1

0
0

文字

分享

1
0
0

大嗓門小青蛙

陸子鈞
・2011/05/03 ・395字 ・閱讀時間少於 1 分鐘 ・SR值 379 ・三年級

在舊世界大陸最小的青蛙有個大嗓門,這也是唯一讓科學家發現牠的辦法。夜暮低垂後,雄蛙開始發出震耳的合唱,在下午6:45到九點間達到高峰。這個在帛琉思拉彼山(Gunung Serapi)發現的青蛙住在豬龍草(Nepenthes)的「瓶罐」裡,因此被命名為豬龍草小雨蛙(Microhyla nepenthicola),體長只有10.6 到 12.8 mm,但雌蛙則約有兩倍大。牠們很小,有很高的表面積比,這意味著水份散失很快,所以牠們只能在潮溼的豬龍草附近交配及覓食。和一般的蛙類相比,豬龍草小雨蛙的第一趾較短,蹼也較少,這可能有助於讓他們在豬龍草蠟質的表面行動。然而,牠們不是世界最小的青蛙,目前最世界最小的兩種青蛙存在新世界大陸,約9.8mm長,各是存在巴西的gold frog和古巴的Monte Iberia dwarf frog。

資料來源:ScienceShot: The Smallest Frog in the Old World [25 August 2010]

相關文章:PanSci: 住在豬龍草裡的蝙蝠

文章難易度
所有討論 1
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
絕世單身青蛙,歷經十年終於成功脫單!但滅絕危機解除了嗎?
PanSci_96
・2019/02/14 ・1459字 ・閱讀時間約 3 分鐘 ・SR值 520 ・七年級

  • 文/文詠萱

編按:單身長達 10 年的「世上最孤單青蛙」都已經找到伴侶,那__呢?

最後一隻野生的雄性瑟溫斯水蛙於 2008 年發現,由於擔心該品種滅絕,保育團隊甚至建立了網站,替「蛙」尋找伴侶。圖/pixabay

一人一點錢,救救單身蛙

2008 年時,科學家們在野外發現了一隻瑟溫卡斯水蛙 (Sehuencas water frog,Telmatobius yuracare),他們將之命名為「羅密歐」,並養在玻利維亞科恰班巴自然歷史博物館 (Bolivia’s Cochabamba Natural History Museum) 的水族館裡。

沒想到,整整 10 年過去了,在 2008~2019 年間,人們居然都沒有在牠的棲息地發現其他野生個體。這讓玻利維亞的環境保護人員非常緊張,因為這很可能代表羅密歐是世界上最後一隻瑟溫卡斯水蛙,假設牠翹辮子了,那這種青蛙也就要絕種了。更慘的是,這種青蛙的平均壽命為 15 年,要是不加緊腳步,可能就來不及了。

為了避免絕種危機,保育人員們積極地在野外尋找雌性的瑟溫卡斯水蛙,同時建立了人工繁殖計畫。但這還不夠,保育團隊甚至在 2018 年為羅密歐建立了一個個人網站,為牠填寫了詳細的交友檔案,並發起募款活動,希望能喚起大眾的注意,讓民眾、科學家、探險家能在野外棲地尋找雌性水蛙個體,讓羅密歐脫離滅絕危機,繼續繁衍下去。

-----廣告,請繼續往下閱讀-----

擁有品味的絕世單身好青蛙,不約嗎?圖/giphy

除了上述種種,保育人員還做了許多努力,包括:訪問玻利維亞雲霧森林 (Bolivian cloud forest) 中曾見過此物種的居民,以建立瑟溫卡斯水蛙的足跡地圖;研究棲地水體中物種環境 DNA 及其滅絕原因,並找出方法保護那些留在野外的物種;建立該地區水蛙生物資料庫等等。

真命天女出現啦!

令人慶幸的是,2019 年 1 月,一支探險隊在探索玻利維亞雲霧森林時,竟在溪流中發現了五隻瑟溫卡斯水蛙!分別為三隻雌蛙、兩隻雄蛙,其中一隻雌蛙更正值生育年紀。經過多年等待,羅密歐終於找到他的「茱麗葉」了嗚嗚。

羅密歐(左)能找到另一半(右為茱麗葉)真是可喜可賀、普天同慶、皆大歡喜呀!圖/BBC

-----廣告,請繼續往下閱讀-----

探險隊領導者 Teresa Camacho Badani 對於兩者間的未來十分樂觀,她深信異性相吸的道理。「羅密歐的個性有點害羞,他目前相當健康,喜歡吃東西;而這隻茱麗葉的個性截然不同,她精力充沛,時常游泳,有時候會試圖逃跑。」

危機未解除,兩棲動物陷困境

這些被帶回來的水蛙們將會進行健康檢查,以防止弧菌、真菌傳染病,當然也要讓羅密歐與茱麗葉見面,想辦法創造宇宙繼起之生命,繁衍出未來可以回到自然棲息地的後代。

在過去,瑟溫卡斯水蛙曾在玻利維亞雲霧森林內的溪流、河流與池塘等不到 10 個地點被發現。這些棲地曾有豐富的水生蛙生態,然而,目前玻利維亞、厄瓜多及秘魯的水蛙正在迅速減少,牠們面臨到各種威脅,包含氣候變遷、棲地破壞以及外來種鱒魚等。

全球野生動物保護組織的 Chris Jordan 表示:「將動物帶回圈養是有風險的,但由於野外青蛙數量太少,目前無法長期確保會持續繁殖,不得不帶回人工繁殖。」相關團隊表示會盡力恢復玻利維亞森林特有種青蛙,並將相關寶貴經驗提供給目前正面臨絕種的類似物種。

-----廣告,請繼續往下閱讀-----

羅密歐找伴的故事引起了人們對於兩生類動物困境的關注,雖然故事有了好的發展,但人員並未在找到茱麗葉的溪流附近發現其他水蛙,這讓他們對於生態系的健康仍然十分擔憂。

參考資料

0

4
0

文字

分享

0
4
0
台灣的「博比特蟲」 ──躲藏在潮間帶的磯沙蠶
活躍星系核_96
・2017/11/20 ・3685字 ・閱讀時間約 7 分鐘 ・SR值 528 ・七年級

-----廣告,請繼續往下閱讀-----

文/李彥輝(生態環境調查工作者)

「海底陷阱」博比特蟲(Bobbit worm)

博比特蟲 (Eunice aphroditois) 圖片來源:Eunice aphroditois @wiki 

提到博比特蟲(Bobbit worm),想必大家會想到網路上流傳的影片:一種疵牙裂嘴的潛伏在海底沙中的蠕蟲,當哪個倒楣鬼路過時,就猛然伸出去咬住拖到洞穴裡。

網路上的影片或文章介紹博比特蟲時,也會有簡單介紹:這是一種環節動物門(Annelida)、多毛綱(Polychaeta)、磯沙蠶屬(Eunice)、學名為 Eunice aphroditois 的多毛蟲,生活在印度­洋、太平洋、大西洋較溫暖的海域,通常約 1 公尺長、2.5 公分寬,是一種體型很大的磯沙蠶

-----廣告,請繼續往下閱讀-----

事實上,除了 博比特蟲(Eunice aphroditois),還有其他大型的磯沙蠶,文獻紀錄裡面,有發現 5 毫米的種類,也有長至 6 公尺的紀錄;此外,雖然磯沙蠶大多為 100 至 200 節,但也有 35 節與 1500 節的兩個極端的紀錄。

目前全世界的磯沙蠶屬共有 259 種,廣泛分布於潮間帶到深海的海洋底棲環境,特別是熱帶淺海的珊瑚礁岩等含石灰質的環境。在生態地位上,被視為造成生物侵蝕作用(bioerosion)[註 1] 的主要生物種類之一,通常是鑿洞生物演替(succession of borers)[註 2] 趨於成熟之後的常見物種。

提到這邊,台灣有沒有像博比特蟲這樣子的磯沙蠶呢?台灣有多少種磯沙蠶呢?答案是有的,台灣目前發現有 6 種,2 種為新紀錄種、4 種為世界新種,其中有大型的磯沙蠶還帶著「番刀」呢!以下就一一的介紹台灣的磯沙蠶。

台灣的磯沙蠶

1. 節鬚磯沙蠶Eunice annulicirrata Miura, 1986)

節鬚磯沙蠶(1.0x 4X -5mm)。 圖片來源:李彥輝

-----廣告,請繼續往下閱讀-----

按照學名直翻中文,稱為節鬚磯沙蠶,最明顯的是牠擁有長且像念珠形狀一節一節的觸角,擁有梳狀的鰓(pectinate branchiae),因為鰓絲(branchial filament)很多,看起來就像是一把把長梳子。牠的體型不大,目前已發現最大的個體約 5 公分長、0.3 公分寬,不過是不完整的標本,真正的長度未知。

世界上有發現節鬚磯沙蠶的地方,目前是日本的相模灣到種子島、父島,從潮間帶到 170 公尺深的亞潮帶(潮間帶低潮線以下一直到 20 至 30 公尺深的海域)都有分布。而台灣目前採集到標本的地方是新北市的蚊子坑、屏東縣的後壁湖與核三廠入水口。此外,筆者檢視小琉球海洋志工隊清理上來的海洋垃圾時,也發現了這種磯沙蠶。

2. 扁磯沙蠶Eunice dilatata Grube, 1877)

扁磯沙蠶(20mm)。圖片來源:李彥輝

直接翻譯學名的話,稱為扁磯沙蠶,最明顯的特徵就是身體後段體型是扁平的,像是被卡車輾過一樣。牠的觸角形狀像手指,有不明顯的分節;也有梳狀的鰓,不過比較短,鰓絲數目少,看起來像是金龜子鰓葉狀的觸角,屬於體型較大的磯沙蠶,目前已發現最大的個體約 24 公分長、0.5 公分寬。

-----廣告,請繼續往下閱讀-----

世界上目前有發現的地方是南半球的帝汶島,北半球日本南部的天草,東南方的父島、母島,西南方的種子島、與論島、沖繩、西表島,以潮間帶為主要分布區。台灣採集到標本的地方則有屏東的萬里桐、核三廠入水口、墾丁,以及台東的基翬和花蓮的石梯坪。

3. 基翬磯沙蠶Eunice jihueiensis Hsueh & Li, 2014)

基翬磯沙蠶(4x 2.0X-1mm)。圖片來源:李彥輝

這個物種最早被發現的地點在台東的基翬,因此學名也以發現的地點命名。牠的觸角是指狀的,但是沒有分節,像香腸一樣,並有單一的鰓絲,屬於小型的磯沙蠶,個體長度約 2 公分、寬 0.8 公分,發現的環境是珊瑚礁與藻礁的潮間帶區域。看到這邊想必各位會納悶,介紹得這麼簡單,這種磯沙蠶有甚麼特別的?為什麼會被認為是新種?

在提到這種磯沙蠶特別的地方之前,先談到在磯沙蠶屬的分類鑑定時,會按照鰓的分布特徵、跟一種稱為亞足刺鉤(subacicular hook)的構造,用顏色跟末端的型態做為分群(Group),以便可快速的比對相似的種類。而基翬磯沙蠶按照上述的分群方式去比對,發現座落在沒有近似種可以比對的群,所以說,基翬磯沙蠶特別的地方,是鰓的分佈狀況跟亞足刺鉤(subacicular hook)型態結合起來的特徵,是世界上未發現的種類。

-----廣告,請繼續往下閱讀-----

4. 網紋磯沙蠶Eunice reticulate Hsueh & Li, 2014)

網紋磯沙蠶(4x 0.8X-5mm)。 圖片來源:李彥輝

這種磯沙蠶特別的地方在於背側有蛇紋狀、具金屬光澤的花紋,這個特徵在全世界已知的種類上都沒有描述到,所以稱為網紋磯沙蠶,不過這個花紋是隨著磯沙蠶長大、體型逐漸發育才越來越明顯的。牠的觸角形狀像手指,有不明顯的分節。這種磯沙蠶也有像長梳子的鰓,是體型較大的種類,個體長度約 26 公分、寬 0.6 公分。發現的環境是珊瑚礁與藻礁的潮間帶區域。

台灣採集到標本的地方包括新北市的蚊子坑、屏東核三廠入水口、台東的基翬。

5. 石門磯沙蠶Eunice shihmenensis Hsueh & Li, 2014)

石門磯沙蠶(4x 2.5X-1mm)。 圖片來源:李彥輝

-----廣告,請繼續往下閱讀-----

這個物種首次被發現的地點為新北市的石門,因此以發現的地點命名。牠是一種小型的磯沙蠶,長度只有 1.2 公分,最寬約 0.09 公分。牠的觸角成棒狀,像肥短的鑫鑫腸。牠最大的特徵是沒有鰓,全世界已知的種類共有 9 種是沒有鰓的,這種是第 10 種。發現地點在潮間帶的藻礁環境。

6. 達悟磯沙蠶Eunice taoi Hsueh & Li, 2014)

達悟磯沙蠶(50mm)。 圖片來源:李彥輝

這是一種大型的磯沙蠶,長度有 56 公分,0.4 公分寬,牠的體型是目前台灣已發現的磯沙蠶種類裡面最大的,有 600 多節的紀錄,可以說是台灣的博比特蟲了。牠的觸角尖細狀沒有分節,有梳狀的鰓,不過比較短,鰓絲數目少。牠最特別的地方,是具有一種稱為複合刺形剛毛(compound spinigers)的構造,全世界已知的種類原只有 3 種,這是第 4 種,而此一複合刺形剛毛的外觀,就像是有長柄的原住民番刀。

達悟磯沙蠶右 25 疣足上的複合刺狀剛毛(1000X-0.05mm) 圖片來源:李彥輝

-----廣告,請繼續往下閱讀-----

在網路上流傳影片裡的博比特蟲,都是住在沙地裡面,但是這個物種不僅是住在珊瑚礁或藻礁等環境,還會在裡面鑽洞,構築皮質(leathery)的蟲管,居住在裡面。達悟磯沙蠶的蟲管會延伸出礁岩表面數公分長,甚至可達 30 到 40 公分,上面往往長滿藻類,以致外觀常常看不出來是蟲管。

達悟磯沙蠶的蟲管。 圖片來源:李彥輝

每根蟲管的主幹挺直,形狀有點波浪狀,有互生的開口位於每個波鋒處。有些蟲管也發現在東部的砂岩與頁岩上,可從潮間帶分布至亞潮帶約 5-7 公尺深。台灣採集到此物種的標本的地方,有屏東萬里桐、台東的伽路蘭、基翬、衫原,花蓮石梯坪。此外,筆者在花蓮港外海潛水的時候,在消波塊上面也有發現這種蟲管,在小琉球潮間帶跟浮潛的時候也有發現,可以說是廣泛分布在台東跟台灣南部的生物礁環境。

最後談談為這個物種命名時發生的小插曲,筆者原本想將這種命名為「台灣磯沙蠶」,原本滿心期待的可以用「台灣」( taiwanensis)來命名新物種,可是在投稿審核的階段,對方來信說「台灣」這個種名已經有人使用在特磯沙蠶屬(Euniphysa)的物種上了,由於與磯沙蠶屬形態特徵很相似,未來有可能將特磯沙蠶屬歸類在磯沙蠶屬裡面,所以建議我們再取新的名字。收到這樣的回覆,心裡正覺得奇怪,當初在做文獻回顧的時候,台灣明明沒人研究過這個題目啊,結果一查,原來是中國人發表的新物種,因採集地點是在「台灣海峽」而以台灣命名,遇到這種狀況,心裡免不了嘀咕。因此只好另外取名,最後決定採用代表台灣海洋文化的達悟族來命名。另外,雖然筆者還未去過蘭嶼,但是我相信這種磯沙蠶遍布台東的珊瑚礁、藻礁海岸,那裡理應也會有這種磯沙蠶才是。

-----廣告,請繼續往下閱讀-----

生長在易被忽視的海濱 尚待研究的磯沙蠶

台灣目前發現的磯沙蠶大多生長在珊瑚礁、藻礁的環境,但對於牠們的生態習性、以及牠們對珊瑚礁或藻礁影響的研究都還付之闕如。台灣擁有豐富多元的海岸環境,除了潮間帶,還有亞潮帶至深海,以及最近爭議不斷的桃園藻礁,可能都還存有未被發現的種類,值得大家花費心思挖掘跟探索。

*本文轉載自環境資訊中心

注解:

  • 注 1:bioerosion:生物對海洋硬基質的侵蝕作用,可由軟體動物、多毛類、帚蟲動物、海綿、甲殼類、海膽以及魚類所造成的,主要探討對珊瑚礁的影響,作用方式為刮蝕、刻蝕、或是鑿洞。
  • 注 2:succession of borers:探討新形成的死亡珊瑚礁體,鑽孔生物添入的演變過程,主要有微藻、真菌、海綿、軟體動物、多毛蟲、星蟲動物。這些鑽孔生物在死亡的珊瑚礁造成蜂窩狀的結構,使珊瑚礁結構變得脆弱,進而讓更多鑽孔的生物添入,持續影響讓孔洞變大。

參考資料

  1. Day, J.H. (1967) A Monograph on the Polychaeta of Southern Africa, Part I. Errantia. British Museum (Natural History) Publications, London, 374-393 pp.
  2. Fauchald, K. (1986) Revision of the Types and Key to the Species of Eunice (Eunicidae: Polychaeta) from the Australian Region. Records of the Australian Museum, 38, 241-262.
  3. Fauchald, K. (1992) A revision of the genus Eunice (Eunicidae: Polychaeta) based upon type material. Smithsonian Contributions to Zoology, 523, 1-422.
  4. Grube, A.E. (1877) Anneliden-Ausbeute S.M.S. Gazelle. Monatsbericht der Koniglich Preussischer Akademie der Wissenschaften zu Berlin, 1877, 509–554.
  5. Hartman, O. (1944) Polychaetous Annelids. Part V. Eunicea. Allan Hancock Pacific Expeditions, 10, 1-237.
  6. Hsueh, P.W. & Li, Y.H. (2014) New species and new records of eunicids (Polychaeta, Eunicidae) from Taiwan. Zootaxa (3802), 151-172.
  7. Hutchings, P.A. (1986) Biological destruction of coral reefs. Coral Reef, 4, 239-252.
  8. Hutchings, P.A. (2008) Role of polychaetes in bioerosion of coral substrates. Current Developments in Bioerosion, Erlangen Earth Conference Series, 2, 249-264.
  9. Lu, H. & Fauchald, K. (2000) A phylogenetic and biogeographic study of Euniphysa (Eunicidae, Polychaeta). Journal of Natural History, 34, 997-1044.
  10. Eunice aphroditois. Wikimedia
  11. World Register of Marine Species. WoRMS
活躍星系核_96
752 篇文章 ・ 126 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia