0

23
7

文字

分享

0
23
7

太瘋狂了!注射細菌,竟然能夠「以毒攻毒」打敗癌細胞?細菌療法的前世(上)

羅夏_96
・2021/03/05 ・4551字 ・閱讀時間約 9 分鐘 ・SR值 534 ・七年級

近年來,「免疫療法」是癌症醫學最火紅的議題之一,科學家會利用各種手段喚醒我們體內的免疫系統,並利用免疫系統來對抗癌症,讓我們的身體恢復健康。

雖然免疫療法到了近十年才被醫學界正式認可、走入大眾的視野,但事實上,早在兩百多年就有醫師寫下相關的報告,甚至古埃及時期也有類似的文獻,只是這些資料曾經被當作毫無價值的民間偏方。

這些文獻指出,只要將細菌打入我們的體內,就可能用以毒攻毒的方式治療癌症!

這種瘋狂療法被稱為「細菌療法」,它不僅真實存在,甚至是今日免疫療法的先驅,接下來,且聽我娓娓道來細菌療法的故事吧!

皮膚炎可以治療癌症?那些年的細菌療法

古埃及出土的醫學典籍中,就曾描述當時有病患出現腫瘤的症狀,並記錄了相應的處理方式:在腫瘤部位上劃上一個創口,讓該部位產生感染,就能有效使腫瘤消退1

到了 1800 年中期時,也有兩位德國的醫師 Busch 和 Fehleisen 分別發現,患有腫瘤的病患在不慎感染丹毒註1後,腫瘤會大幅度的消退1

丹毒是由化膿性鏈球菌所引起的急性皮膚炎症,以患部皮膚紅如塗丹故名,多發於小腿或者面部。
圖/Wikimedia

其中, Busch 就曾經「故意」讓腫瘤病患感染丹毒,並發現當病患感染丹毒後,病患身上的腫瘤真的消退了1,而另一位醫師 Fehleisen 重複 Busch 的治療方式後,也得到類似的結果,並且確認丹毒是因病患感染化膿性鏈球菌 (Streptococcus pyogenes)所造成,顯示細菌感染與腫瘤的消退有關1

當然,不僅僅只有這兩位醫師會將細菌感染用於治療腫瘤,除了它們之外,也有其他零星的報告紀錄2,但這些報告在當時的醫學界看來充其量只是八卦,並沒有被認真看待。

直到了一位醫師的出現,才讓細菌療法正式進入近代醫學的視野中,甚至啟發現在被視為治療癌症明日之星的「免疫療法」。

細菌療法的鼻祖——威廉.柯立

年輕醫師威廉.柯立 (William Coley) 畢業於哈佛醫學院,並於 1890 年開始在紐約癌症醫院開設門診,也就是這一年,柯立遇到一位令他永生難忘的病患。

十九世紀時,醫生治療癌症的有效方法就只有那麼一種:藉由外科手術來切除患部,因此當柯立遇到伊莉莎白 (Elizabeth Dashiell) 時,也是透過截肢手術以治療她手臂上的肉瘤 (Sarcoma)註2

但手術後不久,年僅 17 歲的伊莉莎白仍然因癌細胞的擴散 (Metastasis) 而不治死去,這對柯立是很大的打擊,因此他下定決心,一定要找出治療肉瘤的有效方法!

首先,柯立查閱紐約癌症醫院中,所有肉瘤病患的就診紀錄和相關資料,希望吸收其他醫生治療肉瘤病患的經驗,其中,有一位病患的就診紀錄引發他的興趣。

威廉.柯立 (William Coley) (中間)。圖/Wikipedia

7 年前,31 歲的史登 (Fred Stein) 曾被診斷出在頸部上長有肉瘤,即使經過多次手術肉瘤仍舊復發,甚至在手術期間不幸感染丹毒,丹毒讓史登發起了嚴重的高燒,幸好史登撐過去並且順利出院。

引起柯立注意的是,這一份報告顯示在史登高燒期間,腫瘤有明顯消退,然後…就沒有然後了,因為醫院之後就再也沒有史登的就醫紀錄了!親自前往紐約拜訪史登後,柯立更驚奇地發現,如今的史登不僅是一尾活龍,連頸部的肉瘤也完全消退,而且至今都並沒有復發!

此時,柯立產生一個大膽的想法:如果用細菌感染病患,以毒攻毒,癌症病情會好轉嗎?

不如,在腫瘤上面塗一些細菌試試看?

1891年,柯立迎來第一次實踐他想法的機會:一位名為佐拉 (Zola)的患者,被診斷出在頸部上長有無法用手術方式切除的肉瘤。

前文有提到,在當時治療肉瘤的唯一方式就是手術切除,因此可憐的佐拉等同被判了死刑。柯立想著,或許讓佐拉感染丹毒,是一個值得嘗試的辦法,於是他說服佐拉,開始試驗他的瘋狂想法。

病患佐拉。圖/Cancer Gene Therapy

柯立在佐拉的腫瘤上劃開幾個創口,並塗上化膿性鏈球菌,隨著佐拉感染丹毒,雖然肉瘤組織確實有消退,不過沒有完全消除。

即使沒有完整去除肉瘤,但這個結果依舊讓柯立很興奮,柯立認為細菌感染真的可以有效地對付腫瘤!此外,柯立也推測,應該是當時引起的感染反應不夠強烈,才讓腫瘤無法完全消退。

沒有成功?一定是因為沒有發燒啦!

那麼怎樣才是「夠強烈」的感染反應呢?

柯立覺得「發燒」是感染夠強的指標,於是他從柯霍醫師註3那邊拿到了感染力更強的細菌3,在柯立的獨門配置下,佐拉被感染 1小時後就出現發冷、噁心、嘔吐等感染症狀,並高燒到 41 度,感染症狀整整持續了 10 天。

更重要的是:在兩星期內,佐拉頸部的腫瘤竟然完全消失,並且在 8 年半的追蹤下都沒有復發!

柯立對這次試驗的成功感到相當振奮,因此在後續的兩年他持續用活細菌感染 10 個腫瘤病患,希望也能治癒他們。

發燒,被柯立當作感染夠嚴重的指標。圖/Pixabay

可惜的是,這兩年來的試驗結果並不理想,有些病患在高燒後,腫瘤確實消退;有些病患出現高燒,但腫瘤卻不會消退;有些病患百毒不侵,不會發高燒;而有兩位病患則因感染後高燒不退,導致死亡4

因此柯立決定不再使用活細菌感染病患,他改用熱滅活註4的化膿性鏈球菌 (Streptococcus pyogenes)和黏質沙雷菌 (Serratia marcescens),將其混合後注射到患者體內,他發現這種方式更安全,也能引起患者高燒。

在往後的試驗中,這種混和熱滅活菌被稱為「柯立毒素」 (Coley’s toxin)。

柯立毒素的興起和殞落

隨著柯立毒素的使用,柯立得到不少正面的結果,他將這些結果彙整出版5。因柯立的報告相當豐富,柯立毒素也廣為大眾所知,民間不少人認為柯立是治療癌症的明日之星。

除了民間,當時一些醫師也響應了柯立毒素的治療效果,Parke-Davis 製藥公司更生產了柯立毒素作為藥物使用。隨著消息傳到國外,德國一家小藥廠 Südmedica 也生產了柯立毒素。

化膿性鏈球菌啟發柯立製作出柯立毒素。圖/Wikipedia

然而,雖然民間和少部分醫師認可柯立毒素的效果,但醫學界普遍對柯立毒素的效用帶著高度懷疑,不少醫師都認為柯立毒素不過是「蒙古大夫的小偏方」。

其中,柯立在紐約醫院的上司更是最強力反對他的人(可想見柯立在醫院的壓力有多大!),而美國癌症學會 (American Cancer Society) 更毫不客氣的表示:「我們還需要更多研究確定這種療法,是否對腫瘤病患有任何幫助,如果有的話!」。

美國癌症學會意思就是:他們認為這東西根本沒有用,連試都不必試!

面對醫學界的質疑,柯立雖然也想反駁,但無奈的是,他面對好幾個無法迴避的問題。

第一:最重要的,他無法解釋柯立毒素的「作用機制」!

雖然他有兩個想法:一個是細菌本身的毒素殺死了癌細胞;另一個是細菌引發的高燒,可能讓身體產生一些機制,讓腫瘤消退。但柯立都沒有對自己的想法,有更深入的研究。

第二:柯立並沒有一套有系統的實驗方法!

例如每次給病患注射柯立毒素時,不僅毒素的比例和劑量都很隨興,連注射的部位也都不同。加上病患的反應各異,太多變數的存在,讓不少醫師根本無法重現柯立的結果。

第三:感染後的副作用太危險了!

柯立毒素要發揮效用,要讓病患有足夠強的感染反應,「發燒」就是關鍵中的關鍵。雖然柯立毒素是用熱滅活的細菌,感染風險已低於活細菌,但讓病患產生感染反應的風險還是很高,稍有不慎就極有可能死亡。

因此,這種明顯將病患至於高風險的行為,也引起很多醫師反感。

足夠強的感染反應,「發燒」就是其中的關鍵。圖/Pexels

放射線療法成為主流,柯立毒素淪為偏方

除此之外,20 世紀初,隨著放射線療法的問世,放射線療法逐漸成為主流的癌症治療方式,這更使得柯立毒素成為公認的偏方,而柯立也被醫學界視為庸醫,只剩柯立及少數相信柯立毒素療效的醫師,仍用這種「偏方」為病患治療。

到了 1936 年柯立過世,柯立毒素幾乎淡出了歷史舞台,二十多年後, 1963 年美國 FDA 甚至公告:不承認柯立毒素為核准的藥物!

至此,柯立毒素的傳奇「暫時」告一段落。

雖然柯立毒素逐漸被人們淡忘,但柯立的女兒海倫 (Helen Coley Nauts) 卻不這麼想,她不僅重新整理了柯立的病患資料,更成立美國的癌症研究中心 (CRI) 、招募了一群頂尖科學家,配合著免疫學的爆炸式成長,當年細菌療法的謎題一一被解開,柯立與柯立毒素也不再被視為一文不值……

註釋

  1. 丹毒:由化膿性鏈球菌所引起的急性皮膚炎症,以患部皮膚紅如塗丹故名,多發於小腿或者面部。患處皮膚有略高出皮面的大片紅腫,邊緣明顯而且表面光滑發。患部附近淋巴結腫大,伴有寒顫、高燒、頭痛、骨節疼痛等全身症狀。
  2. 肉瘤 (Sarcoma):指惡性軟組織肉瘤,就是由中胚層間葉細胞癌化從各種軟組織如脂肪、骨骼肌、平滑肌、神經、神經鞘、血管及各種結締組織等產生的肉瘤。
  3. 羅伯.柯霍:德國醫師兼微生物學家,為細菌學始祖之一,與巴斯德共享盛名。1905年,因結核病的研究獲得諾貝爾生理學或醫學獎。柯霍因發現炭疽桿菌、結核桿菌和霍亂弧菌而出名。他發展出一套用以判斷疾病病原體的依據——柯霍氏法則。
  4. 熱滅活 (heat inactivation),是用高溫殺死細菌。這種方式會讓細菌死亡並無法繁殖,但不會完全破壞細菌的結構。在注射到人體後,免疫系統仍能辨識這些病原體,並產生免疫反應。

參考資料

  1. Hoption Cann, S. A., van Netten, J. P., & van Netten, C. (2003). Dr William Coley and tumour regression: a place in history or in the future. Postgraduate medical journal79(938), 672–680.
  2. Coley’sToxins
  3. Loughlin K. R. (2020). William B. Coley: His Hypothesis, His Toxin, and the Birth of Immunotherapy. The Urologic clinics of North America47(4), 413–417. https://doi.org/10.1016/j.ucl.2020.07.001
  4. Coley W. B. (1991). The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clinical orthopaedics and related research, (262), 3–11.
  5. Coley W. B. (1910). The Treatment of Inoperable Sarcoma by Bacterial Toxins (the Mixed Toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proceedings of the Royal Society of Medicine3(Surg Sect), 1–48.

細菌療法系列文章

  1. 太瘋狂了!注射細菌,竟然能夠「以毒攻毒」打敗癌細胞?細菌療法的前世(上)
  2. 太瘋狂了!注射細菌,竟然能夠「以毒攻毒」打敗癌細胞?細菌療法的前世(下)
  3. 不只能夠「以毒攻毒」,當細菌從攻癌武器變成交通工具!細菌療法的今生(上)
  4. 不只能夠「以毒攻毒」,當細菌從攻癌武器變成交通工具!細菌療法的今生(下)

數感宇宙探索課程,現正募資中!

文章難易度
羅夏_96
52 篇文章 ・ 339 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟


2

6
3

文字

分享

2
6
3

既是科學家,也是樂團鼓手!──專訪數學物理學家程之寧

研之有物│中央研究院_96
・2022/03/11 ・5978字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|郭雅欣、簡克志
  • 美術設計|林洵安、蔡宛潔

在學術與搖滾的多重維度上行走

還記得美劇《The Big Bang Theory》嗎?劇中常常出現的物理名詞「弦論」,是描述物理世界基本結構的理論。中央研究院「研之有物」專訪院內數學研究所程之寧研究員,她正是研究弦論的科學家,也是熱愛音樂的搖滾樂團鼓手,這種跨領域身份並不衝突,兩邊都需要創造力與紀律。由於天生斜槓的性格,讓程之寧在數學和物理領域大展身手,透過數學的深入探討,她試圖將弦論更往前推進。最近程之寧更跨足到人工智慧領域,為學界提供理論物理上的貢獻。

中研院數學所程之寧研究員,主要研究 K3 曲面(特殊的四維空間)的弦論,她發現模函數和有限對稱群之間有 23 個新的數學關聯,稱之為「伴影月光猜想」(Umbral Moonshine)。圖/研之有物

萬有理論和難以捉摸的「月光」

世界從那裡來呢?物理世界的本質是什麼呢?回答這樣的大哉問,一直是理論物理學家所追求的目標。從牛頓力學(日常應用)、廣義相對論(探討很重的物質)到量子力學(探討很小的物質),隨著物理學不斷發展,我們似乎一步步接近答案,但至今卻還未走到終點。

舉例來說,如果有個東西很重又很小,就像「黑洞」,或是大爆炸時的宇宙,我們要怎麼用數學描述?於是科學家試圖整合廣義相對論和量子力學,找出所謂的「萬有理論」(Theory of Everything)──能完全解釋物理世界基本結構的核心理論。

程之寧研究的「弦論」就企圖發展成這樣一個萬有理論。弦論一如其名的「玄妙」,它設定宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。

「人類一直以來的夢想之一就是,如果能用一句話解釋所有事情,那該有多麼美好。」中研院數學所研究員程之寧說道。

程之寧的研究牽涉到數學上的「月光猜想」(Moonshine)與弦論中 K3 曲面的連結。月光猜想是存在於模函數係數與特殊群之間的數學關聯,程之寧與其研究夥伴共發現了 23 個新的關連,並稱之為「伴影月光猜想」(Umbral Moonshine)。

基於弦論的假設,我們的世界是十維的,除了人們在日常生活中可以感知到的 3+1 維(空間+時間),還有六維是因為尺寸太小而無法用肉眼觀察的,這些看不到的維度影響著物理世界,最終也產生了我們這個物理世界所需的各種條件與特性。

綜觀程之寧的研究,橫跨了物理與數學兩個領域,她笑稱自己「天生斜槓」。在學術上,程之寧原先喜歡文學,之後卻走上數理研究的道路;在音樂上,程之寧喜愛搖滾樂,至今仍在自己的樂團裡擔任鼓手。

她如何看待自己一路走來的各種轉折?游徜在數學與物理之間,她又對這兩個領域的連結有怎樣的體會?在與「研之有物」的訪談中,程之寧侃侃而談她的經歷、想法,以及對學術研究的熱忱所在。

在弦論的設定中,宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。圖/iStock
  • 請問您是如何對數學及物理產生興趣?從何時開始?

一開始考大學時,其實我想去念中文系(笑)。不過,因為我高中是選理組,而且只念了一兩年,對文科考試比較沒把握,加上對工程科系沒興趣,最後就選擇臺大物理系就讀。

後來發生兩個轉折,第一個是我很認真的去修了大學中文系的課,結果發現真的沒有想像中容易。第二個就是我發現物理系的課還蠻有趣的,像量子力學和相對論,讓我覺得還想再多學一點、多知道一點。

我開始覺得如果念完臺大物理系就停下來,好像有一種小說沒讀完的感覺,所以就想繼續讀碩士班。那時還沒有覺得自己會走上學術研究的路,單純抱著想把故事看完的想法。

  • 後來是如何接觸到弦論?弦論是如何引起您的興趣?

後來我去荷蘭念碩士,指導教授是諾貝爾物理獎得主 Gerard ’t Hooft。他其實蠻不認同弦論,但他對於如何處理量子力學與相對論很有興趣。

當時 ’t Hooft 教授在建議我碩士題目時就說:「你也知道我不太認為弦論是一條正確的道路,不過聽說弦論最近真的在量子重力這一塊有一些成果。不如妳去讀一讀,看看是不是真的有一些東西在那裡,也可以比較一下其他量子重力理論。」

在我很認真的比較各個量子重力理論之後,就變成弦論派了(笑)。’t Hooft 教授對此也保持開放態度,他有幾個不錯的博士生後來也變成弦論學家,之後我在 Erik Verlinde 的指導下念博士時,就完全以弦論為研究主題了。

  • 研究理論物理會影響您對現實世界的理解嗎?

蠻多人會問我說,妳學了量子力學,是不是就會比較了解這個世界不是非黑即白?或問我量子力學跟宗教是不是有關?可是我覺得我分得很開,我不會去做這樣的連結,我還是活在現實裡,走路時大部分都在專注於自己不要跌倒之類的。

如果真的要講,我蠻感激我們的存在,因為我所學的東西讓我知道這是沒有必然性的。我們能這樣以一種人形的很奇怪的生物的形式存在,然後在這樣一個環境過一輩子,是機率很低的事情,而且我還蠻開心我是當人,而不是奇怪的阿米巴蟲或外星生物!有些人會從這裡連結到宗教或轉世,但我不會,我就停在這裡。

  • 來談談您的研究,伴影月光猜想與 K3 曲面弦論之間是什麼關係?

弦論中有很多的可能性,我們可以挑選特定的四維,然後假設這四維空間是個 K3 曲面。例如說,我們可以把兩個甜甜圈乘起來,在上面做特殊的奇異點,來製造出一個 K3 曲面。這個曲面有一些很有趣的對稱性。從弦論的角度來講,我們可以透過這個過程,找出一個解釋為何有伴影月光猜想的框架。

「把維度乘起來」這個概念很難想像,但這在數學上是成立的。我舉例一個我們能想像的「乘起來」:如果有一個空間是一條線,另一個空間是一個圓,乘起來就變成一個圓柱形,從一個方向剖面可以切出圓,另一個方向則切出線。而在數學上,不管幾維,能不能在紙上畫的出來,都可以這樣操作。

程之寧向「研之有物」採訪團隊解釋「把維度乘起來」的概念。圖/研之有物
  • 如何透過計算,發現捉摸不定的「月光」?

有時候這看似湊巧,一個數學上的函數正好就是弦論某個問題的答案。但其實並不是真的那麼巧,弦論看起來很有彈性,好像什麼都可以解釋,但它其實有非常多結構及限制。

當我在計算一個弦論理論時,它的內部結構可能原本就具有某些特定的性質,然後我再去觀察數學中,有這樣性質的函數可能就只有一兩個,只要再初步算一下,就能知道哪一個是答案。弦論學家日常的計算常常是這樣的,所以這是巧合嗎?是也不是。

  • 您曾經發現 23 個新的伴影月光猜想,您對這類題目特別有興趣嗎?

我覺得數學有兩種,有些數學家喜歡系統性的事情,就像蓋房子一樣,在數學裡建造一個很美麗、非常有系統性的結構,可以把很多事情都放入這個結構來理解。

另一種比較少數的,就是喜歡獵奇,去收集分類奇奇怪怪的特殊東西,例如有這些性質的函數在哪裡?可能你算出來就是 5 個,你也不知道為什麼。月光猜想很明顯就屬於這一類。

兩種的樂趣感覺是不一樣的,我覺得應該都很棒,但我可能是屬於偏好獵奇的這種。

  • 您的研究連結了物理上的弦論與數學上的月光猜想,您怎麼看待這兩個知識體系的互動?

弦論是一個需要很多數學理論配合的物理理論,它是一個有點繁複的框架,我們什麼都要會一些,才能看懂這個理論。當你把許多不一樣的學門的知識加起來,有時候就會在某一個學門──例如幾何──有意想不到的收穫。

弦論在數學上也扮演探索與找尋新方向的角色,讓數學家有新的發現。雖然最後數學定理的證明還是得仰賴傳統數學方法,但在這二三十年間,我們一直從弦論身上找尋數學研究的新方向或有趣的猜想,看到了弦論與數學之間的互動。

數學家有兩種,一種人喜歡建立美麗又有系統性的結構,另一種人喜歡尋找和收集奇怪特殊的數學物件(比如函數),程之寧表示自己屬於後者。圖/研之有物
  • 剛才一開始提到,您高中只念了一兩年,是因為對學校沒有興趣嗎?

其實我一直都覺得上學很無聊。我小時候臺灣教育和現在很不一樣,一班 50 幾個人,老師必須盡量軍事化管理,大家最好都一模一樣,比較好管理。我和學校一直處於互相磨合的狀況,我自認已經努力配合學校,但學校一直覺得我在反抗,這可能是一個認知上的差別。

舉例來說,我小學的時候不想睡午覺,可是老師說大家都一定要睡午覺,不睡午覺的人要罰抄課文,所以我早上到學校時就會把已經抄好的課文交給老師。我覺得我這樣做是在配合老師的規定,可是以老師的立場會覺得我在反抗,學校教育中我遇到了很多類似的情況。

還有就是不喜歡高中的升學氛圍,同學和老師好像都只有一個活著的目標,就是「考大學」。我當時無法習慣升學氛圍,感覺好像活在平行宇宙一樣。

  • 高中休學後,您去唱片行工作,可否談談當時的想法?

我國中開始聽音樂,這是我除了看書之外的重要興趣,我也很快就喜歡上了搖滾樂。高中休學的時候,我唯一的謀生技能可能就是我對音樂的各類知識吧!所以我就去了唱片行,這是唯一一個我會做又有興趣的工作,還好那時候還有很多唱片行(笑)。

  • 對音樂的熱忱,讓您與朋友共組了樂團,並擔任鼓手。您是否比較過樂團生活和學術研究之間的異同之處?

有些人覺得我這樣很跳 tone,但我自己覺得還好。音樂和學術都是我發自內心覺得好玩的東西,兩者也有相同之處,例如它們都需要創造性,也都有需要了解的框架。數學需要嚴謹的證明,音樂演奏也需要遵循結構,例如不能掉拍。

音樂領域還有一點和數學類似──玩樂團的圈子也是以男性為主。我們樂團則是只有一個男生,其他都是女生,可能我真的天生對框架有點遲鈍,玩團之後才發現:「怎麼大家都是男生?」

程之寧表示,學術界仍有許多性別不平等問題未受重視。圖/研之有物
  • 也就是說,目前數學學術圈仍是男性主導,在研究路上,您有因為性別而感受到一些衝擊或眼光嗎?您怎麼面對?

有。那感覺很明顯,日復一日地要去面對,尤其是年紀還比較輕、還必須每一天去證明自己的能力的時候,特別有感。

我遇到時的反應就是,在心裡暗罵一句髒話,然後繼續做我要做的事。我不會想改變別人的想法,感覺那是浪費時間,就算環境給我的阻礙是這樣,我還是繼續去做該做的事。

可是有些事情沒那麼簡單,現在我也當過老師,有時候會看到年輕女生在學術界因為性別而被欺負,或遭到不公平待遇、甚至騷擾。

對此我感到心痛,覺得為何我們學術領域還是這樣的狀況?甚至為什麼性騷擾至今還是一個議題?可以確定的是,學術界許多性別不平等問題未受到重視。

  • 您現在已經有傑出的研究成果,還會因為性別而遭受質疑嗎?

我現在比較會遇到一個狀況反而是來自學生的質疑。我在荷蘭阿姆斯特丹大學教書時,有時候學生會因為我是女教授,而且我的外表在許多歐洲人眼中看起來就像小妹妹,所以比較容易去挑我的毛病。

在課堂上,下面坐的可能都是男學生,只有一兩個女學生,那個氣氛就會變得很奇怪。例如說偶爾會聽到學生評論我的身材或樣貌。

我有和其他一些在歐洲或美國的女性教授聊過這樣的問題,似乎不少人都有類似的不太愉快的經驗。感覺不是很好。

  • 看到您最近的研究和人工智慧(AI)有關,為何會想往這個方向發展?

我有兩個動機。一個就是我真的想深入了解人工智慧。我也可以像普羅大眾,看看 AI 下圍棋,讚嘆「哇!好厲害!」這樣就好,可是我覺得我一定可以真的去理解它,這可能就是數學家的自大吧!

另一方面,我知道對科學研究來說,未來 AI 將會是一個非常重要的工具。這是「在職訓練」的概念,我可能會用到這個新工具,或以後我可能會需要教這樣的課,因為學生是下一代的科學家。因為這些原因,我覺得我需要去訓練自己使用新的工具。在我的領域裡,也有一些有趣的、還沒被解答的科學問題,是 AI 有可能幫得上忙的,我看到了一些潛力。

  • 弦論和 AI 感覺差距很大,AI 也可以應用到弦論的研究嗎?

乍看之下,弦論的確比較抽象,也不像其他許多實驗會產生大量數據。但其實弦論有大量的可能性,我認為使用 AI 來在這些巨量的可能性當中搜尋特別有趣的理論,是一個有潛力能夠加深我們對弦論理解的新的研究方法。

而且 AI 的應用絕不僅限於巨量資料。如果是面對一些比較新的挑戰,在沒有現成的演算法可以用的情形之下,可以自己做出需要的功能嗎?這過程我覺得也非常很有趣,而且應該是會有成果的一條路。這種不是那麼顯而易見的事情,我覺得很有挑戰性,也蠻好玩的。

除了用 AI 來幫助物理跟數學的研究之外,我也試著物理研究當做靈感來源,找出新的 AI 的可能性,我覺得這也是一個很有趣的研究方向。我現在有和 AI 的學者合作,嘗試做出一些創新的演算法,真的還蠻有趣的。

  • AI 對您而言是全新的領域,您如何面對跨領域遇到的門檻?

一開始會覺得真的要去碰這個新的領域嗎?其實現在也還是偶爾會有這樣的懷疑。我在弦論領域可能已經是專家,但去了一個新的領域,我學得不會比二十歲的人快,要怎麼去跟人家競爭?是不是在浪費時間?

但也會想,與其想這麼多,不如先做再說。到目前為止我做了兩年多,感覺還蠻好的,我有學到東西,也有做出小小的貢獻。

其實我還蠻感激有這樣的學習機會。對我來說當科學家最大的好處就是,去搞懂一個新的東西就是工作的一部分。當科學家雖然蠻辛苦,但就結果論來說,我還蠻開心能當一位科學家!

延伸閱讀

  1. Moonshine Master Toys With String Theory | Quanta Magazine
  2. Mathematicians Chase Moonshine’s Shadow | Quanta Magazine
  3. 林正洪教授演講 一 怪物與月光(Monster and Moonshine),《數學傳播》

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
8 篇文章 ・ 16 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook