0

4
1

文字

分享

0
4
1

全球剩不到 40 隻的魚,魔鬼洞裡的水下藍寶石「魔鱂」——《在大滅絕來臨前》

臉譜出版_96
・2022/02/04 ・3461字 ・閱讀時間約 7 分鐘

一次只產下一顆卵,還會不小心自己吃掉

負責管理假魔鬼洞的珍妮.關姆在遊客中心的遊客止步區有間辦公室。某天早上,我順道去找她聊天。研究行為生物學出身的關姆剛從德州搬到內華達州,並且對她的新工作充滿熱情。

「魔鬼洞是個很特別的地方,」她跟我說,「像我們那天那種進到洞裡的體驗,我曾問過許多人:『會對這件事覺得膩嗎?』我至今還不覺得膩,而且短時間內也不會。」

關姆拿出她的手機。手機上有張魔鱂卵的照片。前天晚上,一名研究設施的工作人員才從水槽中取出這顆魚卵。「今天牠的心臟應該就會跳動了,」她說,「妳有可能看得到。」以顯微鏡接目鏡拍下的這顆魚卵看起來就像顆玻璃珠。

多數的魚種(如鰱魚)每次都會產上千顆魚卵,這是牠們可人工養殖的原因。但魔鱂每次只會產一顆針頭大小的卵,有時候還會被魔鱂自己吃掉。

-----廣告,請繼續往下閱讀-----
被列為次級保育類動物的魔鱂。圖/維基百科

顯微鏡下的心跳

我們開著關姆的卡車抵達魔鬼洞二號,並看到佛包爾人就在魔鱂的育兒室——一個放滿好幾排的水槽、各式各樣的儀器,也聽得見潺潺流水聲的房間。佛包爾找出在獨立的小塑膠盤中漂浮的魚卵,並把魚卵放在顯微鏡下。

這座模擬水池在 2013 年緊急投入保育行列時,最初的挑戰之一就是找出存放魚卵的方式。由於地球上只剩下 35 隻魔鱂,國家公園管理局拒絕冒險提供任一對生育中的魔鱂。他們甚至不願意提供魔鱂魚卵。在幾個月的討論與分析之後,他們終於允許魚類與野生動物管理局在淡季蒐集魚卵,因為此時的魚卵不管在何種情況下,能成功存活的機率都很低。第一個夏天,他們蒐集到一顆魚卵,但卵內的魚最終還是死掉了。接著在冬天,他們蒐集到 42 顆魚卵;其中的 29 顆成功孵化、也長成了成魚。

顯微鏡下的魚卵證明了,雖然有甲蟲侵襲的問題,但水槽中的魔鱂仍然在繁殖。這顆魚卵是從刻意放在假岩棚的小墊子上蒐集而來的;它看起來就像一張劣質的粗毛地毯。「這是個好預兆,」關姆跟我說,「希望其他產在墊子上的魚卵沒有被吃掉。」

這顆蛋確實開始有心跳,也出現了亮紫色的扭動物體——那是初期的有色細胞。就在這顆小魚卵中的小心臟跳動的同時,我也想起了我家孩子的第一張超音波照片,以及另一句艾比的文字:「地球上的所有生物都是親戚。」

-----廣告,請繼續往下閱讀-----

自然與文化是相互糾纏的

關姆跟我說,她每天都想花點時間待在水槽邊,就只是看看牠們。那天下午我跟她一起看魚。魔鱂雖然很小隻,但仍用自己的方式展現耀眼光芒。我注意到在深水區,有一對魚玩在一起,或是在調情。身上有近乎會發光的藍色條紋的牠們協調地繞著彼此旋轉。在雙「魚」舞解散後,其中一條魚劃出一道虹彩線條。

「看著一小群魔鱂在沙漠裡小池子的水中穿梭,能讓人領會驚奇事物中蘊藏的重要意義。」生物學家克里斯多福.諾曼特(Christopher Norment)在他去過真正的魔鬼洞後,寫下了這些文字。我想我的感觸也相同,只是這裡的水是透過管線流入,而且是經過消毒的水。但我納悶的是,看著水槽裡的魚,能得到怎樣的驚奇感?

我們經常能觀察到,自然——或至少是自然的概念——是與文化相互糾纏的。但在與之對立的概念——科技、藝術、意識——出現以前,世界上只有「自然」,所以這樣的分類本身沒有任何意義。也很有可能在「自然」一詞發明的同時,文化早就已經混在其中了。狼在兩千年前被人類馴化,因而也有了新的物種(或按照某些人的說法——亞種),以及兩個新分類:「馴化」與「野生」。當小麥在大約一萬年前被人馴化時,植物世界也一分為二。有些植物變成「作物」,而其他則成為「雜草」。在人類世的美麗新世界裡,這樣的分別與日俱增。

仔細想想「與人共居生物(synanthrope)」 一詞。這類動物雖然還未經馴化,但因為某種原因,牠們在農場或大城市中過得特別好。與人共居生物(這個詞是由希臘文的 syn〔意思是「在一起」〕,以及 anthropos〔人類〕共同組成的)包含浣熊、短嘴鴨、褐鼠(Norway rat)、亞洲鯉魚、家鼠,以及十幾種的蟑螂。郊狼雖然從人類的干擾活動中得利,但會避開人類密集出沒的地方,因此稱為「不與人來往的與人共居生物(misanthropic synanthrope)」。

-----廣告,請繼續往下閱讀-----
與人共居生物雖然還未經馴化,但因為某種原因,牠們在農場或大城市中過得很好。圖/Pexels

在植物界,「次生固有植物(apophyte)指的是在人類移入後,仍生生不息的原生植物;而「人為馴化植物(anthropophyte)」則是被人類引入後,能夠生長繁盛的植物。人為馴化植物還能進一步分為在歐洲人抵達新世界前就已普及的「古代馴化植物(archaeophyte)」,以及在那之後才普及開的「新世代馴化植物(kenophyte)。」

生物多樣性危機下的斯德哥爾摩物種

當然,隨著許多物種因人而得利,就會有更多物種因人而衰落,因此需要列出另一份淒涼的名詞列表。根據負責維護《瀕危物種紅色名錄》(Red List)的國際自然保護聯盟(International Union for Conservation of Nature)的定義,若某個物種在一世紀內的消失機率大於十分之一,就會被列為「易危(vulnerable)」。若某個物種的數量在 10 年內或是時間更長的三個世代內減少超過 50% 的話,就符合「瀕危(endangered)」的標準。若在相同的時間裡,生物的總數消失 80% 以上的話,就會被列為「極危物種 (critically endangered)」。

根據國際自然保護聯盟的定義,植物或動物可能是完全「滅絕」或「野外滅絕(extinct in the wild)」,抑或是「可能滅絕(possibly extinct)」。「可能滅絕」的物種指的是在經「證據的權衡」之下,物種很可能已消失無蹤,但我們還沒辦法完全證實。

目前被列為「可能滅絕」的上百種動物中包含:對馬管鼻蝠(gloomy tubenosedbat)、瓦頓小姐紅疣猴(Miss Waldron’s red colobus)、艾瑪大鼠(Emma’s giantrat)與新喀里多尼亞夜鷹(Caledonian nightjar)。有些物種——比如茂宜島原生的一種圓胖的蜜旋木雀「毛島蜜雀:(po‘ouli)」——雖已不再於地球上行走(或跳躍)了,但牠們仍以細胞的形式被保存在液態氮中。(目前尚未發明出描述這種生命暫停的奇特狀態的詞彙。)

-----廣告,請繼續往下閱讀-----
毛島蜜雀是夏威夷一種絕滅的管舌鳥。圖/維基百科

理解生物多樣性危機的一種簡單方式,就是去接受這件事實。畢竟生物的歷史本來就不時會被大型以及「超超大型」的滅絕事件給打斷。為白堊紀畫下句點的那次衝擊消滅了地球上約 70% 的物種,但沒有人為這些物種落淚,後來地球上也演化出新的物種取代了這些滅絕種。但無論出於何種理由——對生命的熱愛、對上帝造物的關懷、感受到突然襲來的恐懼——人類往往不樂意成為那顆衝擊地球的小行星。

所以我們創造出另一種分類的動物——這些生物先是被我們推向邊緣,然後又被猛力拉回來。有個特殊詞彙可形容這些生物:「仰賴保育(conservation-reliant)」,或有人稱之為「斯德哥爾摩物種(Stockholm species)」,因為牠們全然仰賴加害者才得以生存。

魔鱂就是經典的斯德哥爾摩物種。在 60 年代洞穴裡的水位下降時,是國家公園管理局裝設的假岩棚與燈泡讓牠們得以存活。當法院禁止在洞穴周圍抽水之後,水位雖然緩慢上升了,但蓄水層從未完全恢復原狀。時至今日,洞穴裡的水位仍比應有的水位低了約 30 公分。這為池中的生態系帶來轉變,也讓食物網開始瓦解。從 2006 年起,國家公園管理局還會派出魚兒的外送員,提供豐年蝦(brine shrimp)與仙女蝦(fairyshrimp)等補充餐點。

而生活在十幾萬加侖水槽中的魔鱂,若沒有關姆、法包爾與其他魚類專家的援助,根本連一季也活不過。水槽裡的環境盡可 能去模擬自然狀態,只除了要避開讓原始版魔鬼洞變得脆弱的那種狀態。這個模擬水池能夠不受人類行為的干擾,是因為這裡是全然人造的。

-----廣告,請繼續往下閱讀-----

目前沒有明確數據指出,有多少物種跟魔鱂一樣「仰賴保育」,但少說也有幾千種。再者,仰賴的形式也十分多元,除了補充食物與圈養繁殖之外,還包含雙重下蛋(double-clutching)、復育(headstarting)、圈養(enclosure)、放養(exclosure)、策略燒除(managed burn)、提供微量礦物質(chelation)、引導遷徙(guided migration)、人工授粉(hand-pollination)、人工授精(artificial insemination)、捕食者迴避訓練(predatoravoidancetraining)以及制約味覺嫌惡(conditioned taste aversion)。每一年這個列表都會變長。「古法施於古人,新法施於新人。」梭羅評道。

——本文摘自《 在大滅絕來臨前:人類能否逆轉自然浩劫?》,2022 年 1 月,臉譜出版
文章難易度
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

1
2

文字

分享

1
1
2
遊蕩犬貓攻擊保育類動物!怎麼防止外來入侵種和原生種的資源爭奪?動保與野保之間能取得平衡嗎?
PanSci_96
・2023/11/12 ・6100字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

你能接受移除外來種嗎?

但要是今天移除的是狗狗好朋友跟貓貓主子呢?

泛糰們知道嗎?5 月 11 日晚間 6 點,有一隻失親的小石虎被發現,發現的民眾還傳送了小石虎健康的萌照給縣府人員。但就在 2 個小時後,卻被送到特生中心的野生動物急救站,確定小石虎已經死了,死因是遭到遊蕩貓的攻擊,頸部大量出血而死。

這是台灣僅剩下約 400-600 隻的野生石虎族群的生活日常。

-----廣告,請繼續往下閱讀-----

不僅如此,進入急救站的保育類穿山甲,也有高達五成是因為被遊蕩犬咬傷了尾巴。而且可別以為遊蕩犬只會欺負小動物,前陣子陽明山有遊客拍到遊蕩犬群起圍攻水鹿的畫面。壽山附近的山羌,更因牠們而出現區域性的滅絕危機。

這死傷越來越慘重的尾巴衝突,你說怎麼辦?

台灣土狗不是原生種嗎?

小等一下 (Sió-tán–tsi̍t-ē)!為什麼講的好像狗不是台灣原生動物一樣?我們不是有台灣土狗這個品種嗎?

其實啊,這只是名字衍生的誤會,全世界沒有一個地方的「狗」是原生種。因為早在兩三萬年前,人類就已經從灰狼馴化出「狗」這個物種,無論在哪個生態系,牠都屬於外來種。例如澳洲野犬也是 3000 年前被人類帶到澳洲的,台灣本來就沒有原生犬科動物,因此「烏狗 (oo-káu)」不能鳩佔鵲巢說自己是本土原生種。既然不是原生動物,那麼流浪狗算是怎樣的存在呢?

-----廣告,請繼續往下閱讀-----

科學家其實會用「野化動物」來形容這些並非野生動物,也非寵物的動物們。也就是原本馴養的動物,脫離人類飼養環境後,在野外棲息並且繁衍的情況,像是被棄養的狗狗。除此之外,在台灣鄉間常見「放養」的狗兒們,基本上吃飯以外的時間都在野外淺山環境晃蕩,我們統稱叫作「遊蕩犬隻」。這個數量一大,對於野生動物就造成不小的威脅。包括咬死咬傷野生動物、競爭野外棲息地、傳播疾病等等。

根據 2017 年在《Biological Conservation》所發表的研究,遊蕩犬已成為全球至少 188 種瀕臨絕種動物的主要威脅。而在台灣 2022 年農業部的統計數據顯示,全國遊蕩犬估計有 15 萬 9697 隻,牠們的數量超過了台灣任何原生食肉哺乳動物。特生中心的林育秀研究員指出,或許只有台灣鼬獾的數量能與遊蕩犬相提並論。

雖然遊蕩犬滿街跑,但看起來狗狗們都融入生活中,頭好壯壯沒什麼問題嘛!如果你這樣講,那就大錯特錯了。遊蕩犬在野外環境要活下去,就得跟野生生物爭奪資源,並面對很多生存困境。根據清華大學的顏士清助理教授 2016 到 2018 年在陽明山國家公園進行的研究,在那個區域裡的遊蕩犬普遍存在不同程度的血檢異常。大約一到兩成具有斷腳或皮膚病,導致牠們每年的存活率不到一半。而許多跨物種的傳染病如:焦蟲病、犬瘟熱、犬小病毒等,更是同時危害遊蕩犬跟野生動物們,更別提可能有狂犬病。

圖/pexels

所以其實我們必須認知一個前提,那就是遊蕩動物在外頭並不是天堂,毛孩子們應該要有個家。

-----廣告,請繼續往下閱讀-----

另一方面儘管犬貓在國際上是被國際自然保育聯盟(IUCN)認定的外來入侵種,但我們台灣是一直到去年 2022 年,在中研院的台灣物種名錄上才將犬貓從「外來種」更新為「外來入侵種」,和埃及聖䴉、綠鬣蜥並列。

外來種與外來入侵種

外來種跟外來入侵種有怎樣的差別呢?一般外來種就像是開心農場裡的水豚、實驗室的白老鼠,這些雖然是人類特意引入的物種,但在管理之下對當地生態的影響相對可控,就算是那隻跑出來名揚一時的東非狒狒也不例外。這之中最大的差異是:外來入侵種會捕獵原生動物或瓜分其生存資源,對原生生態造成負面影響。而名列為外來入侵種的遊蕩犬,不僅嚴重影響石虎、水鹿、穿山甲等野生動物的生存,還有可能會增加野外傳播疾病的速率。

顏士清老師 2019 年發表在《Scientific Reports》的研究指出,大台北地區包括陽明山國家公園遊蕩犬的出現,確實導致了野生動物的多樣性下降。穿山甲、麝香貓、山羌、山豬、鼬獾、白鼻心跟野兔等動物為了生存,都必須避免與遊蕩犬接觸。這這這……我們該怎麼處理呢?

早在十多年前,台灣許多動保組織就引入了一種族群控制方式,NT……啊不是,我是說 TNvR。TNvR 是英文 Trap、Neuter、Vaccine、Return 四個字的縮寫,目的是透過降低母狗的生育率來處理遊蕩犬過多的問題。TNvR 的操作手法是先用籠子跟罐頭吸引遊蕩犬進入,以母狗為主,進行輸卵管或卵巢移除手術結紮並且施打疫苗、剪耳標記後再回置原棲地。

-----廣告,請繼續往下閱讀-----

先等等,既然目的是減少遊蕩犬,都捕捉了為什麼要放回原地呢?

原來第四步的 Return 是利用犬類強烈的領域性,回置後可以有效阻止其他遊蕩犬進入占地盤,避免「真空效應」的出現——也就是流浪犬貓被移除後,周遭區域的其他流浪動物看中這個地盤,吸引而來填補空缺。

Return 是為避免「真空效應」的出現——也就是流浪犬貓被移除後,周圍出現更多流浪動物來填補空缺。圖/YouTube

印度齋浦爾市是一個經常被拿來當作 TNvR 成功案例,從 1994 年到 2002 年 長達八年的時間,總計 TNvR 了近兩萬五千隻的遊蕩犬。印度在此計畫中幫 65% 的母狗進行了絕育和疫苗接種手術,雖然最終族群的數量只下降了 28%,但當地人類狂犬病例下降到零,蔚為美談。除此之外,在泰國曼谷、伊朗克爾曼市也都有正面的案例。只可惜,不是每個案例都是成功的。也有不少 TNvR 經過了十多年的施行還是宣告失敗,例如被認定是台灣 TNvR 示範區——台南漁光島。

原本島上有 80 多隻遊蕩犬,2011 年在市府幫助之下開始啟動 TNvR 計畫,經過 4 年時間的努力,到了 2015 年,漁光島的流浪犬族群已經減少到 50 隻以下了,而且剩餘的犬隻大多數都已經經過 TNvR 的處置,不會在當地繼續繁殖。但好景不常,後續這個「狗島」的浪犬回置印象,反而變成了飼主暗地棄養犬的地點。而這個「人犬衝突」最終還是由當地居民承受,造成攻擊家畜、追逐車輛、影響用路人等等問題,居民不勝其擾。

-----廣告,請繼續往下閱讀-----

過多的愛是一種負擔?

不過呢,對科學家來說,最關切的就是可再現性。因此非得問的問題是:「為什麼台灣施行 TNvR 的場域都沒有成功,遊蕩犬問題到現在越演越烈呢?」人類沒辦法讓遊蕩犬少子化原因不是遊蕩犬不用擔心高房價,其實答案就在地理課本之中。

如果你還有記憶的話,高中地理有教過人口變化的四大要素:出生、死亡、移入、移出。我們把這個模型放到漁光島,發現透過 TNvR 可以降低出生率,因為漁光島是一個沙洲島,除了漁光大橋之外不太受到外界干擾,等同是一個生態學上的「封閉族群」。但若放到台北市、新竹市、台中市這些四通八達的都會, TNvR 的努力成果就很有限。因為難以阻絕外來遊蕩犬跟棄養犬遷入,即使降低出生率也沒用。

換言之,TNvR 不是單一解方,必須同時搭配小族群且封閉的場域才容易有成果。只要一直有新的移入族群,那麼想要利用無生殖力的絕育犬降低遊蕩的數量,就只是緣木求魚,結果來的都是狗。而且這些地方還面對另一個挑戰——人類的愛。被稱為愛爸愛媽的民眾真的很有愛,這些熱心民眾覺得流浪動物很可憐,因此每天定時定量地提供飼料或廚餘。不過我們若是希望流浪動物越少越好,可得好好參考在《美國獸醫學會期刊》發表的這篇研究

圖/pexels

當人類對城市中的流浪貓進行 TNR 並持續供應食物,貓貓的數量不僅沒有減少,反而增加了。這主要是因為穩定的食物供應使得貓貓覓食的壓力消失了,反而吸引附近周圍的新貓移入。這也意味 TNR 所稱的「真空效應」其實取決於食物多寡,並不是回置動物就可以阻擋周圍流浪動物移入。雖然部分絕育母貓無法生寶寶,但其他未絕育母貓的繁殖競爭壓力反而變小,加上有充足營養來哺育,新生幼貓與成貓的死亡率下降,結果最後就是流浪貓變得更多。

-----廣告,請繼續往下閱讀-----

絕育方案花了好大的力氣想要把「出生」這一個新貓入口給堵上,但餵食卻是一次達成「移入提升、移出減少、出生提升、死亡降低」,換言之只要人類餵食,所有努力都將付諸流水。少貓狗化大失敗,最大的問題是:我們對浪浪的愛心,將直接轉變為對野生動物的殘忍;讓牠們更有力氣也更有本錢和野生動物競爭,讓野生動物更容易遭到攻擊。這也是為何野保人士希望能夠禁止餵食的主因。

動保和野保究竟在吵什麼?

在這個複雜的議題戰場中,看似野保和動保兩派一直在互相較勁。野保人士訴諸科學面和野生動物滅絕的急迫,主張 TNvR 無效,回置和餵食遊蕩犬都只會傷害野生動物,因此偏向移除或禁止餵食的路線,甚至認為結紮後回置無助於解決野生動物領域被侵犯的根本問題,不如重新考慮對付外來入侵種的標準 SOP——「撲殺」;而動保人士則主張毛孩是人類的責任,浪浪在外面遊蕩不是牠們願意的,認同繼續強化 TNvR 的範圍和乾淨餵食,也不支持移除或十二夜的安樂死悲劇再次發生,反過來指責野保人士殘忍無情。

但撇開二元對立的框架,兩方其實都是關心動物的人。多年來不同路線的爭論讓情況完全膠著,雙方越來越極端化,背後根本原因是——台灣沒有進行飼主責任教育或寵物管制,導致遊蕩犬貓持續增加。加上這個議題位於野保法和動保法之間的灰色地帶,既有的管理措施執行力也不足,例如:許多風景區禁止餵食野生動物和遊蕩動物的告示牌形同虛設、許多養育寵物的飼主沒有登記也沒有打晶片,最令人為難的是,就算政府想出面,也只能對著無米之炊瞪著眼嘆氣。

電影《十二夜》海報。圖/wikimedia

最知名的例子就是十年前的電影《十二夜》,上映之後轟動一時,政府順應輿論和動保團體的倡議,從 2017 年開始對遊蕩犬採取了收容零撲殺的立場,廢除掉 12 夜——也就是公告滿 12 天之後未有人領養或是收養,就採取人道處理。由於對於「安樂死」的污名化,使得收容所執行安樂死變得很敏感。儘管面對重病重傷或是嚴重傳染性疾病,很多收容所也不太敢真正執行安樂死,只好任其「自然死亡」。包含台北市動物之家在內,全台有 8 個收容所超額收容。骨牌效應下,就算想移置石虎生態熱區的遊蕩犬,也沒地方放。而因為安樂死這三字背負的原罪實在太重,即使有些動保團體已經意識到這樣可怕的收容環境,恐怕比路殺或是野外移除還要「不人道」,卻也無計可施。

-----廣告,請繼續往下閱讀-----

最後我們要來談談政府的角色,自從石虎永哥被遊蕩犬殺死,農業部正準備推動「台灣原生種野生動物受遊蕩犬侵擾改善試辦專案計畫」,預計先在苗栗、台中跟南投針對九大石虎受侵擾的熱區,推動禁止餵養犬貓。苗栗目前已就「禁止餵養遊蕩犬貓自治條例草案」進行公聽會,並展開移除遊蕩犬,也和動保團體溝通,這個移除絕對不是撲殺,而是收容後不回置。也會編列預算改善收容所的設施,並辦理領養活動。即使如此仍然受到雙方立場夾殺,野保人士人士認為:三千萬的經費根本不足以守護九個熱區;動保人士人士要求:至少要有大型開放性安置中心的規劃等等。

農業部有如深陷電車難題啊!可見遊蕩犬的問題早就已經超越科學問題,成了政治問題。政治是妥協,也許我們不該追求最好,而是相對更好的解才走得下去。例如對收容動物適度的安樂死、提升整體收容動物的福祉,更多的人開始呼籲 TNR 的處置手段應該升級為 TNSA,也就是將回置的 R 改為收容 S 以及領養的 A,才能邁向更長遠的源頭控制,重新落實飼主責任。

例如 10/29 剛舉辦完的「為野生動物而走」遊行活動的訴求,就是讓犬貓有人類溫暖的家;野生動物有自然的環境。這樣的台灣,才是以生物多樣性為傲的美麗之島!

一如開頭所說,複雜的問題沒有簡單的答案。你認為在資源有限的情況下,還有什麼方法是處理遊蕩犬貓的相對好的方法呢?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

所有討論 1
PanSci_96
1226 篇文章 ・ 2337 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
瀕危指標沒人理?從評估困難到保護困境——《科學月刊》
科學月刊_96
・2020/11/04 ・2842字 ・閱讀時間約 5 分鐘 ・SR值 561 ・九年級

  • 何宣慶/國立海洋生物博物館副研究員。

國際自然保護聯盟(The International Union for Conservation of Nature, IUCN)的物種瀕危指標評估報告是經過專家學者討論之後,提供統一的標準,除了可以讓物種獲得更多的關注外,也能使我們更適當地利用生物資源,並避免部分物種的現況被過度誇大與渲染。但實際的評估過程還是有許多需要克服的困難。

人類只是地球生物多樣性中的一小部分,但卻深深影響了許多物種的生存。我們若想為這些物種做些什麼,從保育的角度來看,物種瀕危指標評估報告可說是最重要的事情之一。但每次評估的過程卻不一定順利,中間還會牽涉到物種分類的正確性、生物資料的完整性、資料的有無及環境的整體影響等。即使已有確切評估的結果,有些物種仍不會被列為保育類,抑或是被過度解讀並大做文章。

筆者在《科學月刊》610 期〈IUCN 專家如何決定保育物種〉一文中,已介紹 IUCN 物種專家會議的進行方式,而本文則會以筆者自身參加物種瀕危指標專家評估會議的經驗,說明會議上可能遭遇的困境與難題。

物種評估過程會遇到哪些困難?

評估每一個物種都需要參考現有的資料並進行適當的討論,但有許多物種常因為過於稀少或僅有少數的觀察紀錄,造成沒有參考資料的窘境。當遇到此狀況時,除了依照研究人員的觀察紀錄或非正式的發表,也可以利用其他相近物種或該地區的產業活動現況,進行相關的推論、投射或猜測等。

儘管有了紅皮書,評估過程仍會碰到許多困難。圖/pixabay

不過上述的方式可能會衍生出其他問題。如果主導者傾向將一個物種列入更高瀕危等級,很可能會使討論的意見出現偏頗。舉例來說,雖然有些物種很常見,人們未來也不會利用牠們,但考量其他物種的生物學資料、周邊環境或漁業活動影響,主導者會把評估導向因環境面臨過度捕撈壓力,以至於該物種未來會走向瀕危。但事實卻是,專家們根據實際觀察判斷這些物種應該不會消失,甚至有可能會因為佔據其他物種的生態區位,使自身族群變得更大。

-----廣告,請繼續往下閱讀-----

對此,會議討論的過程難免會出現意見分歧或爭論,而這些評估未來都會正式發表,專家們也都會以共同掛名的方式負責,所以在討論時大家除了在必要的觀點上堅持原則,同時也不能提出超過我們目前所知的意見,必須謹慎拿捏自身立場。

紅皮書物種評估報告不具強制效力

紅皮書(IUCN Red List)的瀕危指標是經過統合現有的科學資料評估而來,具有很高的參考價值。這些評估報告主要是讓全球從事生物多樣性或保育工作的人有統一的依循標準。雖然很多人會將報告中的瀕危指標作為保育的訴求,但事實上,紅皮書本身是沒有強制效力的。

有強制性效力的規範必須經過一連串的會議將物種列入 CITES 附錄中,以阻絕物種在國際間的貿易,例如最近躍上臺灣新聞版面的加州犬型黃花魚(Totoaba macdonaldi)。但即使該物種被列在 CITES 附錄中,各國也不一定會有相關的強制規範,這時就需依賴地方的保育團體行動,促使該國制定法規並對該物種加以保護。在各國訂定出相關法案後,才可以直接禁止商業採捕並對物種加以保護。

至於什麼物種會被國家立法成為保育類呢?其實這個問題並沒有統一的標準,其中還牽涉到很多諸如政治與經濟等考量。舉例來說,紅肉丫髻鮫(Sphyrna lewini)雖然被評估為極危(Critically Endangered, CR),且被列入 CITES 附錄中,但仍有許多國家並未將其列名保護。相反的,鯨鯊(Rhincodon typus)雖然被評估為瀕危(Endangered, EN),只比紅肉丫髻鮫低一個層級,但是在許多國家卻都已立法禁捕或保育,原因主要還是由於國際間的施壓,以及各國為了相關的觀光收入。

-----廣告,請繼續往下閱讀-----
由於紅皮書不具強制效力,各國的保育立法經常受到政治或經濟的影響。圖/pixabay

瀕危物種會有漏網之魚嗎?

在筆者加入專家行列之初,有次曾與軟骨魚專家群組討論臺灣喉鬚鯊(Cirrhoscyllium formosanum)的評估狀況,由於臺灣喉鬚鯊分布範圍侷限在臺灣西南海域,且可能面臨大量底拖捕撈的壓力。但可惜的是,筆者收到專家群的回覆表示,當一個物種沒有相關的生物學資料、漁獲資料及面臨捕撈壓力等,就只能被評估為資料不足(Data Deficient, DD)。也就是說,如果沒有經過一定程度的研究,我們將對於該生物一無所知,再加上沒有長時間的地區性觀察紀錄,很可能會錯過一些狀況已十分危急的物種,以至於讓這些物種消失在地球上。

綜觀全球魚類物種,有些只有少數個體被記錄下來,甚至有的早已滅絕。所幸,現在都可以借助其他同類群或同地區物種的資料進行對該物種的評估。而在軟骨魚評估會議上,我們也順利將臺灣喉鬚鯊的瀕危指標加以提升,以利未來進行保育等相關行動。

2019 年被列入 CITES 的附錄的新物種

去(2019)年第 18 屆 CITES 締約國會議已經將尖吻鯖鯊(Isurus oxyrinchus)、顆粒琵琶鱝(Glaucostegus granulatus)及龍紋鱝(Rhynchobatus)等物種列入 CITES 的附錄中。但在經過一年後的現在,臺灣政府相關單位至今仍未有正面的作為,未來則勢必會面臨國際間的強大壓力,必須儘速立法禁補。反觀巨口鯊(Megachasma pelagios)經過評估為無危(Least Concern, LC),主要是因為地理分布廣泛及與主要漁業活動關連性小,國際間並無相關的保育壓力,但臺灣政府卻在短時間內強制禁捕巨口鯊,此做法其實尚有討論的空間。

此外,目前經濟性漁業的目標物種中,仍有許多早已被列入紅皮書中的瀕危物種,但基於不同的考量,仍無法被納入 CITES 的附錄中,實為可惜。

-----廣告,請繼續往下閱讀-----

正視 IUCN 的瀕危指標評估報告進行立法

全球正共同面臨環境與氣候的劇變,很多生物也將隨之消逝,重點是人類造成的棲地破壞、氣候暖化、環境汙染與過漁等現象,已經大大加速原先地球的自然循環,讓物種以更快的速度走向滅絕。事實上,全球的氣候變遷早就越過無法回頭的點(point of no return),對此我們能做的並不多,但如果可以督促世界各國正視 IUCN 的瀕危指標評估報告,並儘速制定相關法律條文,及早保護可能步入瀕危的物種,或許我們還可以為子孫多留下一些的生物。

圖為筆者研究團隊於 2013 年發表的無斑龍紋鱝(Rhynchobatus immaculatus)。目前此物種已於 2018 年被評估為極危物種,且整個龍紋鱝科已被列入 CITES 附錄二中,並禁止國際交易。圖/作者提供

延伸閱讀

  • 楊正雄,〈認識受脅物種紅皮書名錄〉,《科學月刊》,第 577 期,2018 年。
  • 何宣慶,〈IUCN 專家如何決定保育物種〉,《科學月刊》,第 610 期,2020 年。

〈本文選自《科學月刊》2020 年 11 月號〉

科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

科學月刊_96
249 篇文章 ・ 3653 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。