0

18
8

文字

分享

0
18
8

太瘋狂了!注射細菌,竟然能夠「以毒攻毒」打敗癌細胞?細菌療法的前世(下)

羅夏_96
・2021/03/05 ・4138字 ・閱讀時間約 8 分鐘 ・SR值 569 ・九年級

在上篇中,柯立研發了「柯立毒素」,讓癌症病患藉由細菌感染來使腫瘤消退,可惜這種療法有諸多謎題未解、再加上柯立的研究方法並未系統化,因此不被當代醫界所認可,但柯立的女兒海倫卻不這麼想,並展開一系列的行動!

繼承父志,進擊的女兒

海倫從小就看著父親行醫,看到不少重病的癌症患者,在接受父親的獨特治療並痊癒後,親自上門拜訪感謝父親。這讓她相信,父親的治療方法是確實有效的,因此她要為父親平反!

雖然海倫沒有受過專業的醫學訓練,但她花費大量的時間自學各種癌症相關知識,也積極向專業醫學人員請益,以此來了解父親的研究。

她花費三年多的時間整理父所有病患的資料,並將當時接受柯立毒素治療的 896 名癌症病患資料重新檢視。在她出版 18 本醫學專刊裡,就以專業的醫學知識認定,500 多名接受柯立毒素治療的病患,腫瘤確實完全消退,顯示柯立毒素確實有治療癌症的能力1

年幼的海倫與柯立。圖/What Ever Happened to Coley’s Toxins?

雖然海倫成功替父親的研究平反,但若不找出柯立毒素的作用機制,依舊無法解決醫學界的質疑。為此海倫於 1953 年成立了癌症研究中心(Cancer Research Institute ,簡稱CRI),邀請更多專家加入,希望能解開柯立毒素背後的作用機制。

海倫和 CRI 的專家當時都認為,柯立毒素可能改變了人體的免疫機制,讓人體產生消除腫瘤的能力。不過在那個年代,學界對免疫學只有模糊的認識,甚麼抗體、抗原這些名詞才剛出現,更不用說甚麼 T 細胞、免疫檢查點了!因此也沒甚麼人相信這種說法,但海倫將迎來一個重大契機。

預防結核病的疫苗,也可以抑制腫瘤?

1959 年時,科學家奧爾德 (Lloyd J. Old) 驚奇的發現,若在小鼠身上注射原本用以預防結核病的卡介苗,竟然可以提高小鼠對腫瘤生長的抵抗力2!而這個發現跟柯立毒素的作用有點類似。

卡介苗 (Bacillus Calmette–Guérin vaccine) 是一種用來預防「結核病」的疫苗,由死亡的結核桿菌構成。事實上,現今卡介苗也是「膀胱癌」治療的標準療法之一,若灌注卡介苗在切除腫瘤的膀胱癌患者身上,可以刺激免疫系統去攻擊腫瘤細胞,達到預防復發的效果3

你的手臂上,是不是也有著注射卡介苗留下來的痕跡呢?圖/Wikipedia

奧爾德的發現讓許多學者意識到,只要有適當的刺激,生物自身的免疫系統是有能力清除腫瘤的,而奧爾德後續的研究確立了現代腫瘤免疫學的許多原則,被世人視為現代腫瘤免疫學的創始人之一,也吸引更多年輕學者加入腫瘤免疫學的研究。

強大的隊友,奧爾德加入 CRI!

當奧爾德這種重量級人物加入CRI,可謂給海倫打上一劑強心針,奧爾德仔細研究柯立的報告後,也認為柯立毒素是藉由活化免疫系統,來讓身體產生消除腫瘤的能力。

雖然奧爾德有了突破性的研究成果,但沙利竇邁藥害事件註1讓美國 FDA 對藥物安全有更嚴格的標準,1963 年美國 FDA 依舊不承認柯立毒素為藥物,因此若要研究柯立毒素在人體上的效果,必須重新向 FDA 申請臨床研究許可。

沙利竇邁是一種用於舒緩產婦孕吐症狀的藥物,廣泛用於歐洲,後續卻發現該藥物會造成的新生兒發育不良,甚至讓新生兒的肢體畸形。圖/Wikipedia

奧爾德認為這樣不僅曠日廢時,研究難度也很高,因此奧爾德決定採取不同的策略,如果柯立毒素真的能刺激免疫系統產生抗癌能力,那先把研究重心放在「了解免疫系統的運作模式」,包括如何有效的活化免疫系統、免疫系統如何辨識腫瘤細胞、免疫系統如何對抗腫瘤細胞。

當我們對免疫系統的運作有更深入的了解,就可以更容易破解柯立毒素的作用機制。

奧爾德與海倫的合影。圖/Wikipedia

腫瘤免疫學:從開創到諾貝爾生理醫學獎

1970 年代開始,免疫學的研究有爆炸式的成長,許多重要的科學發現,加深我們對免疫系統的運作與對抗癌症的了解。

細胞激素是免疫系統中的化學信使,以介白素2 (interleukin 2,IL-2) 為例,當介白素 2 在  1970 年代被分離出來後,就曾用於治療癌症。雖然它可治療的癌症種類有限,副作用也極大4,不過,從介白素 2 的案例可以告訴我們:人們的確可以透過活化免疫系統來消滅癌症!

接下來,到了 1990 年代初,首批腫瘤抗原 (Tumor antigen) 被發現,顯示免疫系統確實能辨識癌細胞和正常細胞的差異5

1990年代末,科學家也發現了病原相關分子模式 (Pathogen-associated molecular patterns,PAMP)和類鐸受體 (Toll-like receptors,TLRs),讓我們了解當病原體入侵人體後,先天免疫系統活化與作用的機制6

時序進入 21 世紀,免疫系統的煞車——「免疫檢查點」與其重要性逐漸為人所知,而 CTLA4 和 PD-1 兩種免疫抑制劑在臨床試驗上的成功,更讓人們見識到關閉煞車後的免疫系統,消滅腫瘤的能力竟能如此強效!

此時此刻,醫學界開啟了一股腫瘤免疫療法的新浪潮,而研究 CTLA4 和 PD-1 的兩位科學家,艾利森 (James Allison) 和本庶佑也於 2018 年榮獲諾貝爾生理學獎。

艾利森和本庶佑的免疫療法不僅摘下了諾貝爾獎的桂冠, 2010 年時,更出現了第一個治癒案例!

艾蜜莉 (Emily Whitehead)是一位患有急性淋巴白血病的小女孩,接受嵌合抗原受體 T 細胞療法 (Chimeric Antigen Receptor T Cells,CAR-T) 後,成功的找回了健康。

艾蜜莉的父母甚至為此成立基金會,透過基金會來支持免疫治療研究,點燃大家對 CAR-T 細胞免疫療法的研究熱潮。

癌症治療的未來之星,柯立傳奇再現!

腫瘤免疫學的許多重大突破,讓現代醫學看到治療癌症的新曙光。雖然免疫療法仍有不少瓶頸和限制要克服,但它被視為治療癌症的明日之星。

隨著我們對腫瘤免疫學的深入認識,現代學界也因柯立在百年前的發現和大膽試驗,將柯立視為腫瘤免疫學的創始者,他研發的柯立毒素也被視為免疫療法的始祖7

經過數十年的努力,海倫終於替父親洗刷「庸醫」的冤名,CRI 也成為腫瘤免疫學的研究重鎮。

然而,故事結束了嗎?

雖然對於免疫學的了解,讓我們推測出柯立毒素的可能作用機制,但若沒有實際試驗,仍屬於猜測。

因此,或許會有人問:「為何現在不使用柯立毒素治療呢?」,但這個問題其實忽略了,目前許多免疫療法,實際上是柯立毒素的「變型」。

目前醫界推測柯立毒素是藉由刺激免疫細胞上的 TLRs 註2來發揮作用,而現在確實有 TLRs 活化劑作為癌症治療的試驗8,前文提到可以治療膀胱癌的卡介苗,其作用機制就和柯立毒素極為相似。

另外,腫瘤免疫學這幾十年來有不少重大突破,使得現今的免疫療法(如免疫檢查點抑制劑、CAR-T 細胞療法)的成熟度都已遠遠超過柯立毒素,因此,科學家對重新使用柯立毒素興致缺缺。

接受 CAR-T 療法後痊癒的艾蜜莉。圖/Home | Emily Whitehead Foundation

不過,仍有一群瘋狂科學家,致力於「重現」柯立當年的治療方法,有的團隊使用改良的熱滅活混和菌來進行治療,也有的團隊直接使用「活細菌」來治療病患,重現當年柯立以毒攻毒的想法!

欲知這些瘋狂科學家的細菌治療法,且聽下回分曉!

註釋

  1. 沙利竇邁事件:在 1950 年代後期,沙利竇邁曾作為抗妊娠嘔吐反應藥物,在歐洲和日本被廣泛使用,隨後有醫生發現歐洲新生兒畸形比率異常升高。後續的毒理學研究顯示,沙利竇邁對靈長類動物有很強的致畸性,統計顯示該藥物導致萬餘名畸形胎兒出生,此即為著名的沙利竇邁藥害事件。該事件讓科學界意識到,需要建立更完善的藥物檢測和不良反應相關制度。
  2. 類鐸受體 (Toll-like receptors,TLRs) 是生物體內識別微生物入侵的重要受體。一但偵測到有病原體的入侵,TLRs 會活化先天免疫系統,刺激多種反應如發炎、補體、巨噬細胞與自然殺傷細胞 (Natural Killer Cell,NK Cell) 的活化等。其中 NK 細胞在活化後,具有攻擊腫瘤細胞的能力。另外隨著 TLRs 活化先天免疫系統,也會進一步活化後天免疫系統。TLRs 被認為是免疫系統中最古老的組成,其廣泛存在於生物界。從無脊椎動物到脊椎動物,甚至連植物和細菌中都有發現 TLRs。

參考資料

  1. CRI History – Cancer Research
  2. Old LJ, Clark DA, Benacerraf B. Effect of Bacillus Calmette Guerin infection on transplanted tumors in the mouse. Nature 1959; 184:291-292.
  3. HOPE|財團法人癌症希望基金會 – 用卡介苗的免疫療法 讓膀胱癌不再復發!
  4. Prospects of IL-2 in Cancer Immunotherapy
  5. Vaccination against tumor cells expressing breast cancer epithelial tumor antigen.
  6. Recognition and signaling by toll-like receptors
  7. William B. Coley – American Association for Cancer Research (AACR) William B. Coley, MD | Founders | AACR History
  8. The Role of TLRs in Anti-cancer Immunity and Tumor Rejection

細菌療法系列文章

  1. 太瘋狂了!注射細菌,竟然能夠「以毒攻毒」打敗癌細胞?細菌療法的前世(上)
  2. 太瘋狂了!注射細菌,竟然能夠「以毒攻毒」打敗癌細胞?細菌療法的前世(下)
  3. 不只能夠「以毒攻毒」,當細菌從攻癌武器變成交通工具!細菌療法的今生(上)
  4. 不只能夠「以毒攻毒」,當細菌從攻癌武器變成交通工具!細菌療法的今生(下)

數感宇宙探索課程,現正募資中!

文章難易度
羅夏_96
52 篇文章 ・ 339 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟


2

6
3

文字

分享

2
6
3

既是科學家,也是樂團鼓手!──專訪數學物理學家程之寧

研之有物│中央研究院_96
・2022/03/11 ・5978字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|郭雅欣、簡克志
  • 美術設計|林洵安、蔡宛潔

在學術與搖滾的多重維度上行走

還記得美劇《The Big Bang Theory》嗎?劇中常常出現的物理名詞「弦論」,是描述物理世界基本結構的理論。中央研究院「研之有物」專訪院內數學研究所程之寧研究員,她正是研究弦論的科學家,也是熱愛音樂的搖滾樂團鼓手,這種跨領域身份並不衝突,兩邊都需要創造力與紀律。由於天生斜槓的性格,讓程之寧在數學和物理領域大展身手,透過數學的深入探討,她試圖將弦論更往前推進。最近程之寧更跨足到人工智慧領域,為學界提供理論物理上的貢獻。

中研院數學所程之寧研究員,主要研究 K3 曲面(特殊的四維空間)的弦論,她發現模函數和有限對稱群之間有 23 個新的數學關聯,稱之為「伴影月光猜想」(Umbral Moonshine)。圖/研之有物

萬有理論和難以捉摸的「月光」

世界從那裡來呢?物理世界的本質是什麼呢?回答這樣的大哉問,一直是理論物理學家所追求的目標。從牛頓力學(日常應用)、廣義相對論(探討很重的物質)到量子力學(探討很小的物質),隨著物理學不斷發展,我們似乎一步步接近答案,但至今卻還未走到終點。

舉例來說,如果有個東西很重又很小,就像「黑洞」,或是大爆炸時的宇宙,我們要怎麼用數學描述?於是科學家試圖整合廣義相對論和量子力學,找出所謂的「萬有理論」(Theory of Everything)──能完全解釋物理世界基本結構的核心理論。

程之寧研究的「弦論」就企圖發展成這樣一個萬有理論。弦論一如其名的「玄妙」,它設定宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。

「人類一直以來的夢想之一就是,如果能用一句話解釋所有事情,那該有多麼美好。」中研院數學所研究員程之寧說道。

程之寧的研究牽涉到數學上的「月光猜想」(Moonshine)與弦論中 K3 曲面的連結。月光猜想是存在於模函數係數與特殊群之間的數學關聯,程之寧與其研究夥伴共發現了 23 個新的關連,並稱之為「伴影月光猜想」(Umbral Moonshine)。

基於弦論的假設,我們的世界是十維的,除了人們在日常生活中可以感知到的 3+1 維(空間+時間),還有六維是因為尺寸太小而無法用肉眼觀察的,這些看不到的維度影響著物理世界,最終也產生了我們這個物理世界所需的各種條件與特性。

綜觀程之寧的研究,橫跨了物理與數學兩個領域,她笑稱自己「天生斜槓」。在學術上,程之寧原先喜歡文學,之後卻走上數理研究的道路;在音樂上,程之寧喜愛搖滾樂,至今仍在自己的樂團裡擔任鼓手。

她如何看待自己一路走來的各種轉折?游徜在數學與物理之間,她又對這兩個領域的連結有怎樣的體會?在與「研之有物」的訪談中,程之寧侃侃而談她的經歷、想法,以及對學術研究的熱忱所在。

在弦論的設定中,宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。圖/iStock
  • 請問您是如何對數學及物理產生興趣?從何時開始?

一開始考大學時,其實我想去念中文系(笑)。不過,因為我高中是選理組,而且只念了一兩年,對文科考試比較沒把握,加上對工程科系沒興趣,最後就選擇臺大物理系就讀。

後來發生兩個轉折,第一個是我很認真的去修了大學中文系的課,結果發現真的沒有想像中容易。第二個就是我發現物理系的課還蠻有趣的,像量子力學和相對論,讓我覺得還想再多學一點、多知道一點。

我開始覺得如果念完臺大物理系就停下來,好像有一種小說沒讀完的感覺,所以就想繼續讀碩士班。那時還沒有覺得自己會走上學術研究的路,單純抱著想把故事看完的想法。

  • 後來是如何接觸到弦論?弦論是如何引起您的興趣?

後來我去荷蘭念碩士,指導教授是諾貝爾物理獎得主 Gerard ’t Hooft。他其實蠻不認同弦論,但他對於如何處理量子力學與相對論很有興趣。

當時 ’t Hooft 教授在建議我碩士題目時就說:「你也知道我不太認為弦論是一條正確的道路,不過聽說弦論最近真的在量子重力這一塊有一些成果。不如妳去讀一讀,看看是不是真的有一些東西在那裡,也可以比較一下其他量子重力理論。」

在我很認真的比較各個量子重力理論之後,就變成弦論派了(笑)。’t Hooft 教授對此也保持開放態度,他有幾個不錯的博士生後來也變成弦論學家,之後我在 Erik Verlinde 的指導下念博士時,就完全以弦論為研究主題了。

  • 研究理論物理會影響您對現實世界的理解嗎?

蠻多人會問我說,妳學了量子力學,是不是就會比較了解這個世界不是非黑即白?或問我量子力學跟宗教是不是有關?可是我覺得我分得很開,我不會去做這樣的連結,我還是活在現實裡,走路時大部分都在專注於自己不要跌倒之類的。

如果真的要講,我蠻感激我們的存在,因為我所學的東西讓我知道這是沒有必然性的。我們能這樣以一種人形的很奇怪的生物的形式存在,然後在這樣一個環境過一輩子,是機率很低的事情,而且我還蠻開心我是當人,而不是奇怪的阿米巴蟲或外星生物!有些人會從這裡連結到宗教或轉世,但我不會,我就停在這裡。

  • 來談談您的研究,伴影月光猜想與 K3 曲面弦論之間是什麼關係?

弦論中有很多的可能性,我們可以挑選特定的四維,然後假設這四維空間是個 K3 曲面。例如說,我們可以把兩個甜甜圈乘起來,在上面做特殊的奇異點,來製造出一個 K3 曲面。這個曲面有一些很有趣的對稱性。從弦論的角度來講,我們可以透過這個過程,找出一個解釋為何有伴影月光猜想的框架。

「把維度乘起來」這個概念很難想像,但這在數學上是成立的。我舉例一個我們能想像的「乘起來」:如果有一個空間是一條線,另一個空間是一個圓,乘起來就變成一個圓柱形,從一個方向剖面可以切出圓,另一個方向則切出線。而在數學上,不管幾維,能不能在紙上畫的出來,都可以這樣操作。

程之寧向「研之有物」採訪團隊解釋「把維度乘起來」的概念。圖/研之有物
  • 如何透過計算,發現捉摸不定的「月光」?

有時候這看似湊巧,一個數學上的函數正好就是弦論某個問題的答案。但其實並不是真的那麼巧,弦論看起來很有彈性,好像什麼都可以解釋,但它其實有非常多結構及限制。

當我在計算一個弦論理論時,它的內部結構可能原本就具有某些特定的性質,然後我再去觀察數學中,有這樣性質的函數可能就只有一兩個,只要再初步算一下,就能知道哪一個是答案。弦論學家日常的計算常常是這樣的,所以這是巧合嗎?是也不是。

  • 您曾經發現 23 個新的伴影月光猜想,您對這類題目特別有興趣嗎?

我覺得數學有兩種,有些數學家喜歡系統性的事情,就像蓋房子一樣,在數學裡建造一個很美麗、非常有系統性的結構,可以把很多事情都放入這個結構來理解。

另一種比較少數的,就是喜歡獵奇,去收集分類奇奇怪怪的特殊東西,例如有這些性質的函數在哪裡?可能你算出來就是 5 個,你也不知道為什麼。月光猜想很明顯就屬於這一類。

兩種的樂趣感覺是不一樣的,我覺得應該都很棒,但我可能是屬於偏好獵奇的這種。

  • 您的研究連結了物理上的弦論與數學上的月光猜想,您怎麼看待這兩個知識體系的互動?

弦論是一個需要很多數學理論配合的物理理論,它是一個有點繁複的框架,我們什麼都要會一些,才能看懂這個理論。當你把許多不一樣的學門的知識加起來,有時候就會在某一個學門──例如幾何──有意想不到的收穫。

弦論在數學上也扮演探索與找尋新方向的角色,讓數學家有新的發現。雖然最後數學定理的證明還是得仰賴傳統數學方法,但在這二三十年間,我們一直從弦論身上找尋數學研究的新方向或有趣的猜想,看到了弦論與數學之間的互動。

數學家有兩種,一種人喜歡建立美麗又有系統性的結構,另一種人喜歡尋找和收集奇怪特殊的數學物件(比如函數),程之寧表示自己屬於後者。圖/研之有物
  • 剛才一開始提到,您高中只念了一兩年,是因為對學校沒有興趣嗎?

其實我一直都覺得上學很無聊。我小時候臺灣教育和現在很不一樣,一班 50 幾個人,老師必須盡量軍事化管理,大家最好都一模一樣,比較好管理。我和學校一直處於互相磨合的狀況,我自認已經努力配合學校,但學校一直覺得我在反抗,這可能是一個認知上的差別。

舉例來說,我小學的時候不想睡午覺,可是老師說大家都一定要睡午覺,不睡午覺的人要罰抄課文,所以我早上到學校時就會把已經抄好的課文交給老師。我覺得我這樣做是在配合老師的規定,可是以老師的立場會覺得我在反抗,學校教育中我遇到了很多類似的情況。

還有就是不喜歡高中的升學氛圍,同學和老師好像都只有一個活著的目標,就是「考大學」。我當時無法習慣升學氛圍,感覺好像活在平行宇宙一樣。

  • 高中休學後,您去唱片行工作,可否談談當時的想法?

我國中開始聽音樂,這是我除了看書之外的重要興趣,我也很快就喜歡上了搖滾樂。高中休學的時候,我唯一的謀生技能可能就是我對音樂的各類知識吧!所以我就去了唱片行,這是唯一一個我會做又有興趣的工作,還好那時候還有很多唱片行(笑)。

  • 對音樂的熱忱,讓您與朋友共組了樂團,並擔任鼓手。您是否比較過樂團生活和學術研究之間的異同之處?

有些人覺得我這樣很跳 tone,但我自己覺得還好。音樂和學術都是我發自內心覺得好玩的東西,兩者也有相同之處,例如它們都需要創造性,也都有需要了解的框架。數學需要嚴謹的證明,音樂演奏也需要遵循結構,例如不能掉拍。

音樂領域還有一點和數學類似──玩樂團的圈子也是以男性為主。我們樂團則是只有一個男生,其他都是女生,可能我真的天生對框架有點遲鈍,玩團之後才發現:「怎麼大家都是男生?」

程之寧表示,學術界仍有許多性別不平等問題未受重視。圖/研之有物
  • 也就是說,目前數學學術圈仍是男性主導,在研究路上,您有因為性別而感受到一些衝擊或眼光嗎?您怎麼面對?

有。那感覺很明顯,日復一日地要去面對,尤其是年紀還比較輕、還必須每一天去證明自己的能力的時候,特別有感。

我遇到時的反應就是,在心裡暗罵一句髒話,然後繼續做我要做的事。我不會想改變別人的想法,感覺那是浪費時間,就算環境給我的阻礙是這樣,我還是繼續去做該做的事。

可是有些事情沒那麼簡單,現在我也當過老師,有時候會看到年輕女生在學術界因為性別而被欺負,或遭到不公平待遇、甚至騷擾。

對此我感到心痛,覺得為何我們學術領域還是這樣的狀況?甚至為什麼性騷擾至今還是一個議題?可以確定的是,學術界許多性別不平等問題未受到重視。

  • 您現在已經有傑出的研究成果,還會因為性別而遭受質疑嗎?

我現在比較會遇到一個狀況反而是來自學生的質疑。我在荷蘭阿姆斯特丹大學教書時,有時候學生會因為我是女教授,而且我的外表在許多歐洲人眼中看起來就像小妹妹,所以比較容易去挑我的毛病。

在課堂上,下面坐的可能都是男學生,只有一兩個女學生,那個氣氛就會變得很奇怪。例如說偶爾會聽到學生評論我的身材或樣貌。

我有和其他一些在歐洲或美國的女性教授聊過這樣的問題,似乎不少人都有類似的不太愉快的經驗。感覺不是很好。

  • 看到您最近的研究和人工智慧(AI)有關,為何會想往這個方向發展?

我有兩個動機。一個就是我真的想深入了解人工智慧。我也可以像普羅大眾,看看 AI 下圍棋,讚嘆「哇!好厲害!」這樣就好,可是我覺得我一定可以真的去理解它,這可能就是數學家的自大吧!

另一方面,我知道對科學研究來說,未來 AI 將會是一個非常重要的工具。這是「在職訓練」的概念,我可能會用到這個新工具,或以後我可能會需要教這樣的課,因為學生是下一代的科學家。因為這些原因,我覺得我需要去訓練自己使用新的工具。在我的領域裡,也有一些有趣的、還沒被解答的科學問題,是 AI 有可能幫得上忙的,我看到了一些潛力。

  • 弦論和 AI 感覺差距很大,AI 也可以應用到弦論的研究嗎?

乍看之下,弦論的確比較抽象,也不像其他許多實驗會產生大量數據。但其實弦論有大量的可能性,我認為使用 AI 來在這些巨量的可能性當中搜尋特別有趣的理論,是一個有潛力能夠加深我們對弦論理解的新的研究方法。

而且 AI 的應用絕不僅限於巨量資料。如果是面對一些比較新的挑戰,在沒有現成的演算法可以用的情形之下,可以自己做出需要的功能嗎?這過程我覺得也非常很有趣,而且應該是會有成果的一條路。這種不是那麼顯而易見的事情,我覺得很有挑戰性,也蠻好玩的。

除了用 AI 來幫助物理跟數學的研究之外,我也試著物理研究當做靈感來源,找出新的 AI 的可能性,我覺得這也是一個很有趣的研究方向。我現在有和 AI 的學者合作,嘗試做出一些創新的演算法,真的還蠻有趣的。

  • AI 對您而言是全新的領域,您如何面對跨領域遇到的門檻?

一開始會覺得真的要去碰這個新的領域嗎?其實現在也還是偶爾會有這樣的懷疑。我在弦論領域可能已經是專家,但去了一個新的領域,我學得不會比二十歲的人快,要怎麼去跟人家競爭?是不是在浪費時間?

但也會想,與其想這麼多,不如先做再說。到目前為止我做了兩年多,感覺還蠻好的,我有學到東西,也有做出小小的貢獻。

其實我還蠻感激有這樣的學習機會。對我來說當科學家最大的好處就是,去搞懂一個新的東西就是工作的一部分。當科學家雖然蠻辛苦,但就結果論來說,我還蠻開心能當一位科學家!

延伸閱讀

  1. Moonshine Master Toys With String Theory | Quanta Magazine
  2. Mathematicians Chase Moonshine’s Shadow | Quanta Magazine
  3. 林正洪教授演講 一 怪物與月光(Monster and Moonshine),《數學傳播》

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
8 篇文章 ・ 16 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook