0

19
5

文字

分享

0
19
5

太瘋狂了!注射細菌,竟然能夠「以毒攻毒」打敗癌細胞?細菌療法的前世(上)

羅夏_96
・2021/03/05 ・4551字 ・閱讀時間約 9 分鐘

近年來,「免疫療法」是癌症醫學最火紅的議題之一,科學家會利用各種手段喚醒我們體內的免疫系統,並利用免疫系統來對抗癌症,讓我們的身體恢復健康。

雖然免疫療法到了近十年才被醫學界正式認可、走入大眾的視野,但事實上,早在兩百多年就有醫師寫下相關的報告,甚至古埃及時期也有類似的文獻,只是這些資料曾經被當作毫無價值的民間偏方。

這些文獻指出,只要將細菌打入我們的體內,就可能用以毒攻毒的方式治療癌症!

這種瘋狂療法被稱為「細菌療法」,它不僅真實存在,甚至是今日免疫療法的先驅,接下來,且聽我娓娓道來細菌療法的故事吧!

皮膚炎可以治療癌症?那些年的細菌療法

古埃及出土的醫學典籍中,就曾描述當時有病患出現腫瘤的症狀,並記錄了相應的處理方式:在腫瘤部位上劃上一個創口,讓該部位產生感染,就能有效使腫瘤消退1

到了 1800 年中期時,也有兩位德國的醫師 Busch 和 Fehleisen 分別發現,患有腫瘤的病患在不慎感染丹毒註1後,腫瘤會大幅度的消退1

丹毒是由化膿性鏈球菌所引起的急性皮膚炎症,以患部皮膚紅如塗丹故名,多發於小腿或者面部。
圖/Wikimedia

其中, Busch 就曾經「故意」讓腫瘤病患感染丹毒,並發現當病患感染丹毒後,病患身上的腫瘤真的消退了1,而另一位醫師 Fehleisen 重複 Busch 的治療方式後,也得到類似的結果,並且確認丹毒是因病患感染化膿性鏈球菌 (Streptococcus pyogenes)所造成,顯示細菌感染與腫瘤的消退有關1

當然,不僅僅只有這兩位醫師會將細菌感染用於治療腫瘤,除了它們之外,也有其他零星的報告紀錄2,但這些報告在當時的醫學界看來充其量只是八卦,並沒有被認真看待。

直到了一位醫師的出現,才讓細菌療法正式進入近代醫學的視野中,甚至啟發現在被視為治療癌症明日之星的「免疫療法」。

細菌療法的鼻祖——威廉.柯立

年輕醫師威廉.柯立 (William Coley) 畢業於哈佛醫學院,並於 1890 年開始在紐約癌症醫院開設門診,也就是這一年,柯立遇到一位令他永生難忘的病患。

十九世紀時,醫生治療癌症的有效方法就只有那麼一種:藉由外科手術來切除患部,因此當柯立遇到伊莉莎白 (Elizabeth Dashiell) 時,也是透過截肢手術以治療她手臂上的肉瘤 (Sarcoma)註2

但手術後不久,年僅 17 歲的伊莉莎白仍然因癌細胞的擴散 (Metastasis) 而不治死去,這對柯立是很大的打擊,因此他下定決心,一定要找出治療肉瘤的有效方法!

首先,柯立查閱紐約癌症醫院中,所有肉瘤病患的就診紀錄和相關資料,希望吸收其他醫生治療肉瘤病患的經驗,其中,有一位病患的就診紀錄引發他的興趣。

威廉.柯立 (William Coley) (中間)。圖/Wikipedia

7 年前,31 歲的史登 (Fred Stein) 曾被診斷出在頸部上長有肉瘤,即使經過多次手術肉瘤仍舊復發,甚至在手術期間不幸感染丹毒,丹毒讓史登發起了嚴重的高燒,幸好史登撐過去並且順利出院。

引起柯立注意的是,這一份報告顯示在史登高燒期間,腫瘤有明顯消退,然後…就沒有然後了,因為醫院之後就再也沒有史登的就醫紀錄了!親自前往紐約拜訪史登後,柯立更驚奇地發現,如今的史登不僅是一尾活龍,連頸部的肉瘤也完全消退,而且至今都並沒有復發!

此時,柯立產生一個大膽的想法:如果用細菌感染病患,以毒攻毒,癌症病情會好轉嗎?

不如,在腫瘤上面塗一些細菌試試看?

1891年,柯立迎來第一次實踐他想法的機會:一位名為佐拉 (Zola)的患者,被診斷出在頸部上長有無法用手術方式切除的肉瘤。

前文有提到,在當時治療肉瘤的唯一方式就是手術切除,因此可憐的佐拉等同被判了死刑。柯立想著,或許讓佐拉感染丹毒,是一個值得嘗試的辦法,於是他說服佐拉,開始試驗他的瘋狂想法。

病患佐拉。圖/Cancer Gene Therapy

柯立在佐拉的腫瘤上劃開幾個創口,並塗上化膿性鏈球菌,隨著佐拉感染丹毒,雖然肉瘤組織確實有消退,不過沒有完全消除。

即使沒有完整去除肉瘤,但這個結果依舊讓柯立很興奮,柯立認為細菌感染真的可以有效地對付腫瘤!此外,柯立也推測,應該是當時引起的感染反應不夠強烈,才讓腫瘤無法完全消退。

沒有成功?一定是因為沒有發燒啦!

那麼怎樣才是「夠強烈」的感染反應呢?

柯立覺得「發燒」是感染夠強的指標,於是他從柯霍醫師註3那邊拿到了感染力更強的細菌3,在柯立的獨門配置下,佐拉被感染 1小時後就出現發冷、噁心、嘔吐等感染症狀,並高燒到 41 度,感染症狀整整持續了 10 天。

更重要的是:在兩星期內,佐拉頸部的腫瘤竟然完全消失,並且在 8 年半的追蹤下都沒有復發!

柯立對這次試驗的成功感到相當振奮,因此在後續的兩年他持續用活細菌感染 10 個腫瘤病患,希望也能治癒他們。

發燒,被柯立當作感染夠嚴重的指標。圖/Pixabay

可惜的是,這兩年來的試驗結果並不理想,有些病患在高燒後,腫瘤確實消退;有些病患出現高燒,但腫瘤卻不會消退;有些病患百毒不侵,不會發高燒;而有兩位病患則因感染後高燒不退,導致死亡4

因此柯立決定不再使用活細菌感染病患,他改用熱滅活註4的化膿性鏈球菌 (Streptococcus pyogenes)和黏質沙雷菌 (Serratia marcescens),將其混合後注射到患者體內,他發現這種方式更安全,也能引起患者高燒。

在往後的試驗中,這種混和熱滅活菌被稱為「柯立毒素」 (Coley’s toxin)。

柯立毒素的興起和殞落

隨著柯立毒素的使用,柯立得到不少正面的結果,他將這些結果彙整出版5。因柯立的報告相當豐富,柯立毒素也廣為大眾所知,民間不少人認為柯立是治療癌症的明日之星。

除了民間,當時一些醫師也響應了柯立毒素的治療效果,Parke-Davis 製藥公司更生產了柯立毒素作為藥物使用。隨著消息傳到國外,德國一家小藥廠 Südmedica 也生產了柯立毒素。

化膿性鏈球菌啟發柯立製作出柯立毒素。圖/Wikipedia

然而,雖然民間和少部分醫師認可柯立毒素的效果,但醫學界普遍對柯立毒素的效用帶著高度懷疑,不少醫師都認為柯立毒素不過是「蒙古大夫的小偏方」。

其中,柯立在紐約醫院的上司更是最強力反對他的人(可想見柯立在醫院的壓力有多大!),而美國癌症學會 (American Cancer Society) 更毫不客氣的表示:「我們還需要更多研究確定這種療法,是否對腫瘤病患有任何幫助,如果有的話!」。

美國癌症學會意思就是:他們認為這東西根本沒有用,連試都不必試!

面對醫學界的質疑,柯立雖然也想反駁,但無奈的是,他面對好幾個無法迴避的問題。

第一:最重要的,他無法解釋柯立毒素的「作用機制」!

雖然他有兩個想法:一個是細菌本身的毒素殺死了癌細胞;另一個是細菌引發的高燒,可能讓身體產生一些機制,讓腫瘤消退。但柯立都沒有對自己的想法,有更深入的研究。

第二:柯立並沒有一套有系統的實驗方法!

例如每次給病患注射柯立毒素時,不僅毒素的比例和劑量都很隨興,連注射的部位也都不同。加上病患的反應各異,太多變數的存在,讓不少醫師根本無法重現柯立的結果。

第三:感染後的副作用太危險了!

柯立毒素要發揮效用,要讓病患有足夠強的感染反應,「發燒」就是關鍵中的關鍵。雖然柯立毒素是用熱滅活的細菌,感染風險已低於活細菌,但讓病患產生感染反應的風險還是很高,稍有不慎就極有可能死亡。

因此,這種明顯將病患至於高風險的行為,也引起很多醫師反感。

足夠強的感染反應,「發燒」就是其中的關鍵。圖/Pexels

放射線療法成為主流,柯立毒素淪為偏方

除此之外,20 世紀初,隨著放射線療法的問世,放射線療法逐漸成為主流的癌症治療方式,這更使得柯立毒素成為公認的偏方,而柯立也被醫學界視為庸醫,只剩柯立及少數相信柯立毒素療效的醫師,仍用這種「偏方」為病患治療。

到了 1936 年柯立過世,柯立毒素幾乎淡出了歷史舞台,二十多年後, 1963 年美國 FDA 甚至公告:不承認柯立毒素為核准的藥物!

至此,柯立毒素的傳奇「暫時」告一段落。

雖然柯立毒素逐漸被人們淡忘,但柯立的女兒海倫 (Helen Coley Nauts) 卻不這麼想,她不僅重新整理了柯立的病患資料,更成立美國的癌症研究中心 (CRI) 、招募了一群頂尖科學家,配合著免疫學的爆炸式成長,當年細菌療法的謎題一一被解開,柯立與柯立毒素也不再被視為一文不值……

註釋

  1. 丹毒:由化膿性鏈球菌所引起的急性皮膚炎症,以患部皮膚紅如塗丹故名,多發於小腿或者面部。患處皮膚有略高出皮面的大片紅腫,邊緣明顯而且表面光滑發。患部附近淋巴結腫大,伴有寒顫、高燒、頭痛、骨節疼痛等全身症狀。
  2. 肉瘤 (Sarcoma):指惡性軟組織肉瘤,就是由中胚層間葉細胞癌化從各種軟組織如脂肪、骨骼肌、平滑肌、神經、神經鞘、血管及各種結締組織等產生的肉瘤。
  3. 羅伯.柯霍:德國醫師兼微生物學家,為細菌學始祖之一,與巴斯德共享盛名。1905年,因結核病的研究獲得諾貝爾生理學或醫學獎。柯霍因發現炭疽桿菌、結核桿菌和霍亂弧菌而出名。他發展出一套用以判斷疾病病原體的依據——柯霍氏法則。
  4. 熱滅活 (heat inactivation),是用高溫殺死細菌。這種方式會讓細菌死亡並無法繁殖,但不會完全破壞細菌的結構。在注射到人體後,免疫系統仍能辨識這些病原體,並產生免疫反應。

參考資料

  1. Hoption Cann, S. A., van Netten, J. P., & van Netten, C. (2003). Dr William Coley and tumour regression: a place in history or in the future. Postgraduate medical journal79(938), 672–680.
  2. Coley’sToxins
  3. Loughlin K. R. (2020). William B. Coley: His Hypothesis, His Toxin, and the Birth of Immunotherapy. The Urologic clinics of North America47(4), 413–417. https://doi.org/10.1016/j.ucl.2020.07.001
  4. Coley W. B. (1991). The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clinical orthopaedics and related research, (262), 3–11.
  5. Coley W. B. (1910). The Treatment of Inoperable Sarcoma by Bacterial Toxins (the Mixed Toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proceedings of the Royal Society of Medicine3(Surg Sect), 1–48.

細菌療法系列文章

  1. 太瘋狂了!注射細菌,竟然能夠「以毒攻毒」打敗癌細胞?細菌療法的前世(上)
  2. 太瘋狂了!注射細菌,竟然能夠「以毒攻毒」打敗癌細胞?細菌療法的前世(下)
  3. 不只能夠「以毒攻毒」,當細菌從攻癌武器變成交通工具!細菌療法的今生(上)
  4. 不只能夠「以毒攻毒」,當細菌從攻癌武器變成交通工具!細菌療法的今生(下)

文章難易度

0

0
0

文字

分享

0
0
0

能量看不到,那就透過介質來觀察吧!——《物理學的演進》

商周出版_96
・2021/04/17 ・2453字 ・閱讀時間約 5 分鐘
  • 作者|Albert Einstein, Leopold Infeld
  • 譯者|王文生

雖然沒有任何實際參與流言散布的人真的在兩個城市間旅行,來自倫敦的小道消息,很快地傳到了愛丁堡。這個過程,涉及兩種截然不同的動作,一種和流言本身有關,從倫敦到愛丁堡;另一種,則要歸咎散播流言的人。一陣風吹過麥田,帶起一道穿過整片田地的麥浪。這一次,我們還是要分清楚波的運動,以及個別植物的運動之間的差異。植物只是稍稍晃動而已。我們曾經看過,把石頭丟進池塘中,水波的圓越來越大,藉此傳播出去。

波的運動方式,和水粒子的運動方式相當不同。水粒子只是上下運動。我們觀察到波的運動,是物質的狀態變化,物質本身並不是波。

從水面上的一顆軟木塞就能清楚地見到這個現象。軟木塞上上下下的動作,和水實際上的運動類似,它的運動不是波造成的。

把石頭丟進池塘中,水波的圓越來越大,藉此傳播出去。圖/Pexels

為了深入了解波的機制,我們再來考慮一項思想實驗。假設在一個足夠大的空間裡,均勻地被水、空氣,或其他種「介質」填滿。空間的中央處有一個球體。實驗開始時,沒有任何運動。突然,球體開始規律地「呼吸」,體積擴張,然後縮小,在此同時維持球狀的外表。介質會發生什麼變化?我們從球體開始擴張的瞬間開始分析。緊鄰球體的粒子被推開,導致周邊一層球殼狀的水,或是空氣的密度上升,高於正常值。經由類似的過程,球體縮小時,緊鄰球體介質的密度下降了(下圖)。組成介質的粒子只是微幅振動,但是,整體的運動卻是一個行進的波。基本上,我們現在正踏入全新的領域,第一次考慮物質以外的運動,也就是經由物質傳遞的能量產生的運動。

球體縮小時,緊鄰球體介質的密度下降了。圖/《物理學的演進

以脈衝球體為例,我們可以導入定義波的性質時相當重要的兩項普通物理觀念。首先是速度,描述波的傳遞。它和介質有關,例如,波在水和空氣的傳播速度不同。其次是波長 (Wave Length)。在海上或河流傳遞的波,它的波長是從一個波到另一個波距離,或是一個波峰到另一個波峰的距離。因此,海上的波相較於河裡的波具有較大的波長。至於脈衝球體產生的波,波長是在某個固定時間點,兩個密度最大或最小的相鄰球殼之間的距離。很明顯,這個距離不會只和介質有關,脈衝球體縮放的速度顯然對波長有不小的影響。縮放的速度越快,波長越小;縮放速度越快,波長越大。

波的觀念在物理學取得巨大的成功。

波是力學的觀念,這點無庸置疑。波的現象被簡化為粒子的運動,而且根據動力學理論,粒子由物質組成。因此,所有用到波的觀念的理論,一般來說都能視為力學理論。比方說,聲學現象的解釋,基本上建立在波的觀念。物體的振動,像是聲帶和琴弦,是聲波的來源。聲波在空氣中的傳遞模式,和脈衝球體波相同。如此一來,將所有聲學現象透過波的觀念簡化為力學是可能的。

前面已經強調過,我們得清楚地分辨粒子的運動和波的運動,後者是介質的一種狀態。兩種運動差異不小,但是,在脈衝球體的例子,兩種運動顯然發生在同一條直線上。介質粒子在一條短線段上振盪,隨著振盪運動,介質密度週期性地增加和減少。波傳遞的方向,與振盪發生的直線的方向,兩者相同。這種類型的波,稱為縱波 (Longitudinal wave)。但是,波只有這一種形態嗎?為了接下來的討論,我們必須認知到另一種類型的波存在的可能性,稱為橫波 (Transverse wave)。

我們調整一下先前的例子。現在依然有一個球體,但是它浸在一種膠狀介質裡,不是空氣,也不是水。此外,球體不再是縮放,而是朝一個方向旋轉一個小角度,再轉回來。旋轉的節奏是固定的,轉軸也不變。膠狀介質附著在球體周遭,被迫以相同的方式運動(下圖)。一部分的力作用在稍微遠一點的地方,造成該處產生相同的運動,如此一來,介質中就產生一個波。如果我們留意到介質的運動與波的運動之間的差異,會發現它們並不是發生在同一條直線上。波沿著球體的直徑方向傳播,而介質的運動則和這個方向垂直。以此方式,我們造出一個橫波。

膠狀介質附著在球體周遭,被迫以相同的方式運動。圖/《物理學的演進

在水的表面傳遞的波是橫波。漂浮的軟木塞上下浮動,水波則沿著水平面傳遞。另一方面,聲波則是我們最熟悉的橫波範例。

還有一點:脈衝的球體和震動的球體,在同質的均勻介質中製造的是球形波。這是因為在任意時間點,任何圍繞著球體的球殼上的任何一點,行為都是相同的。讓我們考慮位在波源遠處,以波源為球心的球殼上的一個小塊。我們考慮的小塊越小,距離波源越遠,它就越接近一個平面。若不做太嚴謹的考慮,可以說半徑夠大的球殼上的一小部分,和平面其實沒有什麼差距。我們常常把遠離波源的球形波上的一小部分,稱為平面波。如果把下圖著色的區域再向遠離球心的方向移動,兩條半徑中間的夾角就會越來越小,更接近平面波。平面波的觀念和某些物理觀念很類似,它們是虛構的,無法以完美的精確度製造出來。然而,平面波依然是相當有用的物理觀念,不一會就能派上用場。

著色的區域再向遠離球心的方向移動,兩條半徑中間的夾角就會越來越小,更接近平面波。圖/《物理學的演進
——本文摘自《物理學的演進》,2021年2月,商周出版。

網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策