0

11
5

文字

分享

0
11
5

不只能夠「以毒攻毒」,當細菌從攻癌武器變成交通工具!細菌療法的今生(上)

羅夏_96
・2021/03/23 ・5209字 ・閱讀時間約 10 分鐘 ・SR值 559 ・八年級

19 世紀時,柯立醫師發現將細菌注射到病患的體內後,有機會讓病患身上的腫瘤消失,因此研發出柯立毒素,成為「細菌療法」的鼻祖,並啟發了現在最火紅的免疫療法,然而,隨著免疫療法的快速發展,主流學界逐漸忘卻柯立毒素。

詳情請見細菌療法的「前世篇」:

但隨著科學家對癌細胞的研究更深入,他們發現癌細胞會產生特殊的「結界」,這種結界會大幅降低目前各種癌症療法的治療效果,甚至連免疫療法都被拒於結界之外,讓科學家頭痛不已…。

腫瘤微環境:癌細胞的防禦結界!

實體固態腫瘤 (Solid tumor) 不是只由癌細胞構成,而是癌細胞和附近的組織、血管、免疫系統及基質細胞等共同組成。這個複雜的實體,還會產生特殊的腫瘤微環境 (Tumor microenvironment, TME)。

-----廣告,請繼續往下閱讀-----
腫瘤微環境,是癌細胞和其周遭其他細胞共同組成的複雜環境。圖/參考文獻 9

這個微環境就像腫瘤的結界,不僅讓我們的治療手段如化療藥物、免疫細胞療法難以進入,即便進入後也難發揮作用,而在結界內的癌細胞,更是趁機獲得許多特異功能,讓我們更難對付。

腫瘤微環境最大的特徵之一,就是缺氧 (Hypoxia)。

缺氧時,癌細胞更容易轉移、更難被殺死

當腫瘤組織的體積只在 1-2 mm3 時,通常可以靠細胞間的擴散作用來吸收養分並排出代謝廢物,但是因為癌細胞生長非常快速,體積成長極快,當腫瘤組織的體積大於 3 mm3,就會因細胞間擴散作用不足導致缺氧。

缺氧也是腫瘤惡性發展的重要因素,缺氧環境會活化癌細胞內的缺氧誘導因子 (Hypoxia-inducible factors,HIFs),當缺氧誘導因子被活化後,它會改變癌細胞的代謝,並產生一系列惡性後果1

  1. 促進癌細胞的生長、侵襲和轉移 (Metastasis)。
  2. 降低化療和放射療法的效果。
  3. 讓微環境中充斥大量的發炎細胞,進而抑制免疫細胞的活性,讓免疫療法失效。

因此,在治療癌症上究竟該如何對付缺氧的腫瘤微環境?這一直是讓科學家們頭痛至極的大問題。

-----廣告,請繼續往下閱讀-----

其他療法做不到的,就讓細菌出手吧!

然而,有趣的是,這個讓人類治療手段失效的缺氧環境,卻恰恰是某些細菌的最愛!!

可能連癌細胞也想不到,自己構築的強大結界,竟然會吸引比自己更兇狠的細菌入侵!當細菌入侵結界後,不僅會殺傷癌細胞,還會讓本來被癌細胞安撫的免疫細胞,發狂進攻,讓癌細胞陷入腹背受敵的窘境。

俗話說:「敵人的敵人,就是朋友!」,因此,藉由細菌能對付腫瘤微環境的特性,科學家們又重啟了「瘋狂」的細菌治療法。

下面讓我們一起看看,現在研究最多的 3 種細菌療法吧!

梭菌:攻其不備,缺氧就是我的愛!

梭菌屬 (Clostridium) 是一類能產生內孢子註1的專性厭氧菌 (obligate anaerobes),專性厭氧菌僅能進行「無氧呼吸」,且無法在正常大氣(氧含量21%)的環境下存活。

-----廣告,請繼續往下閱讀-----

看到這兒,大家應該就能理解為何梭菌為何有對抗腫瘤的潛力了吧!腫瘤微環境對牠而言簡直是天堂啊!缺氧、充滿養分、又沒有免疫細胞的攻擊,完美!

不過要將梭菌直接注射到人體,恐怕有不少疑慮。畢竟梭菌家族中,有不少會產生致命毒素的細菌,例如引起破傷風的破傷風梭菌 (Clostridium tetani)、會產生肉毒桿菌素的肉毒桿菌 (Clostridium botulinum),若把這類細菌注射到體內,恐怕癌細胞還沒死,人就先被毒死了

因此,在百般考量之下,科學家們相中了諾維氏梭菌 (Clostridium novyi, C.novyi)。

諾維氏梭菌產生毒素的基因很容易去除,當它的毒素基因被科學家去除後,我們稱呼這種沒有毒素的維氏梭菌為諾維氏梭菌-NT (Clostridium novyi-NT , C.novyi-NT)。

動物實驗結果

-----廣告,請繼續往下閱讀-----

在動物實驗中,科學家首先將諾維氏梭菌-NT 注射進入老鼠體內,雖然老鼠體內的腫瘤大量壞死,但可惜的是,老鼠也因敗血症註2死亡。

隨後,研究人員改為注射諾維氏梭菌-NT 的「內孢子」到老鼠體內,結果發現,諾維氏梭菌-NT 的孢子只會在缺氧的腫瘤組織中萌發,血液中的孢子則很快就被免疫系統清除,而且不會引發敗血症。

更重要的是,在腫瘤組織中生長的諾維氏梭菌-NT,很快就讓腫瘤壞死!

隨著腫瘤的逐漸壞死,缺氧環境也消失,這些諾維氏梭菌-NT 也因為沒有了缺氧環境而不再生長,最終隨著腫瘤細胞一起消滅。

-----廣告,請繼續往下閱讀-----

該研究也發現,若合併使用諾維氏梭菌-NT 的內孢子和化療藥物,不僅能降低化療藥物的使用濃度,腫瘤的消退也更快2

注射沒有毒素的維氏梭菌的孢子到裸鼠體內,腫瘤的消退情形。圖/參考文獻 10

後續的研究也發現,諾維氏梭菌-NT 不僅可以殺死腫瘤細胞(不過原因至今尚不明朗),同時也可以吸引免疫細胞來攻擊腫瘤。

臨床試驗結果

在最新的臨床試驗中,科學家將諾維氏梭菌-NT 的內孢子注射到 24 位實體固態腫瘤的病患體內。

-----廣告,請繼續往下閱讀-----

其中有 23% 患者的腫瘤體積縮小超過 10%。

另外,研究人員也發現,注射諾維氏梭菌-NT 的內孢子後,病患體內能活化免疫細胞的細胞激素量有上升,同時也增加淋巴細胞到腫瘤組織的數量。這些結果都顯示,諾維氏梭菌-NT 確實能活化免疫系統,並讓免疫細胞攻擊腫瘤3

該研究團隊目前也在申請將諾維氏梭菌-NT 和免疫檢查點抑制劑一同使用的臨床試驗,希望能達到更好的治療效果。

難以忽視的缺點

雖然諾維氏梭菌-NT 的初步臨床結果讓人期待,但牠有一個很大的問題,那就是牠「專性厭氧」的特性!

-----廣告,請繼續往下閱讀-----

雖然這個特性讓牠能專一的在缺氧的實體腫瘤中生長,但一旦腫瘤的缺氧環境被破壞,牠的效力將無法延續。因此科學家們把眼光放到有不同氧氣特性的細菌上!

沙門氏菌:有氧、無氧都可以!

和梭菌屬的專性厭氧不同,沙門氏菌屬 (Salmonella) 是兼性厭氧菌 (Facultative anaerobes),牠在氧氣充足時,可以進行有氧呼吸,在氧氣不足的情況下,也能進行無氧呼吸。牠的這項特點被科學家看上,作為另一細菌療法的候選。

不過既然沙門氏菌也能在有氧環境下生存,這就表示牠不會只在缺氧的腫瘤組織中生長,也有可能在人體其他器官中生長,因此必須「改造」牠,讓牠不會傷及正常組織與器官。

改造牠:讓牠更無毒、更愛腫瘤一點

首先,由於沙門氏菌外膜的重要成分中包含了脂多醣 (Lipopolysaccharide,LPS)註3 ,而脂多醣具有內毒性註4,很有可能引起人類過度的免疫反應,產生發炎症狀,嚴重甚至可能引發敗血症或死亡,因此科學家們的第一步,就是先去除沙門氏菌合成脂多醣3的基因,藉此降低沙門氏菌的內毒性4

蛋、奶、肉跟飲用水,都有可能會被沙門氏菌汙染,讓我們生病。圖/Pixabay

接下來,因有文獻指出腫瘤組織內會產生大量嘌呤 (purine)註5,因此,科學家去除沙門氏菌用來生產嘌呤註6的基因,並將將改造後的沙門氏菌屬和腫瘤細胞一起培養後,此時,因為沙門氏菌屬極度缺乏嘌呤,一起培養後,牠就會因此產生對腫瘤組織的依賴性。

最後,科學家們成功篩選出一隻對腫瘤組織有高度依賴性的沙門氏菌-VNP200094

動物實驗結果

沙門氏菌-VNP20009 在動物實驗上有不錯的成果。

注射沙門氏菌-VNP20009 到小鼠體內後,牠會在腫瘤組織內大量生長,免疫細胞也會被牠活化而攻擊腫瘤,讓腫瘤組織快速壞死與消退5

臨床試驗結果

但沙門氏菌-VNP20009 在臨床試驗上卻不甚理想。

首先不知道是不是減毒力道太猛,沙門氏菌-VNP20009 在注射到病患體內後,很難引起免疫反應,而且牠也「沒有」展現對腫瘤組織的依賴性,注射牠到 24 位病患體內之後,只有 3 個病患的腫瘤組織內有觀察到沙門氏菌-VNP20009 的生長,所有注射沙門氏菌-VNP20009的病患,腫瘤組織都沒有消退6

不過慶幸的是,沙門氏菌-VNP20009 並沒有在人體的其他組織中生長,並未出現對人體健康造成負面影響的跡象。

沙門氏菌-A1-R

雖然沙門氏菌-VNP20009 在臨床上沒有理想的結果,但這是第一支用於治療癌症的沙門氏菌,科學家們認為這至少是個開始,因此後續他們又用類似的方法,篩選出另一支有潛力的沙門氏菌-A1-R

A1-R 在動物實驗上,有著比 VNP20009 更好的腫瘤組織依賴性,而且能對應更多種類的腫瘤組織,同時 A1-R 活化免疫細胞的能力也不錯,A1-R 合併化療和標靶藥物的結果,也比 VNP20009 更好7

注射 A1-R 到裸鼠體內,腫瘤的消退情形。圖/Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res. 2006 Aug 1;66(15):7647-52

但 A1-R 至今仍沒有進行臨床試驗,不確定在臨床上是否能比 VNP20009 表現更好。

如果只把細菌當作一種「交通工具」?

雖然沙門氏菌屬在臨床上沒有展現治療效果,但沙門氏菌屬提供科學家們一個新的思路:

如果細菌對腫瘤組織有專一性,那就把細菌當成治療手段的「載體」吧!

就像是把細菌當作通往腫瘤組織的直達車一樣,目前有團隊將抗癌物質的基因,放入沙門氏菌屬中,當沙門氏菌屬專一的到腫瘤組織中,就能分泌抗癌物質到組織中。

如此一來,不僅可以提高抗癌物質的效力,也能減少該物質對生物體的傷害8,而下一篇文章所介紹的第三種研究上常見的細菌療法「李斯特菌」某種程度上就是受到載體想法的啟發……

接著閱讀:不只能夠「以毒攻毒」,當細菌從攻癌武器變成交通工具!細菌療法的今生(下)

註釋

  1. 內孢子:某些細菌特有的一種構造,是對惡劣環境具有高度抗性的特殊休眠體。內孢子對抗生素、熱、酸鹼、輻射等具有強耐受性,待環境變成適合生存時,內孢子會打破睡眠狀態甦醒發芽繁殖。
  2. 敗血症:由於感染所引起的全身性發炎的嚴重疾病。常見的臨床症狀包括發燒、呼吸頻率和心跳加速,以及意識不清。
  3. 脂多醣 (Lipopolysaccharide,LPS) :是油脂和多醣由共價鍵相連組成的大型分子。LPS 是革蘭氏陰性細菌外膜的主要組成部分,提供並保持細菌結構的完整性,保護細菌的細胞膜抵抗某些化學物質的攻擊。LPS 也是內毒素,LPS 在人體內,會結合到細胞膜上的脂多醣受體複合體上,促進細胞發炎,並讓發炎細胞分泌多種細胞因子,產生強烈的免疫反應。
  4. 內毒素:存在於細菌內的天然化合物,具有潛在的毒性。內毒素不同於外毒素,活的細菌是不會分泌可溶性的內毒素的。內毒素是細菌的結構成分,當細菌被溶解時而被細菌釋放出來。
  5. 嘌呤:新陳代謝過程中的一種代謝物,它是核酸中最重要的組成部分。
  6. 癌細胞因生長快速,在細胞複製時需要大量的核酸,這表示也需要大量的嘌呤,因此腫瘤組織內部的嘌呤量,比人體其他組織都高很多。

參考資料

  1. Jin, MZ., Jin, WL. The updated landscape of tumor microenvironment and drug repurposing. Sig Transduct Target Ther 5, 166 (2020)
  2. Long H. Dang, Chetan Bettegowda, David L. Huso, Kenneth W. Kinzler, and Bert Vogelstein. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci U S A December 18, 2001 98 (26) 15155-15160
  3. Bacterial therapy tolerable, shows early promise in patients with advanced solid tumors
  4. C. Clairmont et al. Biodistribution and Genetic Stability of the Novel Antitumor Agent VNP20009, a Genetically Modified Strain of Salmonella typhimuvium. The Journal of Infectious Diseases, Volume 181, Issue 6, June 2000, Pages 1996–2002
  5. Luo X, Li Z, Lin S, Le T, Ittensohn M, Bermudes D, Runyab JD, Shen SY, Chen J, King IC, Zheng LM. Antitumor effect of VNP20009, an attenuated Salmonella, in murine tumor models. Oncol Res. 2001;12(11-12):501-8
  6. Toso JF, Gill VJ, Hwu P, et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol. 2002;20(1):142-152.
  7. Aghi M, Hochberg F, Breakefield XO. Prodrug activation enzymes in cancer gene therapy. J Gene Med. 2000 May-Jun;2(3):148-64
  8. Quispe-Tintaya W, Chandra D, Jahangir A, Harris M, Casadevall A, Dadachova E, Gravekamp C. Nontoxic radioactive Listeria(at) is a highly effective therapy against metastatic pancreatic cancer. Proc Natl Acad Sci U S A. 2013 May 21;110(21):8668-73
  9. Audrito, V., Managò, A., Gaudino, F., Sorci, L., Messana, V. G., Raffaelli, N., & Deaglio, S. (2019). NAD-biosynthetic and consuming enzymes as central players of metabolic regulation of innate and adaptive immune responses in cancerFrontiers in immunology10, 1720.
  10. Dang, L. H., Bettegowda, C., Huso, D. L., Kinzler, K. W., & Vogelstein, B. (2001). Combination bacteriolytic therapy for the treatment of experimental tumors. Proceedings of the National Academy of Sciences98(26), 15155-15160.
  11. Zhao, M., Yang, M., Ma, H., Li, X., Tan, X., Li, S., … & Hoffman, R. M. (2006). Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer research66(15), 7647-7652.

細菌療法系列文章

  1. 太瘋狂了!注射細菌,竟然能夠「以毒攻毒」打敗癌細胞?細菌療法的前世(上)
  2. 太瘋狂了!注射細菌,竟然能夠「以毒攻毒」打敗癌細胞?細菌療法的前世(下)
  3. 不只能夠「以毒攻毒」,當細菌從攻癌武器變成交通工具!細菌療法的今生(上)
  4. 不只能夠「以毒攻毒」,當細菌從攻癌武器變成交通工具!細菌療法的今生(下)
-----廣告,請繼續往下閱讀-----
文章難易度
羅夏_96
52 篇文章 ・ 918 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟

0

3
1

文字

分享

0
3
1
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

-----廣告,請繼續往下閱讀-----

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

-----廣告,請繼續往下閱讀-----

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

-----廣告,請繼續往下閱讀-----
我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

-----廣告,請繼續往下閱讀-----

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

-----廣告,請繼續往下閱讀-----
  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

-----廣告,請繼續往下閱讀-----
  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

-----廣告,請繼續往下閱讀-----

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
精準醫療新里程碑:免疫療法如何改變晚期頭頸癌一線治療格局?
careonline_96
・2025/08/16 ・2646字 ・閱讀時間約 5 分鐘

免疫治療大幅推進了晚期頭頸癌的治療成效,義大癌治療醫院腫瘤科主任謝孟哲醫師表示,「在開始任何第一線治療之前,務必進行PD-L1 CPS檢測,幫助醫師判斷該使用單獨免疫治療,還是免疫治療合併化療,才能發揮較佳的療效!」

頭頸癌是指發生在頭頸部的癌症,例如舌癌、口腔癌、臉頰癌等。謝孟哲醫師指出,根據衛生福利部國民健康署《111年癌症登記報告》,台灣每年有超過8000例新個案,其中近九成為男性,男性患者的年齡中位數為59歲。頭頸癌與吸菸、飲酒及嚼檳榔有很強的關聯性。

頭頸癌常對外觀、語言、吞嚥、呼吸功能造成損害,嚴重影響生活品質,而且可能導致失能。經過治療後,約5成的頭頸癌病灶會復發或轉移。

晚期頭頸癌的治療大多需要使用全身性治療,例如化學治療、免疫治療、標靶治療等。北榮腫瘤科主任楊慕華醫師指出,相較於傳統化學治療,免疫治療的治療機轉較精準,能夠顯著提升治療成效。免疫檢查點抑制劑(immune checkpoint inhibitor,ICI)已是晚期頭頸癌重要的治療工具。

-----廣告,請繼續往下閱讀-----

人體免疫系統的T細胞具有辨識並毒殺癌細胞的能力,但是癌細胞能夠與T細胞的免疫檢查點接合,進而抑制T細胞功能。ICI免疫檢查點抑制劑可以阻斷癌細胞與T細胞的免疫檢查點接合,讓T細胞能夠辨識並毒殺癌細胞。

針對晚期頭頸癌,ICI免疫檢查點抑制劑可「先發使用」,在疾病復發或轉移時即開始啟用,或「後援使用」在其他標準治療無效後才開始使用。楊慕華醫師表示,最近幾年的研究顯示,免疫治療如果能夠在病人接受其他藥物治療之前使用,效果會比較好。甚至在術前先行給予免疫治療,能夠獲得明顯的臨床效益,包括整體存活期的延長。

可能的原因是當腫瘤尚未接受其他治療時,其抗原表現較清晰、免疫系統辨識力較強。楊慕華醫師解釋,在經歷過其他治療後,腫瘤微環境可能已經改變,而影響免疫治療的成效。因此,將免疫治療提早應用到治療的前線,對患者會比較有利。

目前在復發或轉移性頭頸癌的治療中,免疫療法與標靶治療皆已被列為第一線標準治療,不過台灣的健保限制兩者僅能擇一使用。謝孟哲醫師說,根據國際大型第三期臨床試驗,比較免疫治療與傳統化療合併標靶治療在第一線的治療成效,結果顯示免疫治療的整體存活期(Overall Survival,OS)優於化療合併標靶治療。

-----廣告,請繼續往下閱讀-----

根據PD-L1 CPS(Combined Positive Score)表現分數進行的次族群分析,若CPS 在20以上,單獨使用免疫治療的效果明顯優於化療合併標靶治療,不僅存活期更長,副作用也較少。若CPS介於 1至19,化療合併免疫治療的效果優於化療合併標靶治療。若CPS小於1,化療合併免疫治療與化療合併標靶治療的效果相當,差異不顯著。因此,臨床實務上,醫師會依據病人的PD-L1 CPS表現分數,來擬定合適的治療策略。

免疫治療的特點是反應時間相對較慢。楊慕華醫師指出,如果病況急迫,例如有大範圍的內臟侵犯或重要器官的壓迫(如氣管),可以採用免疫治療合併化學治療,有助於快速縮小腫瘤體積,同時發揮免疫治療的長期維持效果,為後續的根除性療法(如手術或放射治療)爭取更好條件。這種策略在多種癌症類型的研究中已證實具有效益,也逐漸成為臨床考量的重點。

若病人的腫瘤較小,且經檢測發現其PD-L1 CPS表現分數達20以上,這類病人非常適合單獨使用免疫治療。因為單用免疫治療能達到較佳的整體存活率,且副作用較小。謝孟哲醫師說,若腫瘤體積較大、轉移範圍廣或病情進展迅速,醫師就會傾向採用免疫治療合併化學治療。希望能在短時間內有效縮小腫瘤、穩定病情,避免因腫瘤惡化而導致的併發症。

另一個關鍵因素是患者的整體身體狀況,相較於傳統化學治療,免疫治療的副作用較低,對高齡或虛弱的患者而言耐受性較好。持續治療後,腫瘤可能逐步受到控制,不僅能改善症狀,也有助於改善生活品質、延長存活時間。

-----廣告,請繼續往下閱讀-----

精準醫療的發展,讓晚期頭頸癌的治療成效顯著提升,請務必與醫師詳細討論,共同擬定更有效且個人化的治療策略!

筆記重點整理

  • 頭頸癌常對外觀、語言、吞嚥、呼吸功能造成損害,嚴重影響生活品質,而且可能導致失能。經過治療後,約5成的頭頸癌病灶會復發或轉移。
  • 晚期頭頸癌的治療大多需要使用全身性治療,例如化學治療、免疫治療、標靶治療等。最近幾年的研究顯示,免疫治療如果能夠在病人接受其他藥物治療之前使用,效果會比較好。甚至在術前先行給予免疫治療,能夠獲得明顯的臨床效益,包括整體存活期的延長。
  • 目前在復發或轉移性頭頸癌的治療中,免疫療法與標靶治療皆已被列為第一線標準治療,不過台灣的健保限制兩者僅能擇一使用。根據國際大型第三期臨床試驗,比較免疫治療與傳統化療合併標靶治療在第一線的治療成效,結果顯示免疫治療的整體存活期(Overall Survival,OS)優於化療合併標靶治療。
  • 若病人的腫瘤較小,且經檢測發現其PD-L1 CPS表現分數達20以上,這類病人非常適合單獨使用免疫治療。因為單用免疫治療能達到較佳的整體存活率,且副作用較小。若腫瘤體積較大、轉移範圍廣或病情進展迅速,醫師就會傾向採用免疫治療合併化學治療。希望能在短時間內有效縮小腫瘤、穩定病情,避免因腫瘤惡化而導致的併發症。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。