- id S. Moore、諾茨 William I. Notz
- 譯者:鄭惟厚、吳欣蓓
什麼是常態分布?
圖 13.3 和 13.4 裡的密度曲線,同屬一族特別重要的曲線:常態曲線。圖 13.7 再呈現了兩個常態密度曲線。常態曲線都是對稱、單峰、鐘形的,尾部降得很快,所以我們應該不會看到離群值。由於常態分布是對稱的,所以平均數和中位數都落在曲線的中間位置,而這也是尖峰所在。
常態曲線還有一個特別性質:我們可以用目測方式在曲線上找到它的標準差。對大部分其他的密度曲線,沒有法子這樣做。做法是這樣的。想像你要從山頂開始滑雪,山的形狀和常態曲線一樣。起先,你從山頂出發時,往下滑的角度非常陡:
幸好,在你還沒有直直墜下之前,斜坡就變緩了,你愈往下滑出去,坡度愈平:
曲率(curvature)發生改變的地方,是在平均數兩側、各距平均數一個標準差的位置。圖 13.7 的兩條曲線上都標示出了標準差。你如果用鉛筆沿著常態曲線描,應該可以感受到曲率改變的地方,進而找出標準差。
常態曲線有個特別的性質是,只要知道平均數及標準差,整條曲線就完全確定了。平均數把曲線的中心定下來,而標準差決定曲線的形狀。變動常態分布的平均數並不會改變曲線的形狀,只會改變曲線在 x 軸上的位置。但是,變動標準差卻會改變常態曲線的形狀,如圖 13.7 所示。標準差較小的分布,散布的範圍比較小,尖峰也比較陡。以下是常態曲線基本性質的總結:
常態密度曲線的特性
常態曲線(normal curve)是對稱的鐘形曲線,具備以下性質:
- 只要給了平均數和標準差,就可以完全描述特定的常態曲線。
- 平均數決定分布的中心,這個位置就在曲線的對稱中心。
- 標準差決定曲線的形狀,標準差是指從平均數到平均數左側或右側的曲率變化點的距離。
為什麼常態分布在統計裡面很重要呢?首先,對於某些真實數據的分布,用常態曲線可以做很好的描述。最早將常態曲線用在數據上的是大數學家高斯(Carl Friedrich Gauss, 1777 – 1855)。
天文學家或測量員仔細重複度量同一個數量時,所得出的量測值會有小誤差,高斯就利用常態曲線來描述這些小誤差。你有時候會看到有人把常態分布叫做「高斯分布」,就是為了紀念高斯。
十九世紀的大部分時間中,常態曲線曾叫做「誤差曲線」,也就因為常態曲線最早是用來描述量測誤差的分布。後來慢慢發現,有些生物學或心理學上的變數也大致符合常態分布時,「誤差曲線」這個名詞就不再使用了。1889 年,高騰(Francis Galton)率先把這些曲線稱做「常態曲線」。高騰是達爾文的表弟,他開拓了遺傳的統計研究。
常態分布的形狀:鐘形曲線
人類智慧高低的分布,是不是遵循常態分布的「鐘形曲線」?IQ 測驗的分數的確大致符合常態分布,但那是因為測驗分數是根據作答者的答案計算出來的,而計算方式原本就是以常態分布為目標所設計的。要說智慧分布遵循鐘形曲線,前提是:大家都同意 IQ 測驗分數可以直接度量人的智慧。然而許多心理學家都不認為世界上有某種人類特質,可以讓我們稱為「智慧」,並且可以用一個測驗分數度量出來。
當我們從同一母體抽取許多樣本時,諸如樣本比例(當樣本大小很大、而比例的數值中等時)及樣本平均數(當我們從相同母體取出許多樣本時)這類統計量的分布,也可以用常態曲線來描述。我們會在後面的章節進一步細談統計分布。
抽樣調查結果的誤差界限,也常常用常態曲線來算。然而,即使有許多類的數據符合常態分布,仍然有許多是不符合的,比如說,大部分的所得分布是右偏的,因而不是常態分布。非常態的數據就和不平常的人一樣,不僅常見,而且有時比常態的數據還有趣。
68 – 95 – 99.7 規則
常態曲線有許多,每一個常態曲線都可以用各自的平均數和標準差來描述。所有常態曲線都有許多共同性質,特別要提的是,對常態分布來說,標準差是理所當然的量度單位。這件事實反映在下列規則當中。
68 – 95 – 99.7 規則 在任何常態分布當中,大約有 68% 的觀測值,落在距平均數一個標準差的範圍內。 95% 的觀測值,落在距平均數兩個標準差的範圍內。 99.7% 的觀測值,落在距平均數三個標準差的範圍內。 |
圖 13.8 說明了 68 – 95 – 99.7 規則。記住這三個數字之後,你就可以在不用一直做囉嗦計算的情況下考慮常態分布。不過還得記住,沒有哪組數據是百分之百用常態分布描述的。不管對於 SAT 分數,或者蟋蟀的身長, 68–95–99.7 規則都只是大體正確。
年輕女性的身高常態
年輕女性的身高約略是平均數 63.7 英寸、標準差 2.5 英寸的常態分布。要運用 68 – 95 – 99.7 規則,首先得畫一個常態曲線的圖。圖 13.9 說明了這個規則用在女性的身高上會是什麼情況。
任何常態分布都有一半的觀測值在平均數之上,所以年輕女性中有一半高於 63.7 英寸。
任何常態分布的中間68%觀測值,會在距平均數一個標準差的範圍內。而這 68 %中的一半,即 34 %,會在平均數之上。所以有 34 %的年輕女性,身高在 63.7 英寸及 66.2 英寸之間。把身高不到 63.7 英寸的 50% 女性也加上去,可以得知總共有84%的年輕女性身高不到 66.2 英寸。所以推知超過 66.2 英寸的人占 16%。
任何常態分布的中間 95% 的值,在距平均數兩個標準差範圍內。這裡的兩個標準差是 5 英寸,所以年輕女性身高的中間 95% 是在 58.7(= 63.7 − 5)和 68.7(= 63.7 + 5)英寸之間。
另外 5% 女性的身高,就超出 58.7 到 68.7 英寸的範圍之外。因為常態分布是對稱的,這其中有一半的女性是在矮的那一頭。年輕女性中最矮的 2.5% ,身高不到 58.7 英寸(149 公分)。
任何常態分布中幾乎所有(99.7%)的值,在距平均數三個標準差的範圍內,所以幾乎所有年輕女性的身高,都在 56.2 及 71.2 英寸之間。
——本文摘自《統計,讓數字說話》,2023 年 1 月,天下文化出版,未經同意請勿轉載。