

也許你會說 1897-1912,在短短 16 年之間不是就有 4 個新紀錄嗎?然而新紀錄的頻率在紀錄開始之時本來就會比較頻繁,日久後要破紀錄會越來越難。紀錄的機率理論可以算在一定時間之內舊紀錄會被打破的機率,其公式如下:

這公式所求的是在第 r – 1 個紀錄發生之後,下一個紀錄的等待時間小於或等於 m 之機率。表一之第六行顯示:從第一個紀錄發生在 1897 年開始,第二個紀錄等待了兩年就發生了,按照上式,第二個紀錄在 2 年之內發生的機率為 0.67。第二個紀錄發生在 1899 年之後,第三個紀錄等待了 6 年發生,而其在 6 年之內發生的機率也是 0.67。第三個紀錄發生在 1905 年之後,第四個紀錄要等待 13 年才發生,而其在 13 年之內發生的機率是 0.31。依此類推。這些機率都不小,雖然紀錄頻頻被打破,並不令人意外。尤其是第五個紀錄發生在 1912 年之後,第六個紀錄要等 64 年才在 1976 年發生,因為等了夠久了,其在這一段期間發生的機率是很高的(0.80)。

1976 年以後極小機率事件頻發,在統計上説明氣候確實出現異常。圖/轉自作者部落格

但從 1976 年以後,這個等到下一個紀錄的機率就急遽下降了。第七個紀錄在 7 年內發生,其機率是 0.08;第八個紀錄在 5 年內發生,其機率是 0.08;第九個紀錄等了 29 年,其機率稍大,但它發生之後,第十個紀錄只等了 2 年就發生,其機率小於 0.03。這樣的小機率事件發生了,如果還說氣候沒有異常,在統計學理上是無法接受的。如果我們換一個角度來看,把 1976 年當作氣候質變之後的第一個紀錄,則其後發生在 1983、1988、2017 的新紀錄其等待時間的機率(0.88,0.38,0.69)都不小,不算奇怪。只有 2019 的紀錄還在 0.05 的水平之內,不過這也可以說氣候變化越來越厲害了。

從新紀錄的等待時間來探討氣候變遷還可以看看新紀錄發生的平均時間。不過很奇妙的是:機率理論告訴我們,新紀錄雖然一定會發生(發生的機率為 1),其發生時間的期望值或理論平均數卻是無窮大,即使第二個紀錄也是一樣。以第二個紀錄為例,其發生時間為 2,3,4,…,t,…年的機率分別為 1/2,1/6,1/12,… 1 / t ( t – 1 ),…,所以期望值為 1 + 1/2 + 1/3 + … + 1 / ( t – 1 ) + …。這是有名的無窮和諧數列,它不是收斂數列,其和無窮大。其它的紀錄也是一樣。

-----廣告,請繼續往下閱讀-----

不過我們雖然不能算發生時間的期望值,卻能算中位數,也就是發生機率最接近 1/2 的時間點。表一的第七行列出各紀錄發生時間的中位點。我們可以看到,一直到 1976 年的第六個紀錄為止,中位時間點都還算合理。此後,第七個紀錄的中位發生點要在 1897 年算起的第 424 年,第七個紀錄在第 1166 年,第九個紀錄在第 3200 年,第十個紀錄在第 8717 年。這些紀錄的中位發生時間在這麼久遠之後,如果說沒有氣候變化,誰能相信?

附帶一提,1897 – 2020 之間台北市年低溫往下探的紀錄,包括 1897 年的第一個紀錄,124 年之間只有三個:1897(5度),1898(3.3度),1902(-0.2度)。從 1902 年以來,118 年之中,-0.2 度的紀錄沒有被突破!(不過 P ( Rn ≤3 ) = 0.162 並不足以作為氣溫變化異常的統計證據。)

參考資料

  1. 齊斯.德福林(Keith Devlin)、蓋瑞.洛頓(Gary Lorden)著,蘇俊鴻、蘇惠玉等譯。2016。〈改變點偵測:災難即將發生的證據何時開始浮現?〉,《案發現場:FBI警探和數學家的天作之合》(The Numbers behind Numb3rs: Solving Crime with Mathematics)第四章。八旗文化。
  2. Jiri Andel, 2001. “Records.” Chapter 4 of Mathematics of Chance. Wiley.
  3. 盧孟明、卓盈旻等著。2012。〈台灣氣候變化:1911-2009年資料分析〉。中央氣象局。
-----廣告,請繼續往下閱讀-----
文章難易度
林澤民_96
37 篇文章 ・ 246 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
3

文字

分享

0
4
3
看電影學統計:「多重宇宙」與統計學「隨機變異」的概念
林澤民_96
・2023/03/15 ・2854字 ・閱讀時間約 5 分鐘

「多重宇宙」是我教統計時常用到的名詞,我用它來解釋隨機變異(stochastic variation)的概念:

例如民調抽得一個樣本,此樣本的受訪者固然是一群特定人士,但理論上我們可以抽出許多許多樣本,這些樣本之間雖然會有隨機變異,但樣本彼此的宏觀性質仍會相近。這些不同的隨機樣本,可以以「多重宇宙」一詞來形容。即使事實上只有一個樣本(一個宇宙),我們可以想像在多重宇宙的每個宇宙裡,都有一個微觀上隨機變異的樣本存在。

一個樣本(一個宇宙),在多重宇宙裡,每個宇宙都有一個微觀上隨機變異的樣本存在。 圖/IMDb

什麼是隨機樣本?

其實,數理統計學中「隨機樣本」(random sample)的概念指的是「一組獨立且同一分布的隨機變數」(a set of independently and identically distributed random variables)

在這個定義之下,樣本的每一個單位(資料點)都不是固定不變的數值,而是一個依循某機率分布的隨機變數。「隨機樣本」的要求是樣本所有的 N 個單位不但要互相獨立,而且要依循同一的機率分布。

我們可以想像我們平常所謂「一個樣本」的 N 個觀察值,每一個觀察值背後都有一個產生這個數值的隨機變數,也可以說所謂「一個樣本」其實只是這「一組獨立且同一分布的隨機變數」的一個「實現」(realization)。那麼,不同的樣本就是這「一組獨立且同一分布的隨機變數」的不同「實現」。這樣了解之下的不同樣本、不同「實現」,我喜歡把它們稱為「多重宇宙」。

-----廣告,請繼續往下閱讀-----

多重宇宙中的隨機變異,是我們在分析一個樣本的資料時必須作統計推論的原因。

比如我們分析本屆所有 113 位立委的議事行為,既然立委一共只有 113 人,我們分析的對象不就是立委的母體嗎?那是不是就不必做統計推論?

不是!原因是我們仍然可以想像有多重宇宙存在,每個宇宙都有 113 位立委,而同一位立委在不同的宇宙裡其議事行為會有隨機變異。正是因為這隨機變異的緣故,我們即使分析的是所謂「母體」,我們仍然要做統計推論。

圖/IMDb

「多重宇宙」的概念可以說就是「假如我們可以重來」的反事實思想實驗。被分析的單位不是在時間中重來一次,而是在多重宇宙的空間中展現「假如我們可以重來」的隨機變異的可能性。

名為 Monday 的這集 X 檔案電視劇中,主角的夢境不斷重複,每次夢境的結構大致類似,但細節卻有所不同,這正是「多重宇宙—隨機變異」概念的戲劇化。

-----廣告,請繼續往下閱讀-----

【媽的多重宇宙】(Everything Everywhere All at Once)也是。

「看,這是你的宇宙,一個漂浮在存在宇宙泡沫中的泡泡。周圍的每個氣泡都有細微的變化。但你離你的宇宙越遠,差異就越大。」——【媽的多重宇宙】對白

這是說:變異程度越小的是離你越近的宇宙,程度越大的是離你越遠的宇宙。這裡所謂變異的程度,在統計學裡可以用誤差機率分布的標準差來衡量。

什麼是隨機變異?

關於「隨機變異」這個概念,我最喜歡的例子是研究所入學申請的評審。

例如有 120 人申請入學,我詳細閱讀每人投遞的申請資料(包括性別、年齡等個人特質還有 SOP、大學成績單、GRE 分數、推薦信等),然後打一個 Y=0~100 的分數。全部評閱完畢,我便得到一份 N=120 的資料。這個資料包括了所有的申請者,那麼它是樣本呢?還是母體?

-----廣告,請繼續往下閱讀-----

如果我要分析我自己評分的決定因素,我會把分數 Y 回歸到性別、年齡等個人特質以及資料中可以量化的變數,例如大學成績平均分數(GPA)和 GRE 分數。跑這個迴歸時,需不需要做統計推論,看迴歸係數是不是有統計的顯著性?

我的看法是這份 N=120 的資料是樣本而不是母體,做迴歸分析當然要做統計推論。

那麼我資料的母體是什麼?

迴歸分析資料的母體其實是所謂「母體迴歸函數」(population regression function),也就是通常所說的「資料產生過程」(data generating process, DGP)。

這個 DGP 就是我在評閱每份資料時腦海中的思考機制,它考量了許多量化和質化的變數,賦予不同的權重,然後加總起來產生 Y。

分析資料的母體,也就是常說的「資料產生過程」。 圖/envato.elements

量化變數的權重就是母體迴歸函數的係數,質化變數則是母體迴歸函數的係數的誤差項。如果有很多質化變數攏總納入誤差項,我們通常可以根據中央極限定理,假設誤差項是呈現常態分布的隨機變數。這個誤差項就是「隨機變異」的來源。

評審入學申請,我通常只把所有資料評閱一次。這一次評審結果,會有幾家歡樂幾家愁,這便構成了一個「宇宙」。如果我第二天又把所有 120 份資料重新評分一遍,得到第二個樣本。因為我腦中的「資料產生過程」包括隨機變數,這個新樣本保證跟第一個樣本會有差異。用白話說:我的評分機制不精確,我自己甚至不知道我給每個量化變數多少權重,而且第二次評閱所用的權重也會跟第一次不盡相同,更不用說質化變數如何影響我的評分了。

-----廣告,請繼續往下閱讀-----

這第二個樣本,申請者的排比不會跟第一個樣本一樣,雖然也是幾家歡樂幾家愁,歡樂與愁悶的人也可能不一樣。這是第二個宇宙。依此類推,我們可以想像同樣的120位申請者,因為我「資料產生過程」的隨機變異,活在多重宇宙裡。

這些宇宙有的差異不大,根據【媽的多重宇宙】的說法,它們的泡泡互相之間的距離就較近,差異較大的宇宙,距離就較遠。如果申請者可以像電影所述那樣做宇宙跳躍,他們會看到自己在不同宇宙裡的命運。

我擔任德州大學政府系的研究部主任時,常耽心有申請者拿我們入學評審委員的評分資料去做迴歸分析。如果分析結果顯示種族、性別等變數有統計顯著性,說不定會被拿去控告我違反所謂「平權行動」(affirmative action)的相關法律。如果沒有顯著性,我就不耽心了。

多重宇宙之間會不會有「蝴蝶效應」?也就是宇宙跳躍時,隨機變異產生的微小差異,會不會造成新舊宇宙生命路徑的決然不同?

-----廣告,請繼續往下閱讀-----

在【媽的多重宇宙】中,伊芙琳只要當初做了一個不同的決定,以後的生命便可能跟現世(home universe)有很不一樣的命運。這在統計學也不是不可能。時間序列分析中,有些非線性模式只要初始值稍微改變,其後在時間中的路徑便會與原來的路徑發散開來。

你做時間序列分析時,會不會想想:時間序列資料究竟是樣本還是母體?如果你的研究興趣就只限於資料期間,那要不要做統計推論?當然要的,因為隨機變異的緣故。

如果你今年申請外國研究所不順利,也許在另一個宇宙裡,你不但獲名校錄取,得到鉅額獎學金,而且你的人生旅途將自此一路順遂,事業婚姻兩得意呢。

-----廣告,請繼續往下閱讀-----
林澤民_96
37 篇文章 ・ 246 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

0

2
2

文字

分享

0
2
2
假藥也能治療?安慰劑效應的原因:「不」隨機化實驗!——《統計,讓數字說話》
天下文化_96
・2023/03/03 ・1932字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者:墨爾 David S. Moore、諾茨 William I. Notz
  • 譯者:鄭惟厚、吳欣蓓

實驗法中「隨機化」的必要性

隨機化比較實驗是統計學裡面最重要的概念之一。它的設計是要讓我們能夠得到釐清因果關係的結論。我們先來弄清楚隨機化比較實驗的邏輯:

  • 用隨機化的方法將受試者分組,所分出的各組在實施處理之前,應該各方面都類似。
  • 之所以用「比較」的設計,是要確保除了實驗上的處理外,其他所有因素都會同樣作用在所有的組身上。
  • 因此,反應變數的差異必定是處理的效應所致。

我們用隨機方法選組,以避免人為指派時可能發生的系統性偏差。例如在鐮形血球貧血症的研究中,醫師有可能下意識就把最嚴重的病人指派到羥基脲組,指望這個正在試驗的藥能對他們有幫助。那樣就會使實驗有偏差,不利於羥基脲。

從受試者中取簡單隨機樣本來當作第一組,會使得每個人被選入第一組或第二組的機會相等。我們可以預期兩組在各方面都接近,例如年齡、病情嚴重程度、抽不抽菸等。舉例來說,隨機性通常會使兩組中的吸菸人數差不多,即使我們並不知道哪些受試者吸菸。

實驗組與對照組除主要測量變數外,其餘條件必需盡可能相似。圖/envatoelements

新藥研究上不隨機分組帶來的後果:安慰劑效應

如果實驗不採取隨機方式,潛藏變數會有什麼影響呢?安慰劑效應就是潛藏變數,只有受試者接受治療後才會出現。如果實驗組別是在當年不同時間進行治療,所以有些組別是在流感季節治療,有些則不是,那麼潛藏變數就是有些組別暴露在流感的程度較多。

-----廣告,請繼續往下閱讀-----

在比較實驗設計中,我們會試著確保這些潛藏變數對全部的組別都有相似的作用。例如為了確保全部的組別都有安慰劑效應,他們會接受相同的治療,全部的組別會在相同的時間接受相同的治療,所以暴露在流感的程度也相同。

要是告訴你,醫學研究者對於隨機化比較實驗接受得很慢,應該不會讓你驚訝,因為許多醫師認為一項新療法對病人是否有用,他們「只要看看」就知道。但事實才不是這樣。有很多醫療方法只經過單軌實驗後就普遍使用,但是後來有人起疑,進行了隨機化比較實驗後,卻發覺其效用充其量不過是安慰劑罷了,這種例子已經不勝枚舉。

曾有人在醫學文獻裡搜尋,經過適當的比較實驗研究過的療法,以及只經過「歷史對照組」實驗的療法。用歷史對照組做的研究不是把新療法的結果和控制組比,而是和過去類似的病人在治療後的效果做比較。結果,納入研究的 56 種療法當中,用歷史對照組來比較時,有 44 種療法顯示出有效。然而在經過使用合適的隨機化比較實驗後,只有 10 種通過安慰劑測試。即使有跟過去的病人比,醫師的判斷仍過於樂觀。

過去醫學史上常出現新藥實際沒療效,只能充當安慰劑效果的情況。圖/envatoelements

目前來說,法律已有規定,新藥必須用隨機化比較實驗來證明其安全性及有效性。但是對於其他醫療處置,比如手術,就沒有這項規定。上網搜尋「comparisons with historical controls」(以歷史對照組來比較)這個關鍵字,可以找到最近針對曾使用歷史對照組試驗的其他醫療處置,所做的研究。

-----廣告,請繼續往下閱讀-----

對於隨機化實驗有一件重要的事必須注意。和隨機樣本一樣,隨機化實驗照樣要受機遇法則的「管轄」。就像抽一個選民的簡單隨機樣本時,有可能運氣不好,抽到的幾乎都是相同政治傾向一樣,隨機指派受試者時,也可能運氣不好,把抽菸的人幾乎全放在同一組。

我們知道,如果抽選很大的隨機樣本,樣本的組成和母體近似的機會就很大。同樣的道理,如果我們用很多受試者,加上利用隨機指派方式分組,也就有可能與實際情況非常吻合。受試者較多,表示實驗處理組的機遇變異會比較小,因此實驗結果的機遇變異也比較小。「用足夠多的受試者」和「同時比較數個處理」以及「隨機化」,同為「統計實驗設計」的基本原則。

實驗設計的原則
統計實驗設計的基本原則如下:
1. 要控制潛在變數對反應的影響,最簡單的方法是同時比較至少兩個處理。
2. 隨機化:用非人為的隨機方法指派受試者到不同的實驗處理組。
3. 每一組的受試者要夠多,以減低實驗結果中的機遇變異。

——本文摘自《統計,讓數字說話》,2023 年 1 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
天下文化_96
142 篇文章 ・ 626 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。