2

3
7

文字

分享

2
3
7

逼近上帝視角——用「統計學」探討因果關係

研之有物│中央研究院_96
・2022/06/15 ・4930字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/郭雅欣、簡克志
  • 美術設計/蔡宛潔

因果關係怎麼研究?

在日常生活的經驗裡,我們往往習慣以主觀的角度來認定因果關係的存在,但在數理統計的協助下,因果關係可以擁有科學定義,並且可以驗證。中央研究院「研之有物」專訪院內統計科學研究所黃彥棕研究員,他的主要研究便是以數理統計的方式來探討因果關係(例如生物體的複雜機轉)。有了統計方法,人類也能接近上帝視角,找出因果關係的存在。

中研院統計所研究員黃彥棕,擅長以數理統計的方式來思考因果關係。圖/研之有物

以數理統計驗證因果關係

我們絕大多數人相信「凡事必有因果」這句話,例如今天腹瀉,是因為昨天晚餐吃壞肚子;考試沒考好,是因為書念得不夠。但是仔細想想,造成今天拉肚子的原因,除了昨天的晚餐之外,還有沒有別的可能?影響考試成績的因素,除了書念得夠不夠之外,考試環境、考題難易度也都會影響。

所以,我們究竟該如何確定兩件事有因果關係?有沒有什麼科學方法,可以讓我們帶著十足的把握,說出「X 就是造成 Y 結果的原因」這樣的話語?

-----廣告,請繼續往下閱讀-----

中研院統計所研究員黃彥棕,擅長以數理統計的方式來思考因果關係,除此之外他更進一步在數學上探討「X 透過何種機制造成 Y」,也就是所謂的「因果中介效應」。有興趣的讀者,可以參考「研之有物」之前專訪黃彥棕老師的文章〈喝酒臉紅易罹癌?小時候家裡窮會胖?統計學家黃彥棕來解答〉。

回到因果關係,黃彥棕說到:「因果關係是屬於上帝視角。」也就是說,兩件事之間究竟有無因果關係,理論上只有全知者才知道,而我們能做的,是以數理統計的方式,「從人類視角盡可能地逼近上帝視角,來判斷因果關係是否存在。」

何謂因果關係?

為什麼說「因果存在與否只有上帝才知道」?因果關係建立在「反事實」,如果有一個事實是「打疫苗,就不容易感染 COVID-19」,則我們必須驗證是否「不打疫苗,就容易感染 COVID-19」,這就是反事實。有了事實與反事實的比對,我們才能說「打疫苗」與「不易感染 COVID-19」有因果關係。

不過,除非有時光機或平行宇宙,否則我們不可能讓全世界的人打疫苗,並觀察感染情況;然後又讓全世界的人都不打疫苗,並再次觀察染病狀況。只有全知者才能同時觀察這兩個平行宇宙,得知因果關係。黃彥棕說,身處現實世界的我們,只能盡可能地逼近這個結果。

-----廣告,請繼續往下閱讀-----

用數學語言來描述因果關係,最被廣泛使用的架構是由美國統計學家 Donald Rubin 提出的反事實結果(counterfactual outcome)或潛在結果(potential outcome)。值得一提的是,過去 Rubin 也曾與 2021 年諾貝爾經濟學獎得主 Joshua Angrist 和 Guido Imbens 共同發表重要論文〈使用工具變量確認因果效應〉。

以下我們就以疫苗和傳染病為例,以反事實架構來說明「X 導致 Y」的群體因果效應。先假設 X 為民眾施打疫苗與否( 0:不打疫苗,1:打疫苗),而 Y 為得傳染病與否(0:不染病,1:染病),並使用期望值 E 來描述群體平均效應,詳細如下圖。

為了要取得因果關係,我們必須有兩個獨立的平行世界,分別是 X=1 和 X=0,再去比較這兩個世界中 X 如何導致 Y 的發生。圖/研之有物
(資料來源|黃彥棕)

如果我們觀察到 E[Y(X=1)]=0.1,也就是有打疫苗的人染病機率是 10 %。那麼在反事實因果推論的基礎上,我們必須檢驗 E[Y(X=0)] 等於多少,也就是不打疫苗的染病機率。只要 E[Y(X=1)] ≠ E[Y(X=0)],就代表 X 和 Y 之間具有因果關係。

然而,實務上打完疫苗的人不可能再回復到沒打疫苗的狀態,因此我們沒有辦法再次對同一群母體樣本做實驗來驗證因果關係,僅能退而求其次,「盡量貼近」因果關係。那麼,要怎麼做呢?

-----廣告,請繼續往下閱讀-----

有反事實的對照,才有因果關係。

逼近神的因果視角

如果我們把全世界的人分成兩半,其中一半打疫苗、另一半不打疫苗,然後用打疫苗的那一半代表一個宇宙(事實),不打疫苗的代表另一個宇宙(反事實),不就創造出兩個平行宇宙了嗎?

這是一種很直觀的逼近方法,但若要讓一半的人能夠代表一整個宇宙,則有一個重要的前提:這兩個宇宙裡的人是隨機分配的,也就是這兩群人在各個層面都很相似,例如年齡、性別、健康狀況甚至政治傾向等,以專業術語來說就是必須具有可互換性(exchangeability)。藥廠在做疫苗人體實驗時,就必須以非常嚴謹的方式讓受試者盡可能達到隨機分配,才能得到「疫苗是否有效」的科學結果。

不過,在大多數狀況下,我們很難做到隨機分配。舉例來說,臺灣開放施打 COVID-19 疫苗後,截至 2021 年 10 月 29 日為止,有將近 1700 萬人施打第一劑疫苗,但我們不能把這 1700 萬人視為有打疫苗的宇宙,而另一群沒打疫苗的 600 萬人視為沒打疫苗的宇宙,因為打不打疫苗是人民自由選擇的結果,有很多因素會影響個人選擇,例如比較有健康意識,或是比較年輕、不擔心副作用的人,可能就比較傾向打疫苗。

即使統計結果顯示出打疫苗的人,感染 COVID-19 的比例真的比較低,我們也很難分辨是因為打疫苗,還是他們本來就比較年輕?或本來就比較健康?「這是所謂的『觀察型研究』,容易出現因果推論謬誤的原因。」黃彥棕說。

-----廣告,請繼續往下閱讀-----

然而,我們可以用數理統計的方式逼近真實的因果效應,例如控制年齡、健康狀況——兩方都取 50~60 歲的年齡層,並且都是沒有心血管疾病的人等。黃彥棕說:「我們依據自己的背景知識,知道有哪些因素會影響隨機性,然後使用統計的方式,把它們抓出來做控制。」

理論上統計學家可以把所有可能造成偏誤的因子都舉出來,透過一層層地篩選、限縮,最後得出許多個小小的族群,讓隨機性成立。

之後,透過每一組小小的隨機族群(例如年齡 50~60 歲、沒有心血管疾病、男性、具健康意識……等,統稱為 C),讓 Y 的發生和特定條件 C 之下的 X 群體無關,我們就可以得到逼近兩個平行宇宙的資料(有打疫苗、沒打疫苗),最後再把各族群的結果加權平均回來。就可以貼近上帝視角的因果效應。

以數學語言來說,就是讓條件期望值(E[Y|X=x , C=c)])的計算透過加權平均等同於反事實結果之期望值(E[Y(X=x)])的效果。我們沒有時光機,無法透過事實/反事實結果之期望值檢驗全體打疫苗和不打疫苗的因果關係(E[Y(X=1)] ≠ E[Y(X=0)] 嗎?);但是我們可以透過各種條件的篩選和限縮,去計算每個具備可互換性小群體的條件期望值,最後加權平均回來,檢視打疫苗與得病與否的因果關係(∑c E[Y|X=1 , C=c]*P(C=c) ≠ ∑c E[Y|X=0 , C=c]*P(C=c)嗎?),這才是實務上的作法。

問題來了,要怎麼知道我們是否窮舉了所有可能造成偏誤的因子?我們的確不知道,只有上帝知道,這是個假設,而且是個很難驗證的假設。

實務上,我們不可能同時觀察 X=1 和 X=0 的世界,只能分別獲得 X 和 Y 的相關性。要如何從相關性去檢視因果關係呢?透過統計學上的篩選和限制,我們如果可以讓 X=1 vs. X=0 的隨機性成立,就可以進一步驗證 X 和 Y 的因果關係。為方便說明,圖片的數學式為簡單條件期望值計算,不考慮加權平均。圖/研之有物(資料來源|黃彥棕)

「在控制了年齡、性別、健康狀況等條件的情況下,我們希望可以讓隨機性成立。」

黃彥棕的研究讓因果關係在嚴謹的數學架構下,得以辨證、溝通,而不是只仰賴直觀的思考。因果的存在變得更加科學化,而這也使因果的探討可以進入更深的層次。

-----廣告,請繼續往下閱讀-----

被競爭結果和時間擾亂的因果關係

更進階的因果探討層次,是將時間因素考慮進來。黃彥棕以「B 型肝炎」造成「肝癌」,然後導致「死亡」為例,若想探討這三者間的因果關係時,會發生一個問題,那就是有 B 型肝炎的人,有可能容易因猛爆性肝炎而直接死亡,而這樣的個案在統計上,因為他並沒有得到肝癌,而對「肝癌」這個中介因子造成了「保護」的效果。

「這就是肝癌和死亡這兩個競爭結果造成的影響,而這個競爭關係又會隨著時間推移而改變。肝癌、死亡有時間進程關係,一旦 B 型肝炎患者因猛爆性肝炎死亡了,他就不可能再得肝癌。」更清楚地說,B 型肝炎患者可能還「來不及」得肝癌,就因猛爆性肝炎直接跳到死亡。在界定 B 型肝炎與肝癌之間的因果關係時,這樣的結果會造成偏誤。

黃彥棕將時間因素考慮進來的方法,是把整個時程切割成非常多小段,在每個小段創造一個反事實架構,也就是分析每一位在某小段時間活著的 B 型肝炎患者,把他們分成已得到肝癌及還沒得到肝癌,並考慮這兩組患者在下一個瞬間死亡的可能性,再將這些結果積分起來,得到在隨機過程架構之下的平行宇宙們。

「我等於是在每一個瞬間都製造多個平行宇宙(無 B 肝/無肝癌、無 B 肝/有肝癌、有 B 肝/無肝癌、有 B 肝/有肝癌)出來,這樣做可以避免前面說的蓋牌效應。但你可以想像我所得到的平行宇宙數量……嗯,就跟《奇異博士》看到的差不多。」

「我認為我在這領域的部分貢獻,或許是提出了這樣一個會隨著時間推移的反事實架構。」黃彥棕說。他的論文發表出來後不久,也引起了期刊的興趣,邀請了相關領域的許多專家,探討他所提出的因果模型。

-----廣告,請繼續往下閱讀-----

研究因果的動機

談起對因果關係研究的動機,黃彥棕說,以前在醫學系實習時,會看到開同樣的藥給病人,有些病人會好,有些人不會。這種「不確定性」開始讓他覺得好奇。他說:「我可以接受事情就是會有隨機性,但還是很想搞清楚這樣的不確定性是怎麼來的。」

最近,黃彥棕也發現許多人會把「預測」和「因果」搞混,尤其是現在人工智慧(AI)發展出的預測模型表現愈來愈好,有些做 AI 預測模型的人,會誤以為能夠用預測表現良好的模型,來得到因果關係。

舉例來說,一個模型可以透過一個人是否抽菸,來預測他得肺癌的機率,也可以透過一個人身上是否攜帶著打火機,來預測肺癌機率。「但我們知道抽菸與肺癌有因果關係,而帶打火機與否應該是不會造成任何增加肺癌風險的生物效應的。」黃彥棕說。

「抽菸」與「帶打火機」都能成為 AI 模型預測肺癌時採用的因子,但顯然並非代表它們與肺癌都有因果關係。黃彥棕接著說:「雖然預測未必需要因果關係,但是,決策就需要因果關係的支持。若要降低肺癌風險,政府較合理的做法是下令禁菸,而不是禁打火機。但要看到因果是比較困難的,它先天上的限制使它難以驗證,這個挑戰也是因果推論的迷人之處。」

-----廣告,請繼續往下閱讀-----

最後,黃彥棕切身感受到因果關係的重要性,尤其是藥廠研發藥物或是臨床醫學等領域的應用。而他在反事實架構上考慮時間因素的突破,讓因果推論的知識又更往前推進。反事實因果推論的數學模型,讓人類能夠有深刻的思考,去檢視深藏在直觀表面之下的因果性與相關性。

延伸閱讀

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
研之有物│中央研究院_96
296 篇文章 ・ 3657 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

30
1

文字

分享

0
30
1
民眾黨是未來台灣政治的樞紐?
林澤民_96
・2024/01/30 ・3382字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

一、前言

選後的立法院三黨不過半,但民眾黨有八席不分區立委,足以與民進黨或國民黨結成多數聯盟,勢將在國會居於樞紐地位。無獨有偶的是:民眾黨主席柯文哲在總統大選得到 26.5% 的選票,屈居第三,但因其獲得部分藍、綠選民的支持,在選民偏好順序組態的基礎上,它卻也同樣地居於樞紐地位。這個地位,將足以讓柯文哲及民眾黨在選後的台灣政壇持續激盪。

二、柯文哲是「孔多塞贏家」?

這次總統大選,誰能脫穎而出並不是一個特別令人殷盼的問題,更值得關心的問題是藍白綠「三跤㧣」在選民偏好順序組態中的消長。台灣總統大選採多數決選制,多數決選制英文叫 first-past-the-post(FPTP),簡單來講就是票多的贏,票少的輸。在 10 月中藍白合破局之後,賴蕭配會贏已經沒有懸念,但這只是選制定規之下的結果,換了另一個選制,同樣的選情可能就會險象環生。

從另一個角度想:選制是人為的,而選情反映的是社會現實。政治學者都知道天下沒有十全十美的選制;既定的選制推出了一位總統,並不代表選情的張力就會成為過眼雲煙。當三股社會勢力在制度的帷幕後繼續激盪,台灣政治將無法因新總統的誕生而趨於穩定。

圖/作者自製

如果在「三跤㧣」選舉之下,選情的激盪從候選人的得票多少看不出來,那要從哪裡看?政治學提供的一個方法是把候選人配對 PK,看是否有一位候選人能在所有的 PK 中取勝。這樣的候選人並不一定存在,如果不存在,那代表有 A 與 B 配對 A 勝,B 與 C 配對 B 勝,C 與 A 配對 C 勝的 A>B>C>A 的情形。這種情形,一般叫做「循環多數」(cyclical majorities),是 18 世紀法國學者孔多塞(Nicolas de Condorcet)首先提出。循環多數的存在意涵選舉結果隱藏了政治動盪。

-----廣告,請繼續往下閱讀-----

另一方面,如果有一位候選人能在配對 PK 時擊敗所有的其他候選人,這樣的候選人稱作「孔多塞贏家」(Condorcet winner),而在配對 PK 時均被擊敗的候選人則稱作「孔多塞輸家」(Condorcet loser)。三角嘟的選舉若無循環多數,則一定會有孔多塞贏家和孔多塞輸家,然而孔多塞贏家不一定即是多數決選制中贏得選舉的候選人,而多數決選制中贏得選舉的候選人卻可能是孔多塞輸家。

如果多數決選制中贏得選舉的候選人不是孔多塞贏家,那與循環多數一樣,意涵選後政治將不會穩定。

那麼,台灣這次總統大選,有沒有孔多塞贏家?如果有,是多數決選制之下當選的賴清德嗎?我根據戴立安先生調查規劃的《美麗島電子報》追蹤民調第 109 波(1 月 11 日至 12 日),也是選前最後民調的估計,得到的結果令人驚訝:得票墊後的柯文哲很可能是孔多塞贏家,而得票最多的賴清德很可能是孔多塞輸家。果然如此,那白色力量將會持續地激盪台灣政治!

我之前根據美麗島封關前第 101 波估計,侯友宜可能是孔多塞贏家,而賴清德是孔多塞輸家。現在得到不同的結果,顯示了封關期間的三股政治力量的消長。本來藍營期望的棄保不但沒有發生,而且柯文哲選前之夜在凱道浩大的造勢活動,還震驚了藍綠陣營。民調樣本估計出的孔多塞贏家本來就不準確,但短期內的改變,很可能反映了選情的激盪,甚至可能反映了循環多數的存在。

-----廣告,請繼續往下閱讀-----

三、如何從民調樣本估計孔多塞贏家

根據這波民調,總樣本 N=1001 位受訪者中,如果當時投票,會支持賴清德的受訪者共 355 人,佔 35.4%;支持侯友宜的受訪者共 247 人,佔 24.7%。支持柯文哲的受訪者共 200 人,佔 19.9%。

美麗島民調續問「最不希望誰當總統,也絕對不會投給他的候選人」,在會投票給三組候選人的 802 位支持者中,一共有 572 位對這個問題給予了明確的回答。《美麗島電子報》在其網站提供了交叉表如圖:

根據這個交叉表,我們可以估計每一位明確回答了續問的受訪者對三組候選人的偏好順序,然後再依這 572 人的偏好順序組態來判定在兩兩 PK 的情形下,候選人之間的輸贏如何。我得到的結果是:

  • 柯文哲 PK 賴清德:311 > 261(54.4% v. 45.6%)
  • 柯文哲 PK 侯友宜:287 > 285(50.2% v. 49.8%)
  • 侯友宜 PK 賴清德:293 > 279(51.2% v. 48.8%)

所以柯文哲是孔多塞贏家,賴清德是孔多塞輸家。當然我們如果考慮抽樣誤差(4.1%),除了柯文哲勝出賴清德具有統計顯著性之外,其他兩組配對可說難分難解。但在這 N=572 的小樣本中,三位候選人的得票率分別是:賴清德 40%,侯友宜 33%,柯文哲 27%,與選舉實際結果幾乎一模一樣。至少在這個反映了選舉結果的樣本中,柯文哲是孔多塞贏家。依多數決選制,孔多塞輸家賴清德當選。

-----廣告,請繼續往下閱讀-----

不過以上的分析有一個問題:各陣營的支持者中,有不少人無法明確回答「最不希望看到誰當總統,也絕對不會投給他做總統」的候選人。最嚴重的是賴清德的支持者,其「無反應率」(nonresponse rate)高達 34.5%。相對而言,侯友宜、柯文哲的支持者則分別只有 24.1%、23.8% 無法明確回答。為什麼賴的支持者有較多人無法指認最討厭的候選人?一個假設是因為藍、白性質相近,對許多綠營選民而言,其候選人的討厭程度可能難分軒輊。反過來說,藍、白陣營的選民大多數會最討厭綠營候選人,因此指認較無困難。無論如何,把無法明確回答偏好順序的受訪者歸為「遺失值」(missing value)而棄置不用總不是很恰當的做法,在這裡尤其可能會造成賴清德支持者數目的低估。

補救的辦法之一是在「無法明確回答等於無法區別」的假設下,把「遺失值」平分給投票對象之外的其他兩位候選人,也就是假設他們各有 1/2 的機會是無反應受訪者最討厭的候選人。這樣處理的結果,得到

  • 柯文哲 PK 賴清德:389 > 413(48.5% v. 51.5%)
  • 柯文哲 PK 侯友宜:396 > 406(49.4% v. 50.6%)
  • 侯友宜 PK 賴清德:376 > 426(46.9% v. 53.1%)

此時賴清德是孔多塞贏家,而柯文哲是孔多塞輸家。在這 N=802 的樣本中,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%。雖然依多數決選制,孔多塞贏家賴清德當選,但賴的得票率超過實際選舉結果(40%)。用無實證的假設來填補遺失值,反而造成賴清德支持者數目的高估。

如果擔心「無法明確回答等於無法區別」的假設太勉強,補救的辦法之二是把「遺失值」依有反應受訪者選擇最討厭對象的同樣比例,分給投票對象之外的其他兩位候選人。這樣處理的結果,得到

-----廣告,請繼續往下閱讀-----
  • 柯文哲 PK 賴清德:409 > 393(51.0% v. 49.0%)
  • 柯文哲 PK 侯友宜:407 > 395(50.8% v. 49.2%)
  • 侯友宜 PK 賴清德:417 > 385(52.0% v. 48.0%)

此時柯文哲又是孔多塞贏家,而賴清德又是孔多塞輸家了。這個樣本也是 N=802,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%,與上面的結果一樣。

以上三種無反應處理方法都不盡完美。第一種把無反應直接當遺失值丟棄,看似最不可取。然而縮小的樣本裡,三位候選人的支持度與實際選舉結果幾乎完全一致。後兩種以不同的假設補足了遺失值,但卻過度膨脹了賴清德的支持度。如果以樣本中候選人支持度與實際結果的比較來判斷遺失值處理方法的效度,我們不能排斥第一種方法及其結果。

無論如何,在缺乏完全資訊的情況下,我們發現的確有可能多數決輸家柯文哲是孔多塞贏家,而多數決贏家賴清德是孔多塞輸家。因為配對 PK 結果缺乏統計顯著性,我們甚至不能排除循環多數的存在。此後四年,多數決選制產生的總統能否在三角嘟力量的激盪下有效維持政治穩定,值得我們持續觀察。

四、結語

柯文哲之所以可以是孔多塞贏家,是因為藍綠選民傾向於最不希望對方的候選人當總統。而白營的中間偏藍位置,讓柯文哲與賴清德 PK 時,能夠得到大多數藍營選民的奧援而勝出。同樣的,當他與侯友宜 PK 時,他也能夠得到一部份綠營選民的奧援。只要他的支持者足夠,他也能夠勝出。反過來看,當賴清德與侯友宜 PK 時,除非他的基本盤夠大,否則從白營得到的奧援不一定足夠讓他勝出。民調 N=572 的樣本中,賴清德得 40%,侯友宜得 33%,柯文哲得 27%。由於柯的支持者討厭賴清德(52.5%)遠遠超過討厭侯友宜(23.7%),賴雖然基本盤較大,能夠從白營得到的奧援卻不多。而侯雖基本盤較小,卻有足夠的奧援。柯文哲之所以成為孔多塞贏家,賴清德之所以成為孔多塞輸家,都是這些因素的數學結果。

-----廣告,請繼續往下閱讀-----

資料來源

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

林澤民_96
37 篇文章 ・ 245 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

0

2
2

文字

分享

0
2
2
數學無聊是誰的錯?數學家其實很幽默?——《數盲、詐騙與偽科學》
大牌出版.出版大牌_96
・2024/01/08 ・2441字 ・閱讀時間約 5 分鐘

雖然很少有學生小學畢業後還不懂乘法表,但有很多人確實不會算,如果一個人開車的速度是每小時 56 公里,開了 4 小時之後,他就開了 224 公里。要是每公克花生賣 40 美分,而 1 袋花生賣 2.2 美元,那麼,這袋花生裡就有 5.5 公克花生。假如全世界人口中有 1/4 是中國人,其餘的 1/5 是印度人,那麼,印度人在全世界的人口中就占了 3/20,或說是 15%。當然,要理解這些問題,並不像學會算 35×4=140、(2.2)/(0.4)=5.5、1/5×(1–1/4)=3/20=0.15=15% 這麼簡單。對很多小學生來說,這不是自然而然就會的東西,要靠做很多很實用、或是純屬想像的問題,才能進一步學會。

至於估計,學校裡除了教一些四捨五入之外,通常也沒有別的了。四捨五入和合理的估計與真實人生大有關係,但課堂上很少串起這樣的連結。學校不會帶著小學生估計學校砌一面牆要用掉多少塊磚、班上跑最快的人速度多快、班上同學爸爸是禿頭的比例多高、一個人的頭圍與身高之比是多少、要堆出一座高度和帝國大廈等高的塔需要幾枚 5 美分硬幣,還有他們的教室能否容納這些 5 美分硬幣。

幾乎也沒人教歸納推理,也不會用猜測相關性質和規則的角度,來研究數學現象。在小學數學課裡談到非形式邏輯(informal logic)的機率,就跟講到冰島傳說一樣高。當然,也不會有人提到難題、遊戲和謎語。我相信,這是因為很多時候,聰明的 10 歲小孩輕輕鬆鬆就能打敗老師。

數學科普作家葛登能最不遺餘力探索數學和這些遊戲之間的密切關係。他寫了很多極有吸引力的書,也在《科學美國人》撰寫專欄,而這些都是會讓高中生或大學生感到很刺激的課外讀物(前提是有人指定他們去讀的話)。此外,數學家喬治.波利亞(George Polya)的《怎樣解題》(How to Solve It)和《數學與合情判讀》(Mathematics and Plausible Reasoning),或許也屬於這一類。有一本帶有這些人的文風、但屬於較初階的有趣好書,是瑪瑞琳.伯恩斯(Marilyn Burns)所寫的《我恨數學》(The I Hate Mathematics! Book),書裡有很多啟發性的提示,帶領讀者解題與發想各種奇思異想,是小學數學課本裡罕見的內容。

-----廣告,請繼續往下閱讀-----
圖/envato

有太多教科書仍列出太多人名和術語,就算有說明解析,也很少。比方說,教科書上會說加法是一種結合律運算(associative operation),因為(a + b)+ c=a +(b + c)。但很少人會提到非結合律運算,因此,充其量來說,結合律運算的定義是畫蛇添足。不管是結合律或非結合律,你知道了這些資訊之後要怎麼應用?書上還會介紹到其他術語,但除了用粗體字印在書頁中間的小框框裡,看起來很了不起之外,也沒什麼值得提的理由。這些術語滿足了很多人認為,知識就好比一門普通植物學,每種學問都可以在體系中,找到自己的類別和位置。相比之下,把數學當成有用的工具、思維方式或是獲得樂趣的途徑,在多數小學教育課綱中都是很陌生的概念(即使教科書內容不錯也一樣)。

或許有人會認為,在小學階段,可以用電腦軟體,來幫助學生掌握基本的算數原理及相關應用(應用題、估計等等)。可惜的是,目前可用的程式通常是從教科書上擷取無趣的例行練習,轉化成電腦螢幕版本而已。我不知道有任何軟體可用整合、一致且有效的方法,來教算術與解題應用。

小學階段的數學教學品質普遍不佳,最終必會有人怪罪於老師能力不足,而且對數學沒什麼興趣、或不懂欣賞數學。我認為,這當中有一部分又要歸咎於大專院校的師資培養課程中,很少或根本不強調數學。以我自己的教學經驗來說,我教過的學生中,表現最差的是中學生,而不是大學主修數學的學生。準小學老師的數學背景也很糟,很多時候甚至根本沒有相關的數學教學經歷。

而每所小學聘用一、兩位數學專才,在學校裡每天分別到不同班級輔導(或教授)數學,或許可以解決部分問題。有時我認為,如果大學數學教授和小學老師每年可以交換個幾星期,會是個好方法。同樣的,把主修數學的大學生和研究生交到小學老師手裡,不會造成傷害(事實上,後者或許能從前者身上學到一些東西)。而三、四、五年級的小學生則可以在完全適任的老師教導下,接觸到數學謎題與遊戲,將可大大獲益。

-----廣告,請繼續往下閱讀-----
圖/envato

稍微打個岔,謎題與數學之間很有關係,而且相關性會一直延續到大學與研究階段的數學。當然,把謎題換成幽默也通。我在《數學與幽默》(Mathematics and Humor)書中試著說明,數學和幽默都是某種益智遊戲,與猜謎、解題、遊戲和悖論多有共通之處。

數學和幽默都是把概念組合、拆開再拼回來,然後從中得到樂趣。慣用的手法包括並列、歸納、迭代和倒向(比方說「aixelsyd」就是把「dyslexia」﹝閱讀障礙﹞的字序倒過來)。那麼,如果我放寬這個條件,但緊縮另一個條件會怎樣?某一個領域的概念(像是綁辮子),和另一個看來完全不同領域的概念(如某些幾何圖形的對稱性)有什麼共通點?當然,即便不是數盲,可能也不熟悉數學這個面向,因為你必須要先具備一定程度的數學概念,才可以拿來耍弄。其他像獨創性、不協調感以及精簡的表達,對於數學和幽默來說也都同樣重要。

可能有人說過,因為所受訓練之故,數學家有一種特殊的幽默感。他們往往會接受字面意義,但字面上的解讀又常和標準用法的意義不同,因此很好笑。比方說,哪種運動比賽時要蓋臉?答案是,冰上曲棍球以及痲瘋病人拳擊(按:原文「Which two sports have face-offs」,「face-off」其中一個字面意義為「蓋臉」,而這也是冰上曲棍球常用的術語,意指「爭奪球權」)。他們也很沉溺於歸謬法(reductio ad absurdum),或設定極端前提條件然後做邏輯演練,以及各式各樣的字組遊戲。

如果可以透過小學、中學或大學階段的正式數學教育,或是非正式的數學科普書籍,傳達數學有趣的面向。我認為,數盲就不會像現在這麼普遍。

-----廣告,請繼續往下閱讀-----

——本書摘自《數盲、詐騙與偽科學》,2023 年 11 月,大牌出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

大牌出版.出版大牌_96
3 篇文章 ・ 0 位粉絲
閱讀的大牌不侷限於單一領域, 視野寬廣,知識豐富,思考獨立。

0

1
0

文字

分享

0
1
0
賭博與愛情公式:用數學擬定你的擇偶策略——《數盲、詐騙與偽科學》
大牌出版.出版大牌_96
・2024/01/06 ・2486字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

理解期望值,有助於分析賭場裡的大部分賭局,以及美國中西部和英國的嘉年華會中,常有人玩、但一般人比較不熟悉的賭法:骰子擲好運(chuck-a-luck)。

招攬人來玩「骰子擲好運」的說詞極具說服力:你從 1 到 6 挑一個號碼,莊家一次擲三顆骰子,如果三個骰子都擲出你挑的號碼,莊家付你 3 美元。要是三個骰子裡出現兩個你挑的號碼,莊家付你 2 美元。

假如三個骰子裡只出現一個你挑的號碼,莊家付你 1 美元。如果你挑的號碼一個也沒有出現,那你要付莊家 1 美元。賽局用三個不同的骰子,你有三次機會贏,而且,有時候你還不只贏 1 美元,最多也不過輸 1 美元。

我們可以套用名主持人瓊安.李維絲(Joan Rivers)的名言(按:她的名言是:「我們能聊一聊嗎?」),問一句:「我們能算一算嗎?」(如果你寧願不算,可以跳過這一節。)不管你選哪個號碼,贏的機率顯然都一樣。不過,為了讓計算更明確易懂,假設你永遠都選 4。骰子是獨立的,三個骰子都出現 4 點的機率是 1/6×1/6×1/6=1/216,你約有 1/216 的機率會贏得 3 美元。

-----廣告,請繼續往下閱讀-----

僅有兩個骰子出現 4 點的機率,會難算一點。但你可以使用第 1 章提到的二項機率分布,我會在這裡再導一遍。三個骰子中出現兩個 4,有三種彼此互斥的情況:X44、4X4 或 44X,其中 X 代表任何非 4 的點數。而第一種的機率是 5/6×1/6×1/6=5/216,第二種和第三種的結果也是這樣。三者相加,可得出三個骰子裡出現兩個 4 點的機率為 15/216,你有這樣的機率會贏得 2 美元。

圖/envato

同樣的,要算出三個骰子裡只出現一個 4 點的機率,也是要將事件分解成三種互斥的情況。得出 4XX 的機率為 1/6×5/6×5/6=25/216,得到 X4X 和 XX4 的機率亦同,三者相加,得出 75/216。這是三個骰子裡僅出現一個 4 點的機率,因此也是你贏得 1 美元的機率。

要計算擲三個骰子都沒有出現 4 點的機率,我們只要算出剩下的機率是多少即可。算法是用 1(或是100%)減去(1/216 +15/216 + 75/216),得出的答案是 125/216。所以,平均而言,你每玩 216 次骰子擲好運,就有 125 次要輸 1 美元。

這樣一來,就可以算出你贏的期望值($3×1/216)+($2×15/216)+($1×75/216)+(–$1×125/216)=$(–17/216)=–$0.08。平均來說,你每玩一次這個看起來很有吸引力的賭局,大概就要輸掉 8 美分。

-----廣告,請繼續往下閱讀-----

尋找愛情,有公式?

面對愛情,有人從感性出發,有人以理性去愛。兩種單獨運作時顯然效果都不太好,但加起來⋯⋯也不是很妙。不過,如果善用兩者,成功的機率可能還是大一些。回想舊愛,憑感性去愛的人很可能悲嘆錯失的良緣,並認為自己以後再也不會這麼愛一個人了。而用比較冷靜的態度去愛的人,很可能會對以下的機率結果感興趣。

在我們的模型中,假設女主角——就叫她香桃吧(按:在希臘神話中,香桃木﹝Myrtle﹞是愛神阿芙蘿黛蒂﹝Aphrodite﹞的代表植物,象徵愛與美)有理由相信,在她的「約會生涯」中,會遇到 N 個可能成為配偶的人。對某些女性來說,N 可能等於 2;對另一些人來說,N 也許是 200。香桃思考的問題是:到了什麼時候我就應該接受X先生,不管在他之後可能有某些追求者比他「更好」?我們也假設她是一次遇見一個人,有能力判斷她遇到的人是否適合她,以及,一旦她拒絕了某個人之後,此人就永遠出局。

為了便於說明,假設香桃到目前為止已經見過 6 位男士,她對這些人的排序如下:3—5—1—6—2—4。這是指,在她約過會的這 6 人中,她對見到的第一人的喜歡程度排第 3 名,對第二人的喜歡程度排第 5 名,最喜歡第三個人,以此類推。如果她見了第七個人,她對此人的喜歡程度超過其他人,但第三人仍穩居寶座,那她的更新排序就會變成 4—6—1—7—3—5—2。每見過一個人,她就更新追求者的相對排序。她在想,到底要用什麼樣的規則擇偶,才能讓她最有機會從預估的 N 位追求者中,選出最好的。

圖/envato

要得出最好的策略,要善用條件機率(我們會在下一章介紹條件機率)和一點微積分,但策略本身講起來很簡單。如果有某個人比過去的對象都好,且讓我們把此人稱為真命天子。如果香桃打算和 N 個人碰面,她大概需要拒絕前面的 37%,之後真命天子出現時(如果有的話),就接受。

-----廣告,請繼續往下閱讀-----

舉例來說,假設香桃不是太有魅力,她很可能只會遇見 4 個合格的追求者。我們進一步假設,這 4 個人與她相見的順序,是 24 種可能性中的任何一種(24=4×3×2×1)。

由於 N=4,37% 策略在這個例子中不夠清楚(無法對應到整數),而 37% 介於 25% 與 50% 之間,因此有兩套對應的最佳策略如下:

(A)拒絕第一個對象(4×25%=1),接受後來最佳的對象。

(B)拒絕前兩名追求者(4×50%=2),接受後來最好的求愛者。

如果採取A策略,香桃會在 24 種可能性中的 11 種,選到最好的追求者。採取 B 策略的話,會在 24 種可能性中的 10 種裡擇偶成功。

以下列出所有序列,如同前述,1 代表香桃最偏好的追求者,2 代表她的次佳選擇,以此類推。因此,3—2—1—4 代表她先遇見第三選擇,再來遇見第二選擇,第三次遇到最佳選擇,最後則遇到下下之選。序列後面標示的 A 或 B,代表在這些情況下,採取 A 策略或 B 策略能讓她選到真命天子。

-----廣告,請繼續往下閱讀-----

1234;1243;1324;1342;1423;1432;2134(A);2143(A);2314(A, B);2341(A, B);2413(A, B);2431(A, B);3124(A);3142(A);3214(B);3241(B);3412(A, B);3421;4123(A);4132(A);4213(B);4231(B);4312(B);4321

如果香桃很有魅力,預期可以遇見 25 位追求者,那她的策略是要拒絕前 9 位追求者(25 的 37% 約為 9),接受之後出現的最好對象。我們也可以用類似的表來驗證,但是這個表會變得很龐雜,因此,最好的策略就是接受通用證明。(不用多說,如果要找伴的人是男士而非女士,同樣的分析也成立。)如果 N 的數值很大,那麼,香桃遵循這套 37% 法則擇偶的成功率也約略是 37%。接下來的部分就比較難了:要如何和真命天子相伴相守。話說回來,這個 37% 法則數學模型也衍生出許多版本,其中加上了更合理的戀愛限制條件。

——本書摘自《數盲、詐騙與偽科學》,2023 年 11 月,大牌出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

大牌出版.出版大牌_96
3 篇文章 ・ 0 位粉絲
閱讀的大牌不侷限於單一領域, 視野寬廣,知識豐富,思考獨立。