0

2
2

文字

分享

0
2
2

醫療檢測的準確度:「偽陰性」、「偽陽性」到底是什麼意思?如何計算準確度?

林澤民_96
・2020/04/28 ・7507字 ・閱讀時間約 15 分鐘 ・SR值 605 ・十年級

-----廣告,請繼續往下閱讀-----

  • 作者/林澤民
最近關於新冠病毒全面篩檢的問題時不時就在媒體上出現。圖/Martin Lopez@Pexels

最近因為大家關心新冠病毒是否要全面篩檢的問題,媒體上常見一些醫事檢驗學的術語。其中最常聽到的是「偽陰性」,但也常讀到「特異性」與「敏感性」;這些名詞都與新冠病毒檢測的準確度有關。在瘟疫變成每個人生存威脅的時候,這些專門術語也變得跟我們的生活息息相關。

本文嘗試用基本統計檢定概念來詮釋這些名詞,更進一步用數據科學中衡量搜尋、辨識工具準確度的概念來探討醫療檢測的準確度。

「檢測準確度」與「統計檢定」概念可互相對應

在醫檢學,「敏感性」(sensitivity) 常與「特異性」(specificity) 共同用來衡量檢測的準確度。

這些名詞,不熟悉醫檢學的讀者可能會覺得莫測高深,但其實它們與基本統計學所教的統計檢定的基本概念是互相對應的,只是著重點有所不同。這裡先簡單地解釋它們與統計檢定概念的關係,以利讀者了解醫檢學的術語。

-----廣告,請繼續往下閱讀-----

先說特異性。特異性是不帶原者中採檢陰性的比例,一般簡稱為「真陰性」的比例。而敏感性則是帶原者中採檢陽性的比例,也可稱為「真陽性」的比例。

表一、醫療檢測結果類型

受檢者
不帶原
(non-carrier)
帶原
(true-carrier)
採檢結果 陽性
(positive)
偽陽性
(false positive)
真陽性
(true positive)
陰性
(negative)
真陰性
(true negative)
偽陰性
(false negative)

如果把上圖跟基本統計學學生所熟悉的下圖相比較,就可以看出醫檢術語與傳統統計檢定概念的對應關係。

表二、統計結果檢定類型

-----廣告,請繼續往下閱讀-----
虛無假設(H0) v. 研究假設(HA)
虛無假設為真
(H0 Ture)
研究假設為真
(HA True)
採檢結果 拒絕虛無假設
(positive)
型一錯誤
(size of test=α)
檢定強度
(power of test=1-β)
無法拒絕虛無假設
(negative)
信心水平
(1-α)
型二錯誤
(β)

所以當我們把「比例」視同「機率」時,特異性其實就是統計檢定的信心水平,而敏感性就是統計強度。連結到型一錯誤的機率 α(即顯著水平,也稱檢定規模)、型二錯誤的機率 β,可以清楚看到:

特異性 = 真陰性的機率 = 信心水平 = 1 – α

敏感性 = 真陽性的機率 = 檢定強度 = 1 – β

因為 α、β 是錯誤的機率,愈小愈好,所以特異性、敏感性都是愈高愈好。但 α、β 並不是互相獨立的。如果樣本數固定、所要檢定的效應(即 H0 跟 HA 的差距)也固定,通常 α 愈小 β 會愈大、α 愈大 β 會愈小,因此特異性跟敏感性之間也有同樣的互換關係。

特異性、敏感性這兩個概念其實都還是傳統所謂「頻率學派」(frequentist) 統計學的概念,它們並未涉及貝氏定理的反機率。在討論新冠病毒採檢準確度的問題時,我們更需關注的其實是反機率的問題:「當採檢為陽性時,其為偽陽性的機率有多高?」反過來說:「當採檢為陰性時,其為偽陰性的機率有多高?」

這些問題,也是近年來撼動頻率學派統計檢定方法的貝氏學派統計學者所指出的問題。

-----廣告,請繼續往下閱讀-----

要算這些反機率就必須用到貝氏定理。最近在機器學習、自然語言處理等領域被廣泛使用的 F1 便是由「真陽性」的機率與反機率混合組成的一種檢測準確度 (accuracy) 的度量。

關於貝氏統計學派對傳統頻率學派統計檢定方法的批評,可參考:P 值的陷阱(上):P 值是什麼?又不是什麼?  P 值的陷阱(下):「摘櫻桃」問題

在討論新冠病毒採檢準確度的問題時,我們更需關注的其實是反機率的問題:「當採檢為陽性時,其為偽陽性的機率有多高?」反過來說:「當採檢為陰性時,其為偽陰性的機率有多高?」圖/GIPHY

數據科學中的「準確度」:F1 分數

F1 分數有時簡稱 F 分數,也稱為 Sørensen-Dice 係數。在數據科學裡,F1 常被用來做為搜尋、辨識「相似」資料準確度的度量。它可以用來衡量搜尋引擎的準確度,也常用在自然語言處理中資料的搜尋、辨識,當然它也可以用於人臉辨識。

想像你要用文本分析的方法來研究瘟疫流行期間海峽兩岸情緒的互動。台灣這邊,你要找出一月以來所有與疫情及兩岸情緒互動有關的貼文;大陸那邊,你專注於搜尋微信上面的貼文。你使用的辨識工具是一組包括疫情及兩岸關係的關鍵詞;你希望這組關鍵詞能夠正確地指認出每一篇相關貼文。

你知道你的辨識工具的準確度跟你使用的關鍵詞有關,為了要正確找出相關貼文,你希望辨識的準確度越高越好;但是不論你使用了哪些關鍵詞,你的工具的準確度不會是百分之百。有時一篇貼文明明跟你研究的主題有關,你的辨識工具卻指認不出來;有時明明跟研究主題無關的貼文,卻被認定有關。

-----廣告,請繼續往下閱讀-----
如何在網路上精準搜尋資料也是門學問呢!圖/GIPHY

不過,這樣的文本處理過程,其實與醫療檢測有類似之處:對同一篇貼文,用關鍵詞為工具來辨識貼文性質的結果可以有偽陽性、真陽性、真陰性、偽陰性四種類型,這基本上跟表一是一樣的。

F1 包含了兩個成分:召回率 (Recall) 和精密性 (Precision)。F1 是這兩個成分的平均數,但不是算數平均數而是調和平均數

\( F1=\frac{2}{\frac{1}{Recall}+\frac{1}{Precision}} \)

因為召回率精密性的值都介於 0 與 1 之間,F1 的值也會介於 0 與 1 之間。如果召回率和精密性之一的值趨近於 0,F1 的值也會趨近於 0;如果召回率和精密性的值都等於 1,F1 的值也會等於 1。

-----廣告,請繼續往下閱讀-----

特別值得注意的是:作為調和平均數,F1 的值永遠小於或等於召回率和精密性的算術平均數。這也就是說:相較於算術平均數,F1 的值會更被它的成份中比較小的那個數值拉低。不論召回率和精密性之中哪個成分的值較小,在計算 F1 時,較小那個成分實質上有較大的權重。這是調和平均數與算數平均數不同的地方。

那麼什麼是召回率?什麼是精密性?

召回率其實就是醫檢學中的敏感性(真陽性)。之所以喚作召回率,應該就是真正具有某種性質的受檢群體,有多少比例能夠被正確指認出來的意思。召回率可以用型二機率表示如下:

召回率 = 敏感性 = 真陽性的機率 = Pr(採檢結果陽性 | 受採檢者為帶原者)= 1 – β

精密性則是召回率的反機率:

精密性 = 召回率(敏感性、真陽性)的反機率 = Pr(受採檢者為帶原者 | 採檢結果陽性)

為什麼算準確度除了召回率還要加上召回率的反機率?這是因為反機率其實是更實際、更重要的考慮。召回率的分母是不特定的群體,而精密性(召回性的反機率)的分母是特定的。以醫療檢測來說,召回率(敏感性)的分母包括所有帶原者,但受採檢的個人並不知道自己帶不帶原,採檢的防疫人員也不知道帶原者是哪一群人,因此召回率只是一個抽象的概念。

-----廣告,請繼續往下閱讀-----

相對來說,精密性(敏感性的反機率)的分母是所有採檢陽性者,不但採檢陽性的個人知道自己是陽性,防疫人員也知道採檢陽性的是哪一群人,因此它是比較具體的概念。採檢陽性的人會極想知道自己是真正帶原還是不帶原,防疫人員更需要考量採檢陽性的人中有多少真正帶原或其實不帶原。

採檢陽性的人會極想知道自己是真正帶原,還是不帶原。圖/GIPHY

用貝氏定理計算反機率的詳細步驟,可參考:會算「貝氏定理」的人生是彩色的!該如何利用它讓判斷更準確、生活更美好呢?以及本文附錄。

但貝氏定理要求必須先對帶原、不帶原的先驗機率作出假設。我們假設所有受檢者中帶原者的比例為 π ──或者說每一隨機受檢者帶原的機率為 π ──而不帶原的比例為 1-π。

這 π 可以是客觀估計的頻率,也可以是醫生經由對受檢者問診或疫調形成的主觀判斷。我們算出的結果是:

\( Precision=\frac{(1-\beta )\pi }{\alpha+ (1-\alpha -\beta )\pi } \)

-----廣告,請繼續往下閱讀-----

精密性(敏感性的反機率)可能甚小於敏感性。例如當 π = 0.1,α=0.05,β=0.2 時,敏感性為 0.8,敏感性的反機率約為 0.14。這是因為採檢陽性者當中有甚多是偽陽性者的緣故。

假設桃園機場每天有 1000 位入境旅客全部接受篩檢,其中未帶原者有 990 人而帶原者只有 10 人。雖然偽陽性 (α) 只有 5%,990 位未帶原者中也會有將近 50 位被誤檢為陽性,而真陽性 (1-β) 雖然高達 80%,10 位帶原者中也只有 8 位確診陽性。這樣採檢陽性者一共 58 人中,帶原者的比例也只有 8/58,大約 14%。

假設受檢者 1000 人, π = 0.1,α=0.05,β=0.2 時,敏感性為 0.8

   \受檢者(人)
採檢結果\
不帶原
990
帶原
10
陽性 偽陽性
50*
真陽性
8
陰性 真陰性
940
偽陰性
2

*因 990 的 5%為 49.5 人不合常理,此處四捨五入

這就是貝氏定理的奧妙之處:雖然型一、型二的錯誤機率都不能說很大,當真正帶原者的比例很小時,以採檢陽性者為分母來算,偽陽性的比例會比 α 高甚多,而真陽性的比例會比 1 – β 低甚多。這是與一般人的直覺很不一樣的。因為大多數人不帶原,只要有一點點偽陽性的機率(α),採檢陽性的人中便會有許多不帶原者。如果不了解貝氏定理而對這一點感到困惑,便是犯了所謂「基率謬誤」(base rate fallacy)。

從精密性的公式可以看出:當 α=0,特異性 100% 的時候,精密性也是 100%。此時 F1 的公式簡化為:

\( F1=\frac{2}{\frac{1}{Recall}+\frac{1}{Precision}}=\frac{2Recall}{1+Recall} \)

也就是 F1 完全由召回率(敏感性、真陽性)來決定,召回率越高,F1 也越高;此時沒有反機率的問題。

將 F1 應到到醫學檢驗上

要用 F1 來衡量醫事檢驗的準確度,只要把召回率改成敏感性(真陽性)、把精密性改成敏感性(真陽性)的反機率就可得到下列 F1 分數:

\( F1=\frac{2}{\frac{1}{Recall}+\frac{1}{Precision}}=\frac{2(1-\beta )\pi }{\alpha+ (2-\alpha -\beta )\pi } \)

這個公式包含了三個變項:α、β、π。

在醫學檢驗,α 是偽陽性也是特異性的反面,β 是偽陰性也是敏感性的反面。在統計分析中,α 是研究者自己可以設定的,就是一般所謂的顯著水平,通常設在 α=0.05。近年因為學界廣泛對 p 值的質疑,有不少學者主張要從嚴用 α=0.005。在採檢新冠狀病毒的時候,核酸檢測的設計極大化了特異性,也就是極小化了偽陽性的機率 α;快篩則因為較難以區別各種冠狀病毒而會有較大的 α。

圖一、二中,我們分別以 α=0.05 及 α=0.005 這兩個顯著水平為參數,在所有受檢者中帶原者的比例 π=0.01 的假設下,劃出召回率(敏感性、真陽性)、精密性(敏感性、真陽性的反機率)、F1 對於 β 的函數圖形。

這兩個圖形的橫軸,β,是型二錯誤機率,也即偽陰性,它是敏感性(真陽性)1 – β 的反面。偽陰性是防疫專家很關心的一個指數;防疫中心指揮官陳時中之所以堅持不肯在機場對入境旅客進行普篩的主要原因就是因為篩檢的偽陰性高,他擔心旅客採檢陰性就放下心防趴趴走。若偽陰性的檢測結果太多,則病毒將在社區廣泛傳播。

防疫中心似乎從不曾明確說出快篩偽陰性的機率,張上淳醫師則說他相信三採陰的核酸檢測敏感性「幾乎是百分之百」。中文網頁曾被引用的敏感性數字如「約 10%~70%」、「只有 50-80%」等,似乎指的都是流感的快篩而不是新冠狀病毒的快篩。

其實,即使 4 月 9 日的 Science Daily 都還引用一篇 Mayo Clinic Proceedings 的論文,指出醫學文獻尚未就現有核酸檢測工具的敏感性有清楚、一致的報告。如果快篩敏感性「只有 50-80%」,那我們必須考慮的 β 數值應在 20-50% 之間。如果偽陰性的機率是 0.2,三採陰性仍為偽陰性的機率是 0.008,那麼三採陰的敏感性的確是張上淳醫師所說的「幾乎是百分之百」。

然而敏感性並不是計算準確度的唯一成分,除了敏感性,我們還要考慮敏感性的反機率。圖一、二顯示,至少在 0 < β < 0.5 的區間,精密性(敏感性的反機率)要小於召回率(敏感性),而兩者的和諧平均數 F1 要比算術平均數更靠近數值較低的精密性。換句話說,當我們在計算準確度時,因為把敏感性的反機率納入考慮,準確度會被拉低

接續前面的例子,當 p=0.1,α=0.05,β=0.2 時,敏感性為 0.8,敏感性的反機率為 0.14,準確度 F1 只有不到 0.24!如果我們把 α 從嚴降低到 α=0.005,則 β=0.2 時,敏感性仍然為 0.8,敏感性的反機率為 0.62,準確度 F1 可以提高到 0.70。如果這樣的準確度仍然不令人放心,那只好「順時中」以三採陰性才算真陰性。如此偽陰性的機率降低到 β=0.008,敏感性增為 0.992,敏感性的反機率為 0.667,準確度 F1 可以提高到將近 0.80。

但是多重採檢也有可能出現統計檢定中所謂「多重假說檢定」 (multiple hypothesis test) 的問題。例如在 α=0.05 時,對一位實際不帶原者進行三次採檢,理論上得到至少一次偽陽性的機率是 1 – (1 – 0.05)= 0.1426,採檢越多次這個機率越大。其實,即使偽陰性降到 0、敏感性達到百分之百,敏感性的反機率仍然只有 0.67,F1 還是只有比 0.80 高一點點。

這癥結所在就不再是敏感性的問題而是特異性 (1-α) 的問題了,只有把偽陽性的機率 α 降到更小,讓特異性趨近百分之百,這樣才能解決反機率的問題,讓 F1 完全由召回率(敏感性、真陽性)來決定。

然而即使核酸檢測能做到這樣,快篩卻不一定行。根據報載,中研院基因體研究中心所發展出來的快篩試劑可以達到 95% 以上的特異性。雖然如此,如圖一所示,在 α=0.05 的水平,敏感性的反機率其實是非常值得注意的問題。

只要普檢仰賴快篩,我們便不能只以特異性及敏感性來衡量醫療檢測的準確度。

只要普檢仰賴快篩,我們便不能只以特異性及敏感性來衡量醫療檢測檢測的準確度。圖/Polina Tankilevitch@Pexels

後記:防疫中心數據核算

(2020/4/30 更新)

本文在泛科學刊出之後不久,防疫中心指揮官陳時中部長即在例行記者會上對快篩偽陽性的問題進行了詳盡的解說。陳部長的解說最珍貴的地方是他提供了防疫中心檢測工具特異性、敏感性的數值,以及專業人員對新冠病毒在台盛行率的估計。這些決定了防疫政策的參數,都是我在撰寫本文時無法確知的。

陳時中在記者會中使用的幾張投影片,正好為我的結論提出了完美的專業驗證。這裡只就兩張投影片的數據來核算。

首先,他設定了兩組參數:

  1. PCR(核酸檢測):特異性=0.9999,敏感性=0.95,盛行率=0.0018 or 0.000016。對應於我所使用的統計學參數:α=0.0001,β=0.05,π=0.0018 or 0.000016。
  2. 快篩:特異性=0.99,敏感性=0.75,盛行率=π=0.0018 or 0.000016。對應於我所使用的統計學參數:α=0.01,β=0.25,π=π=0.0018 or 0.000016。
  • 講解中提到兩種盛行率:π=0.0018 以及 π=0.000016,前者被稱為「極大值」,後者為「合理值」。

請注意:這裡快篩的特異性已經高達 0.99了,但是 PCR 的特異性可以更高到 0.9999,很趨近百分之百了,但還不到百分之百。

我文中提出的精密性公式是:

精密性=敏感性(真陽性)的反機率=Pr(受採檢者為帶原者|採檢結果陽性)= \( Precision=\frac{(1-\beta )\pi }{\alpha+ (1-\alpha -\beta )\pi } \)

依此公式來算,盛行率為極大值(π=0.0018)的情況下:

  • PCR 的精密性=0.9448
  • 快篩 的精密性=0.1191

在極大值的假設下,陳時中估計台灣有 4,800,000 因呼吸道症狀就醫的人,PCR會檢驗出 8,687 陽性患者,其中有 8,208 真正的帶原者。這結果(精密性= 0.9448)可說很不錯,但是還是會有 479 偽陽性案例。

但是如果仰賴快篩,則快篩會檢驗出 54,394 陽性患者,其中只有 6,480 真正的帶原者。這結果(精密性 0.1191)太糟糕了。

此所以我說:只有把偽陽性 α 降到更小,讓特異性趨近百分之百,這樣才能解決反機率的問題。然而即使核酸檢測能做到這樣,快篩卻不一定行。只要普檢必須仰賴快篩,敏感性的反機率仍然是值得注意的問題。

在第二張投影片,陳時中把盛行率降低到百萬分之 16(0.000016)。這是他認為比較合理的數值,反映了防疫中心的先驗信仰。在其它參數不變的條件下,π=0.000016 得到下列結果:

  • PCR的精密性=0.1319
  • 快篩的精密性=0.0012

這樣的精密性,連 PCR 都慘不忍睹。其原因是因為偽陽性的個案數目幾乎不變,而真陽性的個案數目大為減少,自然精密性也就大為減小了。這樣普篩數百萬人的後果就是會有許多偽陽性(以及偽陰性)的個案,造成許多個人、家庭、社區的困擾。


附錄:如何計算精密性——敏感性(真陽性)的反機率?

敏感性的反機率如何計算?在〈會算「貝氏定理」的人生是彩色的!該如何利用它讓判斷更準確、生活更美好呢?〉一文中,我提出一個計算貝氏機率的捷徑:從「行的條件機率」為出發點,貝氏定理所要求的反機率就是「列的條件機率」。

如果採取這個觀點,則不需要死背難記的公式就能計算反機率。這包括兩個步驟:

  1. 把「行的條件機率」乘上「行的邊際機率」就可以得到「聯合機率」。
  2. 把「聯合機率」除以「列的邊際機率」就可以得到「列的條件機率」。

這裡「行的邊際機率」就是算貝氏定理必需要先知道的「先驗機率」。至於「列的邊際機率」則把各列的聯合機率相加就可求得。

表三顯示醫事檢驗結果類型以 α、β 表示之「行的條件機率」。我們假設所有受檢者中帶原者的比例為 π ——或者說每一隨機受檢者帶原的機率為 π ——而不帶原的比例為 1 – π。

這 π 的值通常不難估計,即使無法估計也可以假設不同的數值做為討論基礎,有更多資訊時再求改進。π 與 1 – π 是「行的邊際機率」,也就是「先驗機率」。

表三、醫療檢測結果類型之「行的機率」(以α、β 表示)

受檢者
不帶原
(non-carrier)
帶原
(true-carrier)
採檢結果 陽性
(positive)
偽陽性
α
真陽性
1 – β
陰性
(negative)
真陰性
1 – α
偽陰性
β
行的邊際機率
(隨機採檢人士帶原的先驗機率)
1 – π π

有了「行的條件機率」和「先驗機率」,我們依步驟一算得 4 種類型的「聯合機率」,如表四。再依步驟二,我們很容易依次算得「列的邊際機率」及「列的條件機率」如表五。

表四、醫療檢測結果類型之「聯合機率」(以α、β 表示)

受檢者 列的邊際機率
不帶原
(non-carrier)
帶原
(true-carrier)
採檢結果 陽性
(positive)
偽陽性
α(1 – π)
真陽性
(1 – β)π
α + (1 – α – β)π
陰性
(negative)
真陰性
(1 – α)(1 – π)
偽陰性
βπ
(1 – α) + (1 – α – β)π
行的邊際機率
(隨機採檢人士帶原的先驗機率)
1 – π π 1

表五、醫療檢測結果類型之「列的條件機率」(以α、β 表示)

受檢者 列的邊際機率
不帶原
(non-carrier)
帶原
(true-carrier)
採檢結果 陽性
(positive)
偽陽性
\(\frac{\alpha (1-\pi) }{\alpha+ (1-\alpha -\beta )\pi }\)
真陽性
\(\frac{(1-\beta) \pi }{\alpha+ (1-\alpha -\beta )\pi }\)
α + (1 – α – β)π
陰性
(negative)
真陰性
\(\frac{(1-\alpha) (1-\pi) }{(1-\alpha)+ (1-\alpha -\beta )\pi }\)
偽陰性
\(\frac{\beta \pi }{(1-\alpha)+ (1-\alpha -\beta )\pi }\)
(1 – α) + (1 – α – β)π
行的邊際機率
(隨機採檢人士帶原的先驗機率)
1 – π π 1

 

所以敏感性(真陽性)的反機率是:

\( Precision=\frac{(1-\beta )\pi }{\alpha+ (1-\alpha -\beta )\pi } \)

-----廣告,請繼續往下閱讀-----
文章難易度
林澤民_96
37 篇文章 ・ 245 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

0

1
0

文字

分享

0
1
0
喝鮮奶真的能長高?拆解營養素與身高的關鍵連結!
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/17 ・3185字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 食力foodNEXT 合作,泛科學企劃執行。

日本的兒童與青少年在 1960 年代開始,身高像是坐上了成長的直升機!有人說,關鍵就在於1964年推動的學童乳政策,這一喝就是 60 年,讓孩子們「蹭蹭蹭」地長高。

那麼台灣呢?從 2010 年與 2015 年,嘉義、雲林率先實行學童乳政策,到 2024 年在進一步全國推動「班班有鮮奶」,我們的孩子也有這樣的機會長高嗎?但如果孩子長不高,真的是因為牛奶喝不夠嗎?其實,想要孩子長個子,還有更多「長高密碼」!

為什麼長不高?哪些因素決定身高?

人的身高是高是矮,有 80% 來自於基因決定。圖/envato

到底是先天還是後天在主宰我們的身高?科學家告訴我們,影響身高的原因,有 80% 來自基因!到目前為止,已經辨識出 700 多個基因和身高有關,其中一部分是影響骨骼中的生長板,另一部分則影響身體荷爾蒙的分泌,這些基因一起合力,最終決定了我們的身高表現。

-----廣告,請繼續往下閱讀-----

影響荷爾蒙分泌的基因,就像人體的「身高總指揮」,主要控制三大荷爾蒙:生長激素、甲狀腺素和性激素。

  • 生長激素是由腦下垂體分泌的,如果人體生長激素分泌較少,身高也會明顯受影響,也就是身高比較矮。
  • 甲狀腺素則是幫助粒線體這個「細胞能量工廠」順利運作,讓細胞有充足能量來代謝與生長。如果甲狀腺素分泌不足,細胞發育自然跟不上,就會影響身高表現。
  • 性激素則是影響生長板與肌肉的關鍵!例如,女性賀爾蒙分泌旺盛,會促使骨骼中的生長板提早關閉,所以女性平均身高比男性矮。而男性賀爾蒙不僅有助骨骼發育,還能增加肌肉量,讓身材更高挑結實。

所以,基因是命定的,後天就無法再突破了嗎?其實不然!雖然基因決定了大部分,但後天的努力也有很大空間來改變結局!接下來,我們就來看看後天四大關鍵:飲食、運動、睡眠和環境,如何影響孩子的身高成長!

後天逆轉勝!抓住長高的四大黃金關鍵

長高需要什麼?首先,飲食是關鍵!長高需要足夠的營養素,充足的蛋白質、鈣質與維生素能幫助骨骼發育,而均衡飲食則是孩子長高的基石。除此之外,運動也不可或缺,發育中的孩童建議每天至少一小時的運動,包括阻力訓練、有氧運動和放鬆運動等,能讓肌肉與骨骼的發育更加堅實,並且維持正常體重,促進生長激素分泌。

睡眠則是很多家長容易忽略的重要因素 。研究顯示,生長激素的分泌高峰在晚間 11 點至凌晨 1 點,以及清晨 5 點至 7 點。因此,確保孩子有規律且足夠的睡眠時間,可以顯著提升骨骼生長效率。

-----廣告,請繼續往下閱讀-----

最後,外在環境因素也會影響兒童身高。例如,空氣污染及鉛、鎘等有害物質可能阻礙發育。為了給孩子最好的成長環境,就要避開這些污染源。

盤點完這些後天因素後,我們不禁要問:牛奶真的能幫助長高嗎?答案將隨著我們深入探討後揭曉!

喝牛奶真的能幫助長高?

後天因素同樣會影響兒童身高,那喝牛奶會有幫助嗎?圖/envato

聯合國對於發育遲緩之定義,是該年齡孩童所測量身高,低於世界衛生組織制定的身高標準中位數 2 個標準差,就視為發育遲緩。

2023 年一篇跨國研究研究顯示,增加乳製品攝取能降低發育遲緩比例。

-----廣告,請繼續往下閱讀-----

當然,乳製品消費量增加可能也代表當地正在經濟成長,可能從其他面向影響飲食。為了避免其他因素干擾,這份研究也納入了人均 GDP、兒童扶養比、人口成長率、農村電氣化比例與女性參與勞動比等等變數進行控制。此外,該篇研究還另外指出乳糖不耐症常見於青少年與成人,對孩童沒有影響,因此不必過於擔心。

總之,喝牛奶的確可能對長高有幫助,但牛奶只是眾多因素之一。而更重要的是,台灣孩童真的缺這一杯鮮奶嗎?

牛奶的確對身高的發育有幫助,但台灣的學童真的缺奶嗎?

根據《國民營養健康狀況變遷調查》,除了 1-3 歲的幼兒外,其他年齡層的乳品攝取量都遠低於建議標準。特別是 7-18 歲的學童,乳品攝取量僅達建議量的一半,顯示台灣兒童的乳製品攝取明顯不足。事實上,7-18 歲的學童中,有 8 成每天攝取不到 1 份乳品,這對正在生長期的孩子來說,營養攝取遠遠不夠。

然而,學童缺的不僅是鈣,還有維生素 D。根據 2008 年一篇回顧性的研究,維生素D對身高發育與鈣質同等重要。如果鈣和維生素 D 攝取不足,會影響骨骼發育。1999 年中國的實驗研究指出,飲用牛奶能有效促進身高,尤其是加強維生素 D 的補充後,骨密度顯著提高。

-----廣告,請繼續往下閱讀-----

那麼,台灣學童的鈣與維生素 D 攝取是否足夠呢?答案是遠遠不夠!根據國民健康署的調查,7-18 歲的學童,鈣的攝取量平均不到建議量的一半,維生素 D 的攝取量甚至只有四成多。這樣的營養狀況,怎麼能夠提供足夠骨骼發育的營養環境?

更令人關注的是,這些營養缺口與乳品攝取不足有直接關聯。每份乳品大約含有 240 毫升牛奶,其中含有 240 毫克的鈣質及 3 微克的維生素 D。根據國民健康署採用的推薦膳食攝取量(RDA),每天需要的鈣質約為 1000 毫克,維生素 D 則是 15 微克,如果每人每天攝取2份乳品類,加上其他的飲食攝取,就有機會補足鈣與維生素 D 的缺口。

此外,牛奶中的鈣質容易被人體吸收。牛奶有三分之一的鈣是以游離態存在的,能夠直接被吸收,剩餘的鈣與酪蛋白結合,當人體消化酪蛋白時,這些鈣質也會被釋放,然後被人體吸收。事實上,人體對牛奶鈣質的吸收率為 32.1%,遠高於其他食物。因此,想要補充鈣質,牛奶無疑是最佳選擇。

人體對牛奶的吸收率達 32.1%,是補鈣的理想選擇。圖/envato

喝的不是鮮奶,而是加溫處理後的保久乳,營養素會被破壞嗎?

至於保久乳的營養價值問題,根據國民健康署 2021 年針對這個問題,提出了說明。鮮乳是生乳經過短時間高溫或超高溫殺菌方式所製成,所以無法達到完全滅菌,保存期間較短,而且需要冷藏。保久乳則是透過高溫或高壓滅菌,並且以無菌的填充方式放入無菌包材,所以能夠保存較久。

-----廣告,請繼續往下閱讀-----

根據食品藥物管理署營養成分資料庫,鮮乳跟保久乳中的蛋白質、脂肪、碳水化合物(乳糖)、礦物質及維生素都沒有太大差異,只有少數熱敏感的營養素,像是維生素 C 會稍微少一點外,其他成分大致上都一樣。所以,不管是鮮乳還是保久乳,在營養成分上差異不大!

另外,許多父母擔心乳糖不耐症影響孩子喝牛奶、容易引起腹瀉。牛奶中含有乳糖,而乳糖是一種雙醣,由半乳糖與葡萄糖所構成。人體想要運用乳糖,需要先把它分解成半乳糖與葡萄糖,這時候需要一種特別的腸道酵素:乳糖酶。在兒童時期乳糖酶會正常分泌,這是為了要分解母乳,隨著年齡增加,乳品類食物逐漸減少,人體的乳糖酶漸漸地分泌越來越少。然而,這並不代表不能喝牛奶。透過逐步攝取少量低乳糖的牛奶製品,或使用乳糖酶補充品,都有機會能改善不適,重新恢復對牛奶的耐受力。

總結來看,牛奶確實能補足我們失落的鈣質和維生素 D 缺口。這些營養素,也確實與身高有關。但別忘了,影響身高的因素有很多,飲食、運動、睡眠和環境等各方面都不可忽視!補充足夠的營養素,並搭配運動和良好的作息,將會是孩子的身高發育的關鍵。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
218 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
當開發遇上「術前檢查」:環境影響評估大揭密!
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/16 ・4339字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文由 環境部 委託,泛科學企劃執行。 

無論是在立法院的質詢臺,還是網路媒體或社論上,你應該經常聽到「環評」這個詞吧?它的核心理念其實很簡單,就是要在「經濟發展」和「環境保護」之間取得平衡。不管是建設重金屬冶煉廠、台積電進駐,還是打通山壁開闢新道路,都必須經過像動手術前的詳細檢查一樣,透過環評的嚴謹審查程序,確保這些開發不會對環境造成過度或無法挽回的損害。

 環評的概念起源於 70、80 年代,當時大規模開發導致嚴重的環境破壞,人們開始反思,發現單靠法規和污染處理技術不足以應對這些問題,環境惡化越來越嚴重,於是「事前預防」的想法應運而生。

我國的環評制度是借鑒美國的經驗,但並不是所有開發案都需要環評,只有那些可能對環境產生較大影響的開發行為,才需要在開發前進行環評。環評其實是開發許可的一部分,環保機關負責審查環評報告,並擁有否決權。但即便環評通過,並不代表開發案就能立即進行,最終的開發許可還是需由相關主管機關綜合考量政治、經濟、環境等多方面因素後,才能做出決定。

-----廣告,請繼續往下閱讀-----

環評到底在忙什麼?

環評的全名為「環境影響評估」(Environmental Impact Assessment, EIA)。就像動手術會有術前檢查、術後定期追蹤及按時服藥,健康的把關需要仰賴定期進廠維修,同樣在開發行為實施前,我們需要評估其可能對環境造成的影響,提出相應的預防或減輕措施,施工中或營運後也需要由目的事業主管機關來進行追蹤,並由環保機關進行監督,確保不會進一步損害環境品質。

環評負責評估開發對環境的影響,並制定措施與監督確保環境品質。圖/envato

雖然「環評」這個名字大家耳熟能詳,但實際上它的評估過程可一點也不簡單,就像醫療檢查一樣,科學、客觀且精密,評估項目可不只侷限在空氣品質、水質或土壤是否受農藥或化肥影響、生態景觀與棲地等和自然環境切身相關的議題。根據環評法第 4 條規定,評估還涵蓋了社會、經濟、文化等多個層面。

環評就像是開發案的「術前檢查」,確保開發行為不會對環境造成不必要的風險和破壞。那麼,大家常聽說環評要耗費很長時間,那它到底在忙什麼呢?其實,環評的目的是要求開發單位對開發可能帶來的環境影響進行詳細調查和分析,這些調查結果會寫成報告,並進行公開,讓社會大眾了解並參與討論。最後,由專家組成的委員會審查,只有通過審查的案子,才有機會繼續進行開發,從而保護我們共同的生活環境。

誰應該接受環評的「考驗」?

根據環評法的立法精神,不是所有的開發案都需要進行環評,環評主要是針對那些可能對環境造成不良影響的開發行為。那麼,哪些開發案需要環評呢?環境部依法訂定了「開發行為應實施環境影響評估細目及範圍認定標準」(簡稱「認定標準」),這些標準主要是根據開發案可能帶來的影響程度、所在的敏感區域(如國家公園、重要濕地、野生動物棲息地等),以及開發的規模(如面積、處理量)來判斷是否需要進行環評。

-----廣告,請繼續往下閱讀-----

舉例來說,像高速鐵路、大眾捷運、機場、離岸風力發電系統等這些建設,不論它們的規模或地點,都必須經過環評。而像科學園區、高爾夫球場的建設,若位於國家公園、重要濕地或野生動物棲息地,也需要辦理環評;至於太陽能光電設施,則是當它位於重要濕地時,才需要進行環評。

宛如開發前的「術前檢查」!淺談環評流程

我國的環評審查採取專家審查機制,環評主管機關依法成立環評審查委員會。委員會的成員包括政府機關的代表和專家學者,其中專家學者的比例不得少於總人數的三分之二。以環境部為例,環境部的環評審查委員會共有 21 位委員,其中 14 位是來自不同專業領域的專家學者,這些專家分別在生活環境、自然環境、社會環境等方面進行把關,確保審查過程的專業性與公正性。

臺灣的環評制度通常分為兩個階段。一階環評是透過報告書撰寫前的公開意見蒐集,開發單位將意見回應情形納入報告書後由專業的環評審查委員進行審查,若經審查後認為開發後對環境有重大影響之虞,則應對症下藥,進入二階環評,這個階段的審查更為嚴謹,並且依法規定進行範疇界定,篩選出環境關鍵項目與因子。整個環評流程大致包括以下幾個重要步驟,讓開發案能夠更透明、公開地接受環境影響的評估與檢驗。

STEP 1 資料填寫:開發行為規劃

這就像醫生在手術前,先為病患制定計畫,並在檢查前登錄好病患的個人資料,例如身分訊息、健康問題、藥物過敏或病史等。同樣地,環評也是這樣運作的。開發單位首先要擬定開發案的規劃,並且將這些內容在網路上公開蒐集意見 20 天,同時也會舉行公開會議,讓大眾參與討論。

-----廣告,請繼續往下閱讀-----

接著,開發單位需要編寫環境影響說明書的主要章節,並且決定是否自願進入二階環評。這個階段開發單位會進行初步的計畫,確認開發的目標與範圍,並評估這個開發案可能對環境產生的潛在影響。這些步驟都是為了確保開發行為在開始前,能夠徹底評估可能的風險和影響

開發單位需撰寫環境影響說明書,初步評估目標、範圍及潛在影響。圖/envato

STEP 2 初步評估:編製環境影響說明書

就像術前檢查結果會匯集成一份醫療報告,在這個階段,開發單位也需要把他們的調查結果、預測和分析整理成一份「環境影響說明書」(簡稱環說書),環說書會說明如何預防或減少對環境的負面影響。

開發單位需要根據作業準則製作環說書,交給目的事業主管機關,確認無非屬主管機關所主管法規之爭點後,再轉請主管機關審查;主管機關確認沒有需要補正的地方(例如:沒有檢具環境保護對策與替代方案、執行評估的人忘了簽名等),環保主管機關所設的「環境影響評估審查委員會」則會著手進入審查階段。

STEP 3 手術可行與必要嗎:審查與結論

這部分就像醫療團隊評估手術的風險。環保機關會審查這份環境影響說明書,專家委員會會進行詳細的審查,並在一定的時間內做出結論。如果所有的環保問題都能得到妥善解決,開發案就能獲得初步通過並公告審查結論,告訴你這個「手術」(開發項目)可不可以做、在甚麼條件下做比較安全,或是可能要再做更進一步的檢查等等。以離岸風電開發為例,可能就會要求開發商調整風機位置,以避開白海豚的棲地。

-----廣告,請繼續往下閱讀-----

對應環評法施行細則裡的審查結論,除了通過審查、不應開發等結果,也可能會出現「有條件通過審查」或「進行第二階段審查評估」的狀態。

STEP 4 完善的手術方案:進入二階環評

就像術前檢查發現可能有重大問題或可能帶來影響的副作用時,醫生可能會要求進行更詳細的檢驗及評估更好的治療方案,環評也是如此。如果第一階段的環評顯示這個開發案可能對環境造成較大的影響,那麼它就必須進入「二階環評」。

進入二階環評的開發案,意味著要進行更加深入的分析與評估。就像醫生要進行更精密的檢查來了解手術風險。除了基本的環評程序,開發單位還需要舉辦公開說明會與範疇界定會議、編製更複雜的「環境影響評估報告書初稿」送目的事業主管機關,目的事業主管機關收到初稿後需進行現場勘查與公聽會,讓當地居民或關心這個開發案的人可以參與,了解開發案的影響,並提出意見。

二階環評需更深入分析,與舉辦說明會、公聽會,讓居民一同參與評估影響。圖/envato

同時,開發單位也要依據這些意見,編製更詳細的「環境影響評估報告書」,將所有的調查、分析結果都納入評估報告書中,才能由目的事業主管機關轉送環保主管機關審查。而如果在審查過程中發現需要修改或補充資料,就像醫生建議調整手術計畫一樣,開發單位會進行修正,並重新提交補正及取得定稿備查。只有在所有問題解決後,開發案才是真正通過環評審查並進入下一階段。

-----廣告,請繼續往下閱讀-----

如果在你生活周遭環境的開發案正好遇到環評的爭議,或者你關心的案件正在環評階段,你可以隨時上「環境部環評書件查詢系統」(https://eiadoc.moenv.gov.tw/eiaweb/)查詢相關的最新資訊。不僅如此,環評審查委員會的會議還有線上直播,讓大家能夠親自參與,為國內的開發案共同把關!

整個環評流程耗時多久?

環評法第 7 條規定,主管機關在收到環境影響說明書後,必須在 50 天內完成審查並公告結果,並通知相關主管機關和開發單位。如果遇到特殊情況,最多可以再延長 50 天。

根據環評法施行細則第 15 條,這個審查期限是從開發單位備妥所有資料,並繳交審查費後開始計算。但是有一些情況是不計入這個審查時間的,包括:

  1. 開發單位補充資料所花的時間。
  2. 請目的事業主管機關就法規進行釋疑,且不超過 60 天的時間。
  3. 其他不可歸責於主管機關的可扣除天數。

因此,整個環評流程的時間會因為不同情況有所變動,但主管機關的基本審查時間是 50 天內,特殊情況最多延長至 100 天。

-----廣告,請繼續往下閱讀-----

然而,實際所需要的時間,可能會根據開發案的複雜程度而有所不同。就像去放射科拍攝X光可能只要一、兩分鐘,但如果要做電腦斷層,可能就需要半個小時左右。

同樣地,根據環評法的規定,環境影響說明書的審查通常在收到資料後的 50 天內完成,若是進入二階環評,審查時間則是 60 天。聽起來似乎不算太久,通常三、四個月就能有結果。

但實際上,環評過程常常會因各種原因延長時間。環境部目前也正在進行環評總體檢,蒐集各界的意見,逐步檢視現行制度,並作為未來修正相關法規的參考依據。

環評帶來的效益是全方位的,它不僅幫助我們在追求經濟發展的同時,兼顧環境的永續。透過環評,開發行為的潛在風險可以提前被識別,並且在問題發生前採取預防和減輕措施。這樣的過程不僅讓開發行為更具透明度,減少未來可能面臨的環境爭議和成本,還能促進社會對環境議題的關注與參與。期待隨著法規的修正與完善,未來的環評制度在效率、透明度與公眾參與等方面有望取得更大進展,為可持續發展提供更有力的保障。這不僅是對環境的保護,更能促進經濟發展和社會福祉,實現政府、企業和民眾三贏的局面,讓我們共同打造一個更健康、更永續的未來。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
218 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
當心網路陷阱!從媒體識讀、防詐騙到個資保護的安全守則
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/17 ・3006字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國家通訊傳播委員會 委託,泛科學企劃執行。 

網路已成為現代人生活中不可或缺的一部分,可伴隨著便利而來的,還有層出不窮的風險與威脅。從充斥網路的惡假害訊息,到日益精進的詐騙手法,再到個人隱私的安全隱憂,這些都是我們每天必須面對的潛在危機。2023 年網路購物詐欺案件達 4,600 起,較前一年多出 41%。這樣的數據背後,正反映出我們對網路安全意識的迫切需求⋯⋯

「第一手快訊」背後的騙局真相

在深入探討網路世界的風險之前,我們必須先理解「錯誤訊息」和「假訊息」的本質差異。錯誤訊息通常源於時效性考量下的查證不足或作業疏漏,屬於非刻意造假的不實資訊。相較之下,假訊息則帶有「惡、假、害」的特性,是出於惡意、虛偽假造且意圖造成危害的資訊。

2018 年的關西機場事件就是一個鮮明的例子。當時,燕子颱風重創日本關西機場,數千旅客受困其中。中國媒體隨即大肆宣傳他們的大使館如何派車前往營救中國旅客,這則未經證實的消息從微博開始蔓延,很快就擴散到各個內容農場。更令人遺憾的是,這則假訊息最終導致當時的外交部駐大阪辦事處處長蘇啟誠,因不堪輿論壓力而選擇結束生命。

-----廣告,請繼續往下閱讀-----

同年,另一則「5G 會抑制人體免疫系統」的不實訊息在網路上廣為流傳。這則訊息聲稱 5G 技術會影響人體免疫力、導致更容易感染疾病。儘管科學家多次出面澄清這完全是毫無根據的說法,但仍有許多人選擇相信並持續轉發。類似的例子還有 2018 年 2 月底 3 月初,因量販業者不當行銷與造謠漲價,加上媒體跟進報導,而導致民眾瘋狂搶購衛生紙的「安屎之亂」。這些案例都說明了假訊息對社會秩序的巨大衝擊。

提升媒體識讀能力,對抗錯假訊息

面對如此猖獗的假訊息,我們首要之務就是提升媒體識讀能力。每當接觸到訊息時,都應先評估發布該消息的媒體背景,包括其成立時間、背後所有者以及過往的報導記錄。知名度高、歷史悠久的主流媒體通常較為可靠,但仍然不能完全放下戒心。如果某則消息只出現在不知名的網站或社群媒體帳號上,而主流媒體卻未有相關報導,就更要多加留意了。

提升媒體識讀能力,檢視媒體背景,警惕來源不明的訊息。圖/envato

在實際的資訊查證過程中,我們還需要特別關注作者的身分背景。一篇可信的報導通常會具名,而且作者往往是該領域的資深記者或專家。我們可以搜索作者的其他作品,了解他們的專業背景和過往信譽。相對地,匿名或難以查證作者背景的文章,就需要更謹慎對待。同時,也要追溯消息的原始來源,確認報導是否明確指出消息從何而來,是一手資料還是二手轉述。留意發布日期也很重要,以免落入被重新包裝的舊聞陷阱。

這優惠好得太誇張?談網路詐騙與個資安全

除了假訊息的威脅,網路詐騙同樣令人憂心。從最基本的網路釣魚到複雜的身分盜用,詐騙手法不斷推陳出新。就拿網路釣魚來說,犯罪者通常會偽裝成合法機構的人員,透過電子郵件、電話或簡訊聯繫目標,企圖誘使當事人提供個人身分、銀行和信用卡詳細資料以及密碼等敏感資訊。這些資訊一旦落入歹徒手中,很可能被用來進行身分盜用和造成經濟損失。

-----廣告,請繼續往下閱讀-----
網路詐騙手法不斷進化,釣魚詐騙便常以偽裝合法機構誘取敏感資訊。圖/envato

資安業者趨勢科技的調查就發現,中國駭客組織「Earth Lusca」在 2023 年 12 月至隔年 1 月期間,利用談論兩岸地緣政治議題的文件,發起了一連串的網路釣魚攻擊。這些看似專業的政治分析文件,實際上是在臺灣總統大選投票日的兩天前才建立的誘餌,目的就是為了竊取資訊,企圖影響國家的政治情勢。

網路詐騙還有一些更常見的特徵。首先是那些好到令人難以置信的優惠,像是「中獎得到 iPhone 或其他奢侈品」的訊息。其次是製造緊迫感,這是詐騙集團最常用的策略之一,他們會要求受害者必須在極短時間內作出回應。此外,不尋常的寄件者與可疑的附件也都是警訊,一不小心可能就會點到含有勒索軟體或其他惡意程式的連結。

在個人隱私保護方面,社群媒體的普及更是帶來了新的挑戰。2020 年,一個發生在澳洲的案例就很具有警示意義。當時的澳洲前總理艾伯特在 Instagram 上分享了自己的登機證照片,結果一位網路安全服務公司主管僅憑這張圖片,就成功取得了艾伯特的電話與護照號碼等個人資料。雖然這位駭客最終選擇善意提醒而非惡意使用這些資訊,但這個事件仍然引發了對於在社群媒體上分享個人資訊安全性的廣泛討論。

安全防護一把罩!更新裝置、慎用 Wi-Fi、強化密碼管理

為了確保網路使用的安全,我們必須建立完整的防護網。首先是確保裝置和軟體都及時更新到最新版本,包括作業系統、瀏覽器、外掛程式和各類應用程式等。許多網路攻擊都是利用系統或軟體的既有弱點入侵,而這些更新往往包含了對已知安全漏洞的修補。

-----廣告,請繼續往下閱讀-----

在使用公共 Wi-Fi 時也要特別當心。許多公共 Wi-Fi 缺乏適當的加密和身分驗證機制,讓不法分子有機可乘,能夠輕易地攔截使用者的網路流量,竊取帳號密碼、信用卡資訊等敏感數據。因此,在咖啡廳、機場、車站等公共場所,都應該避免使用不明的免費 Wi-Fi 處理重要事務或進行線上購物。如果必須連上公用 Wi-Fi,也要記得停用裝置的檔案共享功能。

使用公共 Wi-Fi 時,避免處理敏感事務,因可能存在數據被攔截與盜取的風險。圖/envato

密碼管理同樣至關重要。我們應該為不同的帳戶設置獨特且具有高強度的密碼,結合大小寫字母、數字和符號,創造出難以被猜測的組合。密碼長度通常建議在 8~12 個字元之間,且要避免使用個人資訊相關的詞彙,如姓名、生日或電話號碼。定期更換密碼也是必要的,建議每 3~6 個月更換一次。研究顯示,在網路犯罪的受害者中,高達八成的案例都與密碼強度不足有關。

最後,我們還要特別注意社群媒體上的隱私設定。許多人在初次設定後就不再關心,但實際上我們都必須定期檢查並調整這些設定,確保自己清楚瞭解「誰可以查看你的貼文」。同時,也要謹慎管理好友名單,適時移除一些不再聯繫或根本不認識的人。在安裝新的應用程式時,也要仔細審視其要求的權限,只給予必要的存取權限。

提升網路安全基於習慣培養。辨識假訊息的特徵、防範詐騙的警覺心、保護個人隱私的方法⋯⋯每一個環節都不容忽視。唯有這樣,我們才能在享受網路帶來便利的同時,也確保自身的安全!

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
218 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia