2

3
6

文字

分享

2
3
6

逼近上帝視角——用「統計學」探討因果關係

研之有物│中央研究院_96
・2022/06/15 ・4930字 ・閱讀時間約 10 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/郭雅欣、簡克志
  • 美術設計/蔡宛潔

因果關係怎麼研究?

在日常生活的經驗裡,我們往往習慣以主觀的角度來認定因果關係的存在,但在數理統計的協助下,因果關係可以擁有科學定義,並且可以驗證。中央研究院「研之有物」專訪院內統計科學研究所黃彥棕研究員,他的主要研究便是以數理統計的方式來探討因果關係(例如生物體的複雜機轉)。有了統計方法,人類也能接近上帝視角,找出因果關係的存在。

中研院統計所研究員黃彥棕,擅長以數理統計的方式來思考因果關係。圖/研之有物

以數理統計驗證因果關係

我們絕大多數人相信「凡事必有因果」這句話,例如今天腹瀉,是因為昨天晚餐吃壞肚子;考試沒考好,是因為書念得不夠。但是仔細想想,造成今天拉肚子的原因,除了昨天的晚餐之外,還有沒有別的可能?影響考試成績的因素,除了書念得夠不夠之外,考試環境、考題難易度也都會影響。

所以,我們究竟該如何確定兩件事有因果關係?有沒有什麼科學方法,可以讓我們帶著十足的把握,說出「X 就是造成 Y 結果的原因」這樣的話語?

中研院統計所研究員黃彥棕,擅長以數理統計的方式來思考因果關係,除此之外他更進一步在數學上探討「X 透過何種機制造成 Y」,也就是所謂的「因果中介效應」。有興趣的讀者,可以參考「研之有物」之前專訪黃彥棕老師的文章〈喝酒臉紅易罹癌?小時候家裡窮會胖?統計學家黃彥棕來解答〉。

回到因果關係,黃彥棕說到:「因果關係是屬於上帝視角。」也就是說,兩件事之間究竟有無因果關係,理論上只有全知者才知道,而我們能做的,是以數理統計的方式,「從人類視角盡可能地逼近上帝視角,來判斷因果關係是否存在。」

何謂因果關係?

為什麼說「因果存在與否只有上帝才知道」?因果關係建立在「反事實」,如果有一個事實是「打疫苗,就不容易感染 COVID-19」,則我們必須驗證是否「不打疫苗,就容易感染 COVID-19」,這就是反事實。有了事實與反事實的比對,我們才能說「打疫苗」與「不易感染 COVID-19」有因果關係。

不過,除非有時光機或平行宇宙,否則我們不可能讓全世界的人打疫苗,並觀察感染情況;然後又讓全世界的人都不打疫苗,並再次觀察染病狀況。只有全知者才能同時觀察這兩個平行宇宙,得知因果關係。黃彥棕說,身處現實世界的我們,只能盡可能地逼近這個結果。

用數學語言來描述因果關係,最被廣泛使用的架構是由美國統計學家 Donald Rubin 提出的反事實結果(counterfactual outcome)或潛在結果(potential outcome)。值得一提的是,過去 Rubin 也曾與 2021 年諾貝爾經濟學獎得主 Joshua Angrist 和 Guido Imbens 共同發表重要論文〈使用工具變量確認因果效應〉。

以下我們就以疫苗和傳染病為例,以反事實架構來說明「X 導致 Y」的群體因果效應。先假設 X 為民眾施打疫苗與否( 0:不打疫苗,1:打疫苗),而 Y 為得傳染病與否(0:不染病,1:染病),並使用期望值 E 來描述群體平均效應,詳細如下圖。

為了要取得因果關係,我們必須有兩個獨立的平行世界,分別是 X=1 和 X=0,再去比較這兩個世界中 X 如何導致 Y 的發生。圖/研之有物
(資料來源|黃彥棕)

如果我們觀察到 E[Y(X=1)]=0.1,也就是有打疫苗的人染病機率是 10 %。那麼在反事實因果推論的基礎上,我們必須檢驗 E[Y(X=0)] 等於多少,也就是不打疫苗的染病機率。只要 E[Y(X=1)] ≠ E[Y(X=0)],就代表 X 和 Y 之間具有因果關係。

然而,實務上打完疫苗的人不可能再回復到沒打疫苗的狀態,因此我們沒有辦法再次對同一群母體樣本做實驗來驗證因果關係,僅能退而求其次,「盡量貼近」因果關係。那麼,要怎麼做呢?

有反事實的對照,才有因果關係。

逼近神的因果視角

如果我們把全世界的人分成兩半,其中一半打疫苗、另一半不打疫苗,然後用打疫苗的那一半代表一個宇宙(事實),不打疫苗的代表另一個宇宙(反事實),不就創造出兩個平行宇宙了嗎?

這是一種很直觀的逼近方法,但若要讓一半的人能夠代表一整個宇宙,則有一個重要的前提:這兩個宇宙裡的人是隨機分配的,也就是這兩群人在各個層面都很相似,例如年齡、性別、健康狀況甚至政治傾向等,以專業術語來說就是必須具有可互換性(exchangeability)。藥廠在做疫苗人體實驗時,就必須以非常嚴謹的方式讓受試者盡可能達到隨機分配,才能得到「疫苗是否有效」的科學結果。

不過,在大多數狀況下,我們很難做到隨機分配。舉例來說,臺灣開放施打 COVID-19 疫苗後,截至 2021 年 10 月 29 日為止,有將近 1700 萬人施打第一劑疫苗,但我們不能把這 1700 萬人視為有打疫苗的宇宙,而另一群沒打疫苗的 600 萬人視為沒打疫苗的宇宙,因為打不打疫苗是人民自由選擇的結果,有很多因素會影響個人選擇,例如比較有健康意識,或是比較年輕、不擔心副作用的人,可能就比較傾向打疫苗。

即使統計結果顯示出打疫苗的人,感染 COVID-19 的比例真的比較低,我們也很難分辨是因為打疫苗,還是他們本來就比較年輕?或本來就比較健康?「這是所謂的『觀察型研究』,容易出現因果推論謬誤的原因。」黃彥棕說。

然而,我們可以用數理統計的方式逼近真實的因果效應,例如控制年齡、健康狀況——兩方都取 50~60 歲的年齡層,並且都是沒有心血管疾病的人等。黃彥棕說:「我們依據自己的背景知識,知道有哪些因素會影響隨機性,然後使用統計的方式,把它們抓出來做控制。」

理論上統計學家可以把所有可能造成偏誤的因子都舉出來,透過一層層地篩選、限縮,最後得出許多個小小的族群,讓隨機性成立。

之後,透過每一組小小的隨機族群(例如年齡 50~60 歲、沒有心血管疾病、男性、具健康意識……等,統稱為 C),讓 Y 的發生和特定條件 C 之下的 X 群體無關,我們就可以得到逼近兩個平行宇宙的資料(有打疫苗、沒打疫苗),最後再把各族群的結果加權平均回來。就可以貼近上帝視角的因果效應。

以數學語言來說,就是讓條件期望值(E[Y|X=x , C=c)])的計算透過加權平均等同於反事實結果之期望值(E[Y(X=x)])的效果。我們沒有時光機,無法透過事實/反事實結果之期望值檢驗全體打疫苗和不打疫苗的因果關係(E[Y(X=1)] ≠ E[Y(X=0)] 嗎?);但是我們可以透過各種條件的篩選和限縮,去計算每個具備可互換性小群體的條件期望值,最後加權平均回來,檢視打疫苗與得病與否的因果關係(∑c E[Y|X=1 , C=c]*P(C=c) ≠ ∑c E[Y|X=0 , C=c]*P(C=c)嗎?),這才是實務上的作法。

問題來了,要怎麼知道我們是否窮舉了所有可能造成偏誤的因子?我們的確不知道,只有上帝知道,這是個假設,而且是個很難驗證的假設。

實務上,我們不可能同時觀察 X=1 和 X=0 的世界,只能分別獲得 X 和 Y 的相關性。要如何從相關性去檢視因果關係呢?透過統計學上的篩選和限制,我們如果可以讓 X=1 vs. X=0 的隨機性成立,就可以進一步驗證 X 和 Y 的因果關係。為方便說明,圖片的數學式為簡單條件期望值計算,不考慮加權平均。圖/研之有物(資料來源|黃彥棕)

「在控制了年齡、性別、健康狀況等條件的情況下,我們希望可以讓隨機性成立。」

黃彥棕的研究讓因果關係在嚴謹的數學架構下,得以辨證、溝通,而不是只仰賴直觀的思考。因果的存在變得更加科學化,而這也使因果的探討可以進入更深的層次。

被競爭結果和時間擾亂的因果關係

更進階的因果探討層次,是將時間因素考慮進來。黃彥棕以「B 型肝炎」造成「肝癌」,然後導致「死亡」為例,若想探討這三者間的因果關係時,會發生一個問題,那就是有 B 型肝炎的人,有可能容易因猛爆性肝炎而直接死亡,而這樣的個案在統計上,因為他並沒有得到肝癌,而對「肝癌」這個中介因子造成了「保護」的效果。

「這就是肝癌和死亡這兩個競爭結果造成的影響,而這個競爭關係又會隨著時間推移而改變。肝癌、死亡有時間進程關係,一旦 B 型肝炎患者因猛爆性肝炎死亡了,他就不可能再得肝癌。」更清楚地說,B 型肝炎患者可能還「來不及」得肝癌,就因猛爆性肝炎直接跳到死亡。在界定 B 型肝炎與肝癌之間的因果關係時,這樣的結果會造成偏誤。

黃彥棕將時間因素考慮進來的方法,是把整個時程切割成非常多小段,在每個小段創造一個反事實架構,也就是分析每一位在某小段時間活著的 B 型肝炎患者,把他們分成已得到肝癌及還沒得到肝癌,並考慮這兩組患者在下一個瞬間死亡的可能性,再將這些結果積分起來,得到在隨機過程架構之下的平行宇宙們。

「我等於是在每一個瞬間都製造多個平行宇宙(無 B 肝/無肝癌、無 B 肝/有肝癌、有 B 肝/無肝癌、有 B 肝/有肝癌)出來,這樣做可以避免前面說的蓋牌效應。但你可以想像我所得到的平行宇宙數量……嗯,就跟《奇異博士》看到的差不多。」

「我認為我在這領域的部分貢獻,或許是提出了這樣一個會隨著時間推移的反事實架構。」黃彥棕說。他的論文發表出來後不久,也引起了期刊的興趣,邀請了相關領域的許多專家,探討他所提出的因果模型。

研究因果的動機

談起對因果關係研究的動機,黃彥棕說,以前在醫學系實習時,會看到開同樣的藥給病人,有些病人會好,有些人不會。這種「不確定性」開始讓他覺得好奇。他說:「我可以接受事情就是會有隨機性,但還是很想搞清楚這樣的不確定性是怎麼來的。」

最近,黃彥棕也發現許多人會把「預測」和「因果」搞混,尤其是現在人工智慧(AI)發展出的預測模型表現愈來愈好,有些做 AI 預測模型的人,會誤以為能夠用預測表現良好的模型,來得到因果關係。

舉例來說,一個模型可以透過一個人是否抽菸,來預測他得肺癌的機率,也可以透過一個人身上是否攜帶著打火機,來預測肺癌機率。「但我們知道抽菸與肺癌有因果關係,而帶打火機與否應該是不會造成任何增加肺癌風險的生物效應的。」黃彥棕說。

「抽菸」與「帶打火機」都能成為 AI 模型預測肺癌時採用的因子,但顯然並非代表它們與肺癌都有因果關係。黃彥棕接著說:「雖然預測未必需要因果關係,但是,決策就需要因果關係的支持。若要降低肺癌風險,政府較合理的做法是下令禁菸,而不是禁打火機。但要看到因果是比較困難的,它先天上的限制使它難以驗證,這個挑戰也是因果推論的迷人之處。」

最後,黃彥棕切身感受到因果關係的重要性,尤其是藥廠研發藥物或是臨床醫學等領域的應用。而他在反事實架構上考慮時間因素的突破,讓因果推論的知識又更往前推進。反事實因果推論的數學模型,讓人類能夠有深刻的思考,去檢視深藏在直觀表面之下的因果性與相關性。

延伸閱讀

文章難易度
所有討論 2
研之有物│中央研究院_96
271 篇文章 ・ 2659 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

4
2

文字

分享

0
4
2
看電影學統計:「多重宇宙」與統計學「隨機變異」的概念
林澤民_96
・2023/03/15 ・2854字 ・閱讀時間約 5 分鐘

「多重宇宙」是我教統計時常用到的名詞,我用它來解釋隨機變異(stochastic variation)的概念:

例如民調抽得一個樣本,此樣本的受訪者固然是一群特定人士,但理論上我們可以抽出許多許多樣本,這些樣本之間雖然會有隨機變異,但樣本彼此的宏觀性質仍會相近。這些不同的隨機樣本,可以以「多重宇宙」一詞來形容。即使事實上只有一個樣本(一個宇宙),我們可以想像在多重宇宙的每個宇宙裡,都有一個微觀上隨機變異的樣本存在。

一個樣本(一個宇宙),在多重宇宙裡,每個宇宙都有一個微觀上隨機變異的樣本存在。 圖/IMDb

什麼是隨機樣本?

其實,數理統計學中「隨機樣本」(random sample)的概念指的是「一組獨立且同一分布的隨機變數」(a set of independently and identically distributed random variables)

在這個定義之下,樣本的每一個單位(資料點)都不是固定不變的數值,而是一個依循某機率分布的隨機變數。「隨機樣本」的要求是樣本所有的 N 個單位不但要互相獨立,而且要依循同一的機率分布。

我們可以想像我們平常所謂「一個樣本」的 N 個觀察值,每一個觀察值背後都有一個產生這個數值的隨機變數,也可以說所謂「一個樣本」其實只是這「一組獨立且同一分布的隨機變數」的一個「實現」(realization)。那麼,不同的樣本就是這「一組獨立且同一分布的隨機變數」的不同「實現」。這樣了解之下的不同樣本、不同「實現」,我喜歡把它們稱為「多重宇宙」。

多重宇宙中的隨機變異,是我們在分析一個樣本的資料時必須作統計推論的原因。

比如我們分析本屆所有 113 位立委的議事行為,既然立委一共只有 113 人,我們分析的對象不就是立委的母體嗎?那是不是就不必做統計推論?

不是!原因是我們仍然可以想像有多重宇宙存在,每個宇宙都有 113 位立委,而同一位立委在不同的宇宙裡其議事行為會有隨機變異。正是因為這隨機變異的緣故,我們即使分析的是所謂「母體」,我們仍然要做統計推論。

圖/IMDb

「多重宇宙」的概念可以說就是「假如我們可以重來」的反事實思想實驗。被分析的單位不是在時間中重來一次,而是在多重宇宙的空間中展現「假如我們可以重來」的隨機變異的可能性。

名為 Monday 的這集 X 檔案電視劇中,主角的夢境不斷重複,每次夢境的結構大致類似,但細節卻有所不同,這正是「多重宇宙—隨機變異」概念的戲劇化。

【媽的多重宇宙】(Everything Everywhere All at Once)也是。

「看,這是你的宇宙,一個漂浮在存在宇宙泡沫中的泡泡。周圍的每個氣泡都有細微的變化。但你離你的宇宙越遠,差異就越大。」——【媽的多重宇宙】對白

這是說:變異程度越小的是離你越近的宇宙,程度越大的是離你越遠的宇宙。這裡所謂變異的程度,在統計學裡可以用誤差機率分布的標準差來衡量。

什麼是隨機變異?

關於「隨機變異」這個概念,我最喜歡的例子是研究所入學申請的評審。

例如有 120 人申請入學,我詳細閱讀每人投遞的申請資料(包括性別、年齡等個人特質還有 SOP、大學成績單、GRE 分數、推薦信等),然後打一個 Y=0~100 的分數。全部評閱完畢,我便得到一份 N=120 的資料。這個資料包括了所有的申請者,那麼它是樣本呢?還是母體?

如果我要分析我自己評分的決定因素,我會把分數 Y 回歸到性別、年齡等個人特質以及資料中可以量化的變數,例如大學成績平均分數(GPA)和 GRE 分數。跑這個迴歸時,需不需要做統計推論,看迴歸係數是不是有統計的顯著性?

我的看法是這份 N=120 的資料是樣本而不是母體,做迴歸分析當然要做統計推論。

那麼我資料的母體是什麼?

迴歸分析資料的母體其實是所謂「母體迴歸函數」(population regression function),也就是通常所說的「資料產生過程」(data generating process, DGP)。

這個 DGP 就是我在評閱每份資料時腦海中的思考機制,它考量了許多量化和質化的變數,賦予不同的權重,然後加總起來產生 Y。

分析資料的母體,也就是常說的「資料產生過程」。 圖/envato.elements

量化變數的權重就是母體迴歸函數的係數,質化變數則是母體迴歸函數的係數的誤差項。如果有很多質化變數攏總納入誤差項,我們通常可以根據中央極限定理,假設誤差項是呈現常態分布的隨機變數。這個誤差項就是「隨機變異」的來源。

評審入學申請,我通常只把所有資料評閱一次。這一次評審結果,會有幾家歡樂幾家愁,這便構成了一個「宇宙」。如果我第二天又把所有 120 份資料重新評分一遍,得到第二個樣本。因為我腦中的「資料產生過程」包括隨機變數,這個新樣本保證跟第一個樣本會有差異。用白話說:我的評分機制不精確,我自己甚至不知道我給每個量化變數多少權重,而且第二次評閱所用的權重也會跟第一次不盡相同,更不用說質化變數如何影響我的評分了。

這第二個樣本,申請者的排比不會跟第一個樣本一樣,雖然也是幾家歡樂幾家愁,歡樂與愁悶的人也可能不一樣。這是第二個宇宙。依此類推,我們可以想像同樣的120位申請者,因為我「資料產生過程」的隨機變異,活在多重宇宙裡。

這些宇宙有的差異不大,根據【媽的多重宇宙】的說法,它們的泡泡互相之間的距離就較近,差異較大的宇宙,距離就較遠。如果申請者可以像電影所述那樣做宇宙跳躍,他們會看到自己在不同宇宙裡的命運。

我擔任德州大學政府系的研究部主任時,常耽心有申請者拿我們入學評審委員的評分資料去做迴歸分析。如果分析結果顯示種族、性別等變數有統計顯著性,說不定會被拿去控告我違反所謂「平權行動」(affirmative action)的相關法律。如果沒有顯著性,我就不耽心了。

多重宇宙之間會不會有「蝴蝶效應」?也就是宇宙跳躍時,隨機變異產生的微小差異,會不會造成新舊宇宙生命路徑的決然不同?

在【媽的多重宇宙】中,伊芙琳只要當初做了一個不同的決定,以後的生命便可能跟現世(home universe)有很不一樣的命運。這在統計學也不是不可能。時間序列分析中,有些非線性模式只要初始值稍微改變,其後在時間中的路徑便會與原來的路徑發散開來。

你做時間序列分析時,會不會想想:時間序列資料究竟是樣本還是母體?如果你的研究興趣就只限於資料期間,那要不要做統計推論?當然要的,因為隨機變異的緣故。

如果你今年申請外國研究所不順利,也許在另一個宇宙裡,你不但獲名校錄取,得到鉅額獎學金,而且你的人生旅途將自此一路順遂,事業婚姻兩得意呢。

林澤民_96
36 篇文章 ・ 232 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

2

2
2

文字

分享

2
2
2
買樂透真的可以賺錢?大數法則揭示了賭博的真相!——《統計,讓數字說話》
天下文化_96
・2023/03/05 ・2394字 ・閱讀時間約 4 分鐘

  • id S. Moore、諾茨 William I. Notz
  • 譯者:鄭惟厚、吳欣蓓

什麼是大數法則?

期望值的定義是:它是可能結果的一種平均,但在計算平均時,機率大的結果占的比重較高。我們認為期望值也是另一種意義的平均結果,它代表了如果我們重複賭很多次,或者隨機選出很多家戶,實際上會看到的長期平均。這並不只是直覺而已。數學家只要用機率的基本規則就可以證明,用機率模型算出來的期望值,真的就是「長期平均」。這個有名的事實叫做大數法則。

大數法則
大數法則(law of large numbers)是指,如果結果為數值的隨機現象,獨立重複執行許多次,實際觀察到的結果的平均值,會趨近期望值。

大數法則和機率的概念密切相關。在許多次獨立的重複當中,每個可能結果的發生比例會接近它的機率,而所得到的平均結果就會接近期望值。這些事實表達了機遇事件的長期規律性。正如我們在第 17 章提過的,它們是真正的「平均數定律」。

大數法則解釋了:為什麼對個人來說是消遣甚至是會上癮的賭博,對賭場來說卻是生意。經營賭場根本就不是在賭博。大量的賭客贏錢的平均金額會很接近期望值。賭場經營者事先就算好了期望值,並且知道長期下來收入會是多少,所以並不需要在骰子裡灌鉛或者做牌來保證利潤。

賭場只要花精神提供不貴的娛樂和便宜的交通工具,讓顧客川流不息進場就行了。只要賭注夠多,大數法則就能保證賭場賺錢。保險公司的運作也很像賭場,他們賭買了保險的人不會死亡。當然有些人確實會死亡,但是保險公司知道機率,並且依賴大數法則來預測必須給付的平均金額。然後保險公司就把保費訂得夠高,來保證有利潤。

  • 在樂透彩上做手腳

我們都在電視上看過樂透開獎的實況轉播,看到號碼球上下亂跳,然後由於空氣壓力而隨機彈跳出來。我們可以怎麼樣對開出的號碼做手腳呢? 1980 年的時候,賓州樂透就曾被面帶微笑的主持人以及幾個舞台工作人員動了手腳。

他們把 10 個號碼球中的 8 顆注入油漆,這樣做會把球變重,因此可保證開出中獎號碼的 3 個球必定有那 2 個沒被注入油漆的號碼。然後這些傢伙就下注買該 2 個號碼的所有組合。當 6-6-6 跳出來的時候,他們贏了 120 萬美元。是的,他們後來全被逮到。

歷史上曾有主持人在樂透上做手腳,後來賺了 120 萬美元隨後被逮捕。圖/envatoelements

深入探討期望值

跟機率一樣,期望值和大數法則都值得再花些時間,探討相關的細節問題。

  • 多大的數才算是「大數」?

大數法則是說,當試驗的次數愈來愈多,許多次試驗的實際平均結果會愈來愈接近期望值。可是大數法則並沒有說,究竟需要多少次試驗,才能保證平均結果會接近期望值。這點是要看機結果的變異性決定。

結果的變異愈大,就需要愈多次的試驗,來確保平均結果接近期望值。機遇遊戲一定要變化大,才能保住賭客的興趣。即使在賭場待上好幾個鐘頭,結果也是無法預測的。結果變異性極大的賭博,例如累積彩金數額極大但極不可能中獎的州彩券,需要極多次的試驗,幾乎要多到不可能的次數,才能保證平均結果會接近期望值。

(州政府可不需要依賴大數法則,因為樂透彩金不像賭場的遊戲,樂透彩用的是同注分彩系統。在同注分彩系統裡面,彩金和賠率是由實際下注金額決定的。舉例來說,各州所辦的樂透彩金,是由全部賭金扣除州政府所得部分之後的剩餘金額來決定的。賭馬的賠率則是決定於賭客對不同馬匹的下注金額。)

雖然大部分的賭博遊戲不及樂透彩這樣多變化,但要回答大數法則的適用範圍,較實際的答案就是:賭場的贏錢金額期望值是正的,而賭場玩的次數夠多,所以可以靠著這個期望值贏錢。你的問題則是,你贏錢金額的期望值是負的。全體賭客玩的次數合起來算的話,當然和賭場一樣多,但因為期望值是負的,所以以賭客整體來看,長期下來一定輸錢。

然而輸的金額並不是由賭客均攤。有些人贏很多錢,有些人輸很多,而有些人沒什麼輸贏。賭博帶給人的誘惑,大部分是來自賭博結果的無法預測。而賭博這門生意仰賴的則是:對賭場來說,結果並非不可測的。

對賭場來說,贏錢金額期望值為正。圖/envatoelements
  • 有沒有保證贏錢的賭法?

把賭博很當回事的賭客常常遵循某種賭法,這種賭法每次下注的金額,是看前幾次的結果而定。比如說,在賭輪盤時,你可以每次把賭注加倍,直到你贏為止—或者,當然,直到你輸光為止。即使輪盤並沒有記憶,這種玩法仍想利用你有記憶這件事來贏。

你可以用一套賭法來戰勝機率嗎?不行,數學家建立的另一種大數法則說:如果你沒有無窮盡的賭本,那麼只要遊戲的各次試驗(比如輪盤的各次轉動)之間是獨立的,你的平均獲利(期望值)就會是一樣的。抱歉啦!

  • 高科技賭博

全美國有超過 700,000 台吃角子老虎(拉霸)。從前,你丟硬幣進去再拉下把手,轉動三個輪子,每個輪子有 20 個圖案。但早就不是這樣了。現在的機器是電動遊戲,會閃出許多很炫的畫面,而結果是由隨機數字產生器決定的。

機器可以同時接受許多硬幣,有各種讓你眼花撩亂的中獎結果,還可以多台連線,共同累積成連線大獎。賭徒仍在尋找可以贏錢的賭法,但是長期下來,隨機數字產生器會保證賭場有 5% 的利潤。

——本文摘自《統計,讓數字說話》,2023 年 1 月,天下文化出版,未經同意請勿轉載。

所有討論 2
天下文化_96
129 篇文章 ・ 610 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

2
2

文字

分享

0
2
2
假藥也能治療?安慰劑效應的原因:「不」隨機化實驗!——《統計,讓數字說話》
天下文化_96
・2023/03/03 ・1932字 ・閱讀時間約 4 分鐘

  • 作者:墨爾 David S. Moore、諾茨 William I. Notz
  • 譯者:鄭惟厚、吳欣蓓

實驗法中「隨機化」的必要性

隨機化比較實驗是統計學裡面最重要的概念之一。它的設計是要讓我們能夠得到釐清因果關係的結論。我們先來弄清楚隨機化比較實驗的邏輯:

  • 用隨機化的方法將受試者分組,所分出的各組在實施處理之前,應該各方面都類似。
  • 之所以用「比較」的設計,是要確保除了實驗上的處理外,其他所有因素都會同樣作用在所有的組身上。
  • 因此,反應變數的差異必定是處理的效應所致。

我們用隨機方法選組,以避免人為指派時可能發生的系統性偏差。例如在鐮形血球貧血症的研究中,醫師有可能下意識就把最嚴重的病人指派到羥基脲組,指望這個正在試驗的藥能對他們有幫助。那樣就會使實驗有偏差,不利於羥基脲。

從受試者中取簡單隨機樣本來當作第一組,會使得每個人被選入第一組或第二組的機會相等。我們可以預期兩組在各方面都接近,例如年齡、病情嚴重程度、抽不抽菸等。舉例來說,隨機性通常會使兩組中的吸菸人數差不多,即使我們並不知道哪些受試者吸菸。

實驗組與對照組除主要測量變數外,其餘條件必需盡可能相似。圖/envatoelements

新藥研究上不隨機分組帶來的後果:安慰劑效應

如果實驗不採取隨機方式,潛藏變數會有什麼影響呢?安慰劑效應就是潛藏變數,只有受試者接受治療後才會出現。如果實驗組別是在當年不同時間進行治療,所以有些組別是在流感季節治療,有些則不是,那麼潛藏變數就是有些組別暴露在流感的程度較多。

在比較實驗設計中,我們會試著確保這些潛藏變數對全部的組別都有相似的作用。例如為了確保全部的組別都有安慰劑效應,他們會接受相同的治療,全部的組別會在相同的時間接受相同的治療,所以暴露在流感的程度也相同。

要是告訴你,醫學研究者對於隨機化比較實驗接受得很慢,應該不會讓你驚訝,因為許多醫師認為一項新療法對病人是否有用,他們「只要看看」就知道。但事實才不是這樣。有很多醫療方法只經過單軌實驗後就普遍使用,但是後來有人起疑,進行了隨機化比較實驗後,卻發覺其效用充其量不過是安慰劑罷了,這種例子已經不勝枚舉。

曾有人在醫學文獻裡搜尋,經過適當的比較實驗研究過的療法,以及只經過「歷史對照組」實驗的療法。用歷史對照組做的研究不是把新療法的結果和控制組比,而是和過去類似的病人在治療後的效果做比較。結果,納入研究的 56 種療法當中,用歷史對照組來比較時,有 44 種療法顯示出有效。然而在經過使用合適的隨機化比較實驗後,只有 10 種通過安慰劑測試。即使有跟過去的病人比,醫師的判斷仍過於樂觀。

過去醫學史上常出現新藥實際沒療效,只能充當安慰劑效果的情況。圖/envatoelements

目前來說,法律已有規定,新藥必須用隨機化比較實驗來證明其安全性及有效性。但是對於其他醫療處置,比如手術,就沒有這項規定。上網搜尋「comparisons with historical controls」(以歷史對照組來比較)這個關鍵字,可以找到最近針對曾使用歷史對照組試驗的其他醫療處置,所做的研究。

對於隨機化實驗有一件重要的事必須注意。和隨機樣本一樣,隨機化實驗照樣要受機遇法則的「管轄」。就像抽一個選民的簡單隨機樣本時,有可能運氣不好,抽到的幾乎都是相同政治傾向一樣,隨機指派受試者時,也可能運氣不好,把抽菸的人幾乎全放在同一組。

我們知道,如果抽選很大的隨機樣本,樣本的組成和母體近似的機會就很大。同樣的道理,如果我們用很多受試者,加上利用隨機指派方式分組,也就有可能與實際情況非常吻合。受試者較多,表示實驗處理組的機遇變異會比較小,因此實驗結果的機遇變異也比較小。「用足夠多的受試者」和「同時比較數個處理」以及「隨機化」,同為「統計實驗設計」的基本原則。

實驗設計的原則
統計實驗設計的基本原則如下:
1. 要控制潛在變數對反應的影響,最簡單的方法是同時比較至少兩個處理。
2. 隨機化:用非人為的隨機方法指派受試者到不同的實驗處理組。
3. 每一組的受試者要夠多,以減低實驗結果中的機遇變異。

——本文摘自《統計,讓數字說話》,2023 年 1 月,天下文化出版,未經同意請勿轉載。

天下文化_96
129 篇文章 ・ 610 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。