0

0
0

文字

分享

0
0
0

顛覆癌症治療的革命──免疫治療的前世、今生與未來

科學月刊_96
・2018/12/12 ・3266字 ・閱讀時間約 6 分鐘 ・SR值 732 ・高於十二年級

  • 李岳倫/臺灣大學生化科學博士,美國Scripps研究院博士後研究。任職於國家衛生研究院癌症研究所,專攻粒線體在腫瘤微環境癌細胞免疫逃脫之角色,以及癌症治療藥物之研發。

如果人類社會因大數據、人工智慧和機器人正在進行第四次工業革命,那麼,與癌症的博弈也因免疫治療而進行觀念顛覆。

圖/pixabay

前言

癌症連續 36 年蟬聯國人 10 大死因的首位,令人聞癌色變。不過,其實癌症並不一定是絕症,尤其近年免疫治療出現後,讓癌症治療不只是狙殺癌細胞,甚至成為一種可控制的慢性病。現今,衛福部健保署也已同意將第一代免疫治療藥物納入健保給付;接著在今(2018)年9月6 日公告法源,開放特定癌症病人自體免疫細胞療法,宣示進入癌症免疫治療的新階段。

過去 4、50 年來,外科手術、化學療法、放射療法和標靶藥物一直是最主要的4種癌症治療方式。這些療法的確讓癌症病人的5年存活率增加。

然而,癌症並沒有因此銷聲匿息,令人不禁想問,我們真的用對了策略嗎?因為以殺死癌細胞為目標的高劑量放射線、化療或標靶藥物,一旦出現抗藥性後,癌細胞會變得更加兇猛,最後導致死亡,這也讓癌症研究者不得不重新思考對抗癌症的新策略。

2009 年,來自美國默菲特癌症中心(Moffitt Cancer Center)的蓋騰比(Robert A. Gatenby)在Nature期刊發表一篇名為〈改變對於癌症的策略〉(A change of strategy in the war on cancer.)的文章,建議「控制癌症(即下文之免疫治療)」的策略可能比「治癒癌症」更適當。

和治癒癌症相比,控制癌症或許是未來的一條出路。圖/pixabay

癌症免疫治療歷史

癌症免疫治療是最近才開始發展的嗎?其實不然。早在 19 世紀末有位名叫柯雷(William B. Coley)的外科醫師,發現手術後受感染的癌症病患,復發的情況比沒受感染的病患少。他認為細菌感染啟動身體某些機制去抵抗癌症,然而當時並沒有受到重視,因為放射治療的出現,掩蓋住免疫治療出線的機會。

1970 年代,發展出免疫監視假說 (Immunosurveillance),認為癌細胞每天都存在你我身體內,腫瘤的發生是因躲過免疫系統的監控,但此觀念卻直到  2001 年才被廣泛接受。

1980 年代,則開始藉由施打干擾素(interferon, IFN)、介白素─2(interleukin 2, IL-2)等活化免疫功能來治療癌症,如介白素─2的治療是由癌症免疫治療的先驅──美國國家癌症中心的羅森伯格(Steven A. Rosenberg)開始;然而,治療卻帶來嚴重的副作用,且僅在少數腫瘤中有效。

免疫治療主要包括免疫檢查點抑制劑、T細胞輸入療法、嵌合抗原受體T細胞療法(Chimeric Antigen Receptor T Cells, CAR-T)和癌症疫苗等。其中,2014 年唐獎之生技醫藥獎和 2018 年諾貝爾生理學或醫學獎就頒給了艾利森(James Allison)和本庶佑(Tasuku Honj),表彰他們分別發現 T細胞表面的 2 種免疫檢查點抑制因子:CTLA-4 和PD-1。那麼,免疫治療又是如何走上癌症治療的主舞台?

早期免疫治療的副作用很高,經歷了一番波折才重新開始受到重視。圖/pixabay

場景應由一位從絕望到重獲新生的 7 歲美國白血病小女孩艾蜜莉(Emily Whitehead)揭開帷幕。2010 年 5 月,她被診斷出患有急性淋巴白血病,和大多數白血病病童一樣,開始接受化療,16 個月後,血癌復發,危在旦夕,於是轉到費城兒童醫院接受賓州大學正進行的血癌 T細胞治療的實驗性臨床試驗。

治療期間,雖出現 CAR-T 治療的副作用──細胞激素風暴,產生高燒、呼吸衰竭和休克等症狀──不過治療結果非常成功。

2012 年,艾蜜莉成為全球第一位接受 CAR-T免疫療法治癒的案例,再也沒有復發過,她的父母還成立基金會,用來支持免疫治療研究。也因此點燃大家對 CAR-T 細胞免疫療法的研究熱潮。2017 年,美國藥物食品管理局(FDA)核准通過用於臨床癌症治療。

艾蜜莉的康復,使得CAR-T免疫療法逐漸受到重視。圖/pixabay

時間往前轉,另一個明星──免疫檢查點抑制劑也早已悄悄登臺扮演開路先鋒的角色。1996 年,艾利森在Science期刊發表使用抗 CTLA-4抗體,成功清除小鼠體內腫瘤的研究。

2011 年,經美國 FDA 審核通過用於癌症治療,2013 年,「癌症免疫治療」便被 Science雜誌挑選為當年最大的科學突破!除了 CTLA-4 外,1992 年,京都大學的本庶佑在 T細胞表面發現受體蛋白 PD-1 可抑制 T細胞的活化。

從此,PD-1 成為閃耀的新星,藥廠積極開發以此蛋白為標靶的抗體,並於 2014 年審核通過,成為癌症治療用藥。前美國總統卡特(Jimmy Carter)就是使用第一個 PD-1 抗體治癒的,他的成功再為免疫療法打進一劑強心針!

癌症免疫療法的未來

未來,免疫療法是否一帆風順呢?未必,免疫療法雖讓人感到樂觀,但仍有許多問題需要解決,例如,檢查點抑制劑對患者的反應比例不高,抗 PD-1 療法只有 20~30%;治療費用昂貴,動輒上千萬臺幣,免疫抑制劑治療費用雖便宜些,但也需 300~400 萬;具有致死的副作用,如細胞激素風暴、心臟毒性等;腫瘤微環境的調控可能使免疫治療失效。

從這些負面訊息顯示,尚有許多機制及技術可再精進,例如 CAR-T 針對實體癌症(solid tumor)仍有努力空間;全盤了解癌細胞所處的腫瘤微環境;藉基因大數據、生物標記與免疫評分的協助,透過部位、病理、基因突變和免疫特性,將病患分類,以達到個人化免疫療法,減少副作用,並尋找加入免疫療法的組合治療。

而在癌症免疫療法大浪潮下,對研究者及年輕學子又有何啟發?首先,筆者認為利用個人免疫系統來治療、控制癌症,而不一味追求消滅癌症,是正確的大方向,符合人體自然原則,較有機會成功。這也是為什麼已有人提出「與癌症共存」概念的原因吧!

與癌症共存,而非將之消滅,或許是未來癌症醫學的發展趨勢。圖/pixabay

那為何之前沒有成功?主要是對人體免疫系統運作機制不夠清楚,且在思考癌症治療策略時,只針對癌症細胞本身,而忽略癌細胞周圍互相影響的細胞所共同構成的腫瘤微環境。因此,加緊投入上述的基礎研究為首要工作,若能更了解癌症到底是如何躲過免疫系統,愈有機會預防與控制癌症。

另一方面,在思考免疫系統與腫瘤微環境概念時,別忘了中醫治癌早已提出「帶瘤生存」、「種子與土壤」等理論,其實這與西方醫學目前根據個人微環境及生物標記(體質)進行免疫療法的觀點是不謀而合的。因此,在理念相通的情況下,未來中、西醫結合治療癌症也許是一個不錯策略。

結語

癌症免疫治療雖有數十年的研究歷史,但隨著對癌症免疫學的更多認識,近年來免疫治療才能在臨床治療上得到突破性的進步。然而,現階段仍有許多尚待解決的問題,期待未來可利用個人化免疫治療來控制癌症,而不一味追求消滅癌症。

也許有一天,人們在面對癌症時,也能像治療高血壓、糖尿病之類的慢性病一樣,透過藥物控制,與其和平共處,維持有品質的生活。

延伸閱讀

  1. 鄭安寧、李岳倫,〈癌細胞免疫逃避可恥,但是很有用〉,李岳倫癌症科學研究室。
  2. 李岳倫,〈治癌變控癌 讓它變成慢性病〉,聯合新聞網。
  3. 鄭志凱,〈從科學新知、到創業、到科普──CAR-T正顛覆癌症醫療,臺灣在哪裡?〉, 獨立評論@天下。

〈本文選自《科學月刊》2018年11月號〉

一個在數位時代中堅持紙本印刷的科普雜誌,

讓你在接收新知之餘,也能感受蘊藏在紙張間的科學能量。

文章難易度
科學月刊_96
235 篇文章 ・ 2571 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
0

文字

分享

0
1
0
對抗實體腫瘤癌症!新型免疫療法與 CAR-T 技術再升級
PanSci_96
・2023/03/12 ・3123字 ・閱讀時間約 6 分鐘

治療血癌的醫療新科技 CAR-T,是一種把 T 細胞做成活的藥品,釋放到身體內治療癌症的新療法,能夠把血液和淋巴系統裡的癌細胞清理得乾乾淨淨。

2022 年 11 月出現了一種新的免疫療法,目前已通過人體臨床一期試驗。其能夠攻克肺癌、乳癌、大腸癌等會長出實體腫瘤的癌症,而這些實體癌就是目前 CAR-T 還難以突破的瓶頸。

究竟這是什麼樣的療法?有沒有副作用呢?又有哪些障礙等待突破?

可以治療哪些癌症

這次公開的新醫療技術還沒有全球一致的名稱,我們暫時先採用生醫領域對這類操控 T 細胞科技的俗稱:個人化 T 細胞受體 T 細胞療法(personalized TCR T-cell therapies;本文使用「TCR-T 療法」稱之),目前已通過人體臨床一期試驗,其結果發表於《Nature》期刊。

TCR 為 T 細胞受體(T cell receptor)的縮寫,是位在細胞表面的一種蛋白質。T 細胞則是人體白血球的一種,可以將其比喻成一批 24 小時在體內巡邏的軍隊,T 細胞會使用 TCR 來分辨正常細胞和外來異物,一旦偵測到病毒、細菌或癌細胞,就會馬上發動攻擊,把它們殺掉。

接著,我們進一步來看《Nature》上的 TCR-T 人體試驗報告。結果表明,一期臨床試驗總共治療 16 位病人,其中 5 個人腫瘤大小維持不變或縮小了一點,11 個人的腫瘤還是繼續長大。

看到這結果你可能會想:效果明明很差啊!

TCR-T 療法目前已通過人體臨床一期試驗,受試者均為實體癌症病人。圖/Envato Elements

是這樣的,TCR-T 療法對於專業人士來說,有三大看點:

  1. 這 16 名患者都是實體癌症的患者,實體腫瘤是目前各種細胞療法公認,最難攻克的敵人,而且佔了超過九成的所有癌症患者人數。
  2. 受試病人的癌症種類分散:11 人是大腸直腸癌、2 人是乳癌,肺癌、卵巢癌、皮膚惡性黑色素瘤各 1 人。
  3. 治療後的病理檢查證實,TCR-T 療法使用的改造 T 細胞有聚集在腫瘤組織,並且留下了發動攻擊的痕跡。也就是說,TCR-T 確實能向導向飛彈一樣,準確追蹤癌細胞,而且不只追得到,還能展開轟炸!

這次的人體臨床試驗是為了確定 TCR-T 療法的安全性,因此先使用較低的劑量來治療;試驗結果驗證了其可行性,副作用也在可接受範圍內。故接下來的目標為調整出最佳劑量和確認治療條件,且有機會成為泛用型的療法,可治療多種癌症,不侷限於只能針對單一癌種。

製作原理與方法

TCR-T 療法可謂「基因工程+數位科技」攜手合作的成果。

概略來說,TCR-T 是融合了兩股力量才能實現的:一為電腦的演算法,用來推測要怎樣修改 T 細胞裡的特定基因;另一個是基因剪刀 CRISPR-Cas9,按照計算出來的結果去編輯細胞基因。

CRISPR 是這幾年非常熱門的基因編輯技術,簡單來說,這項技術運用了一套特殊的蛋白質加上核酸標記,能夠準確的切下一小段 DNA 序列,然後嵌入人工設計的 DNA;在這裡,我們需要改寫的就是 TCR 的基因。

TCR-T 療法為基因工程與數位科技合作的成果。圖/Envato Elements

人體的細胞會把自己內部製造、或是外來入侵的蛋白質用酵素切碎成片段,接著把這些碎片搬運到細胞表面,放置在一種叫做「第一型主要組織相容性複合物」(Major Histocompatibility Complex class I;簡稱 MHC-I)的分子的頂端。T 細胞會用 TCR 去判讀 MHC-I,如果發現某個細胞表面出現異常的碎片,便會判斷這個細胞已經被病毒、細菌感染或發生病變,馬上出手清除。

TCR-T 療法便是用人工去改寫 T 細胞裡的 TCR 基因,使轉譯出來的 TCR 蛋白質分子結構發生變化,讓 T 細胞變得能夠認出癌細胞碎片,消滅掉腫瘤細胞。

製造 TCR-T 和進行治療的過程相當繁複,可拆解成 8 個步驟:

  1. 從患者身上抽血,並切下一小部分腫瘤組織,利用 DNA 定序,比對人體細胞和癌細胞的 DNA,找出腫瘤細胞的突變。
  2. 建一個 DNA 資料庫收錄這些腫瘤細胞突變,接著設計演算法,來預測哪些突變產生的蛋白質碎片最可能「挑釁」到 T 細胞,激起免疫反應。
  3. 從患者的血液樣本裡篩選 T 細胞,目標是找出 T 細胞帶有、能對這些蛋白質碎片產生反應的 TCR。
  4. 截錄這些 TCR 的基因片段,加以微調、複製。
  5. 用 CRISPR-Cas9 來改造沒有攻擊癌細胞能力的 T 細胞,插進新的 TCR 基因片段。
  6. 把這批改造後的 T 細胞放進培養槽,分裂繁殖成更大的數量,接著冷凍儲存。
    這時製備作業就已經完成,相當於養了一批腫瘤特種部隊,專門去獵殺癌細胞,接下來就是治療患者的階段了。
  7. 先讓患者接受化療,減少體內免疫細胞的數量。
  8. 把改造過的 T 細胞解凍注射進患者體內,觀察破壞腫瘤的療效,同時也要留意 T 細胞可能引發的副作用。
TCR-T 療法的製造過程。圖/參考資料 1

而 TCR-T 有可能導致的副作用有:「細胞激素症候群」或「神經毒性症候群」,例如受試病人中就有人因為細胞激素上升而發燒,也有 1 人發生腦炎,走路和寫字都困難。

新 CAR-T 療法持續進化

若將 CAR-T 和 TCR-T 比較,可以把 CAR-T 想像成是 T 細胞直接加裝追蹤系統的外掛,提升命中機會;而 TCR-T 則像是精準育種後的 T 細胞,挑選出有效的基因,用來修飾 T 細胞,強化原本就有的火力,讓它發揮得更好。

CAR-T 療法亦持續突破,不斷進化出新型態的技術。現在已經發展出一種新技術,把一批 CAR-T 細胞封裝在特製的水凝膠裡面,其內還摻著能提高細胞活性的細胞刺激因子,打進人體後會慢慢崩解融化,釋放出裡面的 CAR-T 細胞;該技術發表在 2022 年 4 月的《Science》。

CAR-T 療法原始的做法是:把 CAR-T 細胞用吊點滴的方式注射到靜脈血管裡,順著血液循環去攻擊癌細胞;但是這樣做,CAR-T 細胞可能在人體環境裡面不斷消耗掉活力,如果攻擊對象是實體腫瘤的話,很容易後繼無力,沒辦法消滅掉腫瘤。此外,實體腫瘤還有各種方法來武裝自己,例如:改變腫瘤微環境來抑制 CAR-T 細胞的活性。

有了水凝膠封裝的方式,就可以緩緩一直釋放出 CAR-T 細胞,把細胞濃度維持在一定的範圍內,並且不斷釋出刺激因子,提升細胞活性,等於和腫瘤打持久戰,一點一滴把實體腫瘤瓦解掉。

CAR-T 細胞封於含有細胞刺激因子的水凝膠中。圖/參考資料 2

還有一種對策:讓 CAR-T 細胞自帶興奮劑。

在腫瘤微環境之中,除缺乏氧氣外,腫瘤本身還會分泌出許多化學物質,抑制了 CAR-T 細胞的活性。

解決方法就是:在 CAR-T 細胞中再插進一段基因,讓細胞表面多長出另一種蛋白質,一旦碰觸到癌細胞,就會啟動 T 細胞裡的細胞激素分泌機制,這種細胞激素對於 T 細胞來說就如同興奮劑,能夠提升活性。

也就是說,CAR-T 一邊在奮力廝殺的時候,一邊還自己分泌能夠刺激自己興奮的物質,強化攻擊力和延長續航力,使 CAR-T 能夠破壞實體腫瘤;這項研究也於 2022 年底發表在《Science》。

隨著醫學科技進步,不論是 CAR-T 還是 TCR-T,是否能達成剷除實體腫瘤的終極目標、治好疾病,二者的發展令人期待。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

  1. Foy, S.P., Jacoby, K., Bota, D.A. et al. Non-viral precision T cell receptor replacement for personalized cell therapy. Nature (2022). https://doi.org/10.1038/s41586-022-05531-1
  2. Grosskopf, A. K. et al. Delivery of CAR-T Cells in a Transient Injectable Stimulatory Hydrogel Niche Improves Treatment of Solid Tumors. Science Advances (2022), 8(14). https://doi.org/10.1126/sciadv.abn8264

0

2
1

文字

分享

0
2
1
你該知道的事情:吸菸對身體有害,這句話是真的嗎?
科奇_96
・2023/03/07 ・2845字 ・閱讀時間約 5 分鐘

1 月 12 日立法院三讀通過修正「菸害防制法」部分條文,你有曾想過,小時候而熟能詳的吸菸對身體有害,這句話的出處是哪裡嗎?還有吸菸如何對身體有害呢?

菸草什麼時候開始被認為對身體有害?

最早可以追溯到 1602 年的匿名投稿論文《煙囪清潔工的工作》[ 2 ],其中指出,煙灰經常造成煙囪清潔工出現一些疾病,而菸草可能也有類似的影響,這是已知最早將吸菸與對身體有不良影響掛勾。

但直到 1964 年,美國公共衛生部長路德·泰瑞 (Luther Terry) 發佈了一篇名為《吸煙與健康》[ 3 ]的報告,文章中直接寫到「香菸與人類肺癌有關」、「罹患肺癌的風險隨吸菸期間和每日吸菸數量而提高,並隨戒菸時間而降低」,並做出了一個結論「吸煙會導致癌症」。

吸菸與肺癌常被連結在一起。圖/envatoelements

這時候你可能會想,那所以他們有直接證據來證實嗎?但事實是在這篇論文發布的當下,其他他們手中握有的證據並不是非常足夠,但為何當時候美國公共衛生部長就直接結論吸菸是肺癌的成因呢?

為何研究證據不足,還說吸菸會造成癌症呢?

首先,我們先介紹一下時空背景:

  1. 約 1960 年,美國的吸菸人數推測有大約 40 %,而且其中半數以上的人每天至少吸一包煙,也就是 20 支以上[ 4 ]
  2. 在 1900 年初期,其實肺癌是十分罕見的疾病。1898 年有一名博士生寫了一篇文章,檢視當時全世界所有的肺癌病例,總共只有 140 例[ 5 ]。但二十世紀時,肺癌案例激增,同時香菸的銷售量也增加。
  3. 1950 年代,越來越多期刊將吸菸認為可能是造成癌症的成因[ 7-11 ]

這時候你可能發現了,吸菸和癌症似乎真的有點關聯,那我們該怎麼證明呢?這時候我們可以透過隨機對照實驗來比較吸菸者與非吸菸者,兩者在於肺癌發生率的差別。

你可能會問,那隨機對照實驗是什麼?簡單來說就是找兩組人,並將其分為變因控制幾乎相同的兩組,並讓一組保持不吸菸的狀態,讓另一組保持著持續吸菸的狀態,然後每年檢查他們的身體狀況,這樣我們就可以有個最直觀的證據來檢測吸菸到底有沒有害。

這時候你一定很好奇,那結果呢?這邊我簡單介紹兩個結論:吸菸者死於肺癌的機率平均是不吸菸者的 11 倍,而吸菸量較多的人死亡的風險比不吸菸者高出 120 %[ 3 ],這時候你一定會說,明明都有這些統計數字了阿,那為什麼還會說證據不足呢?

因為當時並不知道吸菸是如何造成肺癌的,就像當時菸草業者說:「有任何人能夠證明香煙煙霧中發現的任何成分是造成肺癌的原因嗎?並沒有。[ 6 ]」,他們的說詞是:「很多都有關聯,但你們沒有明確證據的猜測,這件事就是『不一定』是對的。」

當時還沒有找出香菸煙霧中導致肺癌的明確證據。圖/envatoelements

那為什麼美國公共衛生部就直接說吸菸就會導致肺癌呢?其實他們並不知道,但他們藉由一下幾點原因才決定禁止:

  1. 肺癌人口比例激增發生在吸菸人口增加後。
  2. 絕大多數的肺癌患者有吸菸。
  3. 不同族群中都出現這關聯。
  4. 吸菸風險相當高,如果吸更多菸風險更高。
  5. 肺癌存活率低。

所以雖然沒有像現在一樣多的證據來支持吸菸是如何造成肺癌,但美國公共衛生部還是決定宣布吸菸會導致癌症。

越來越多的證據證明,吸菸是如何傷害身體

前面我們說到,科學家從統計上面找到吸菸與肺癌之間的關聯,現在我要從生物與化學的角度來探討,煙霧與肺癌之間的直接關聯。

這時候我們可以從香菸含有的成分下手,找出其中的致癌物,也就是引起癌症的分子,從實驗數據來看,香煙煙霧至少含有 3500 種化合物和 55 種致癌物質,其中以多環芳香烴(PAHs)和 4 -甲基亞硝胺基 – 1 – 3 – 吡啶基 – 1 -丁酮(NNK)作為致癌的主要分子[ 12 ]

這邊我以 NNK 為例,實驗人員利用給予老鼠不同劑量的 NNK ,來測試老鼠食用多少 NNK 才會罹癌,從數據上來看老鼠的半數致死量 (LD50) 為每公斤 1 克[ 13 ]。半數致死量換句話來說,也就是多少劑量可以造成一半的生物致死,拿上述的實驗為例,假設老鼠平均體重為 300 克,那我們投放含有 0.3 克 NNK 的物質就可以造成半數的老鼠死亡。

那究竟為什麼 NNK 會造成癌症呢?別急,我們先看看 NNK 進入身體內會發生什麼事?不難想像的是,大部分 NNK 就會順著身體的清理機制離開身體,但少部分的 NNK 會被 P450 細胞色素(身體裡的一種蛋白質,主要作用是催化氧化有機化合物)代謝成具活性的 NNK ,而這個活性物質就會與身體裡的 DNA 結合,結合後就會造成致癌基因和腫瘤抑制基因的有害突變,這可以被認為是腫瘤造成的起始[ 14 ]

最後你可能會問,到底是什麼基因突變才會造成肺癌?答案就是 KRAS 和 TP53 這兩個基因,同時它們也被認為是肺癌的預測指標[ 15 ]

菸草中的 NNK 導致 KRAS 和 TP53 兩種基因突變,因此導致肺癌。圖/envatoelements

結論

我們可以簡單來說,吸菸為何會造成癌症,因為吸菸中的有害物質 NNK ,會進入人體中,然後被 P450 細胞色素激活並與 DNA 結合,然後碰巧與 KRAS 和 TP53 其中一個基因結合,就會讓人有很高機率會的癌症。

這個看起來很簡單的結論,其實也是每個科學家花很多時間,與實驗動物們的貢獻,才讓他們說明了燃燒後的菸草產生化學物質是如何對我們的健康產生威脅,使得我們制訂嚴苛的法案,去警告大家香菸的危害,讓我們可以活得更健康。

後記-有趣的小故事 

從歷史我們能夠了解,要釐清真相並非一件容易的事,其實在 1920 年代就有一名化學家 Angel Honorio Roffo 通過實驗證明,燃燒煙草產生的焦油會誘發癌症,可惜不幸的是因為二戰的緣故,德語的醫學期刊就被世人給遺忘,不然就不會有找不到菸草致癌的實驗證據[ 16 ]

參考資料

  1. 菸害防制法三讀祭重罰 禁電子煙 (https://reurl.cc/rZWmYb) (1.14.23)
  2. A brief history of smoking (https://reurl.cc/jR0L71) (1.14.23)
  3. Terry, Luther, and S. Woodruff. “Smoking and health: report of the Advisory Committee to the Surgeon General of the United States.” U-23 Department of Health, Education and Welfare. Washington DC: Public Health Service Publication 1103 (1964).
  4. Fewer Heavy Users Among Shrinking US Smoking Population (https://reurl.cc/GX3LEv) (1.17.23)
  5. Zaidan, George. Ingredients: The Strange Chemistry of What We Put in Us and on Us. 1st ed., Dutton, 2020.
  6. K. Michael Cummings, Anthony Brown, Richard O’Connor; The Cigarette Controversy. Cancer Epidemiol Biomarkers Prev 1 June 2007; 16 (6): 1070–1076. https://doi.org/10.1158/1055-9965.EPI-06-0912.
  7. Schrek R, Baker LA, Ballard GP, Dolgoff S. Tobacco smoking as an etiologic factor in disease. I. Cancer. Cancer Res 1950;10:49–58.
  8. Wynder EL, Graham EA. Tobacco smoking as a possible etiologic factor in bronchogenic carcinoma. JAMA 1950;143:329–336.
  9. Levin ML, Goldstein H, Gerhardt PR. Cancer and tobacco smoking. JAMA 1950;143:336–8.
  10. Wynder EL, Grahmam EA, Croninger AB. Experimental product of carcinoma with cigarette tar. Cancer Res 1953;13:855–4.
  11. Hammond EC, Horn D. The relationship between human smoking habits and death rates: a follow-up study of 187,766 men. JAMA 1954;155:1316–28.
  12. Stephen S. Hecht, Tobacco Smoke Carcinogens and Lung Cancer, JNCI: Journal of the National Cancer Institute, Volume 91, Issue 14, 21 July 1999, Pages 1194–1210, https://doi.org/10.1093/jnci/91.14.1194.
  13. Lewis, R.J. Sr. (ed) Sax’s Dangerous Properties of Industrial Materials. 11th Edition. Wiley-Interscience, Wiley & Sons, Inc. Hoboken, NJ. 2004., p. 2486.
  14. Xue J, Yang S, Seng S. Mechanisms of Cancer Induction by Tobacco-Specific NNK and NNN. Cancers (Basel). 2014 May 14;6(2):1138-56. doi: 10.3390/cancers6021138. PMID: 24830349; PMCID: PMC4074821.
  15. Gao W, Jin J, Yin J, Land S, Gaither-Davis A, Christie N, Luketich JD, Siegfried JM, Keohavong P. KRAS and TP53 mutations in bronchoscopy samples from former lung cancer patients. Mol Carcinog. 2017 Feb;56(2):381-388. doi: 10.1002/mc.22501. Epub 2016 Jun 6. PMID: 27182622.
  16. Proctor RN. Angel H Roffo: the forgotten father of experimental tobacco carcinogenesis. Bull World Health Organ. 2006 Jun;84(6):494-6. doi: 10.2471/blt.06.031682. Epub 2006 Jun 21. PMID: 16799735; PMCID: PMC2627373.
科奇_96
1 篇文章 ・ 0 位粉絲
一名營養系大學狼~ 本狼的興趣是閱讀與寫作,喜歡科學、文哲等書籍,歡迎大家來認識我,嗷嗚~

0

1
0

文字

分享

0
1
0
視力模糊、肌肉痙攣,從頭到腳都有事——讓神經短路的多發性硬化症
careonline_96
・2023/01/31 ・2400字 ・閱讀時間約 5 分鐘

20 多歲的陳小姐因為出現視力模糊、複視而到眼科就醫,經過檢查後,發現原來不是眼睛的問題,而是神經出了狀況,轉介至神經免疫科後確診為多發性硬化症。

在接受治療後,症狀有了大幅改善,但是碰巧遇上嚴峻的新冠肺炎疫情,因為擔心到醫院會增加感染風險,所以陳小姐遲遲沒有回診拿藥,中斷治療後她的病情果然就復發了,手腳的活動都有輕微受損,只能趕緊住院治療,幸好在經過積極治療後,狀況恢復的還不錯,終於順利出院。

中國醫藥大學附設醫院神經免疫暨基因疾病科主任郭育呈醫師表示,經歷復發的經驗後,患者便能理解規則治療的重要性,一旦中斷治療,多發性硬化症會影響全身的神經,把病情控制穩定才能避免永久的神經學後遺症!

破壞神經,從頭到腳都有事的多發性硬化症

多發性硬化症(Multiple Sclerosis,簡稱為 MS)是因為環境、基因、個人體質等因素誘發體內異常的免疫反應,使淋巴球及細胞激素去攻擊中樞神經系統,引起後續的發炎反應,進而導致神經去髓鞘的病變,嚴重會造成神經退化,中樞神經系統功能受損,不易復原,而留下永久的神經學後遺症。

郭育呈醫師指出,多發性硬化症的症狀表現千變萬化,端看有哪些神經系統遭受攻擊,最常見的是視力模糊、色覺異常,例如眼睛對紅、黃、藍等顏色的辨識度減退,嚴重的時候會出現視野缺損,甚至失明,這些都是視神經發炎的症狀。

另外一個比較常見的是脊髓發炎,脊髓發炎會造成雙下肢麻木、無力,嚴重的時候會合併解尿、排便的異常。其他症狀還有複視、口齒不清、吞嚥困難,甚至是持續性的眩暈及行動不穩等,如果影響到大腦,就會引起單側肢體無力,類似腦血管病變、中風的表現,這時可能會錯估疾病的診斷跟延誤治療的時機。

及早治療多發性硬化症,維持神經功能

確立多發性硬化症的診斷後,一定要及早治療才可以避免病情惡化、降低復發的機會,也減少大腦萎縮、記憶力、智力退化的風險。郭育呈醫師解釋,治療方式分兩個部份,急性發作的治療和改善病程進展的治療。

急性發作時通常是接受高劑量類固醇,就是所謂的脈衝治療,一般需要住院注射三至五天的高劑量類固醇,如果病情較嚴重,則會評估使用免疫球蛋白或血漿置換,讓復原的速度、程度改善;在症狀緩解、病情穩定的時期,便需要長期接受改善病程進展的治療,目前的治療包括干擾素、標靶藥物、免疫調節藥物等,有口服、皮下或肌肉注射、以及靜脈注射等方式,臨床上會依照患者的症狀、嚴重程度,來選擇合適的藥物。

無論是口服、皮下注射、還是靜脈注射藥物,都有助於穩定病情、降低惡化程度、減少復發頻率,郭育呈醫師說,多發性硬化症無法完全治癒,即使症狀改善也要規則治療,避免出現永久性神經學後遺症,盡量維持神經功能。

COVID-19 疫情不影響治療,應盡早接種疫苗

因為新冠肺炎 COVID-19 疫情的關係,大家到公眾場所的機會大幅下降,病毒感染的機會下降,也可能讓多發性硬化症復發的風險降低。不過部分患者因為新冠肺炎疫情而沒有規則回診,若中斷治療,可能導致復發或使病情惡化的風險增加。

「根據台灣和世界的經驗,注射疫苗不會增加多發性硬化症復發的風險,也不會讓病情變嚴重」,郭育呈醫師提醒,「反倒在罹患新冠肺炎 COVID-19 後,會讓原本多發性硬化症的治療及病情控制變得更複雜。所以一般還是建議多發性硬化症患者,如果身體狀況許可,要盡早注射疫苗,降低感染新冠肺炎的風險。」

多發性硬化症日常保養重點

多發性硬化症是自體免疫疾病,日常保養對患者而言相當重要,除了戒菸及避免過度飲酒,生活作息要保持正常、睡眠充足、飲食均衡,並減少刺激性的食物,也不要隨意以中藥進補,以免造成免疫反應過於活躍,導致疾病發作。

有些患者是因為感染、感冒,導致整體的免疫反應活化,而造成多發性硬化症突然的復發,通常在短短幾天內病況就急速惡化而讓人措手不及,郭育呈醫師也提醒患者,只要出現輕微症狀,或是感覺最近幾天跟平日的狀況不一樣,就要特別注意。

在運動方面,郭育呈醫師也建議多發性硬化症患者平常可以做瑜珈、伸展等靜態運動,因為太激烈的運動可能導致肌肉受損,或讓患者過於疲累。而在大太陽下運動,或處在悶熱的環境,如泡溫泉、泡熱水澡,都可能造成疾病復發、惡化,一定要避免。

多發性硬化症是一個慢性病,除了配合醫師作積極的藥物治療,降低復發或新病灶的產生,日常也應管理飲食及適當運動,學會與疾病共處才能穩定控制病情,改善生活品質!

  • 以上衛教資訊由台灣諾華協助提供

搜尋附近的診所:內科
免費註冊,掛號、領藥超方便!