Processing math: 100%

0

2
2

文字

分享

0
2
2

醫療檢測的準確度:「偽陰性」、「偽陽性」到底是什麼意思?如何計算準確度?

林澤民_96
・2020/04/28 ・7507字 ・閱讀時間約 15 分鐘 ・SR值 605 ・十年級

-----廣告,請繼續往下閱讀-----

  • 作者/林澤民
最近關於新冠病毒全面篩檢的問題時不時就在媒體上出現。圖/Martin Lopez@Pexels

最近因為大家關心新冠病毒是否要全面篩檢的問題,媒體上常見一些醫事檢驗學的術語。其中最常聽到的是「偽陰性」,但也常讀到「特異性」與「敏感性」;這些名詞都與新冠病毒檢測的準確度有關。在瘟疫變成每個人生存威脅的時候,這些專門術語也變得跟我們的生活息息相關。

本文嘗試用基本統計檢定概念來詮釋這些名詞,更進一步用數據科學中衡量搜尋、辨識工具準確度的概念來探討醫療檢測的準確度。

「檢測準確度」與「統計檢定」概念可互相對應

在醫檢學,「敏感性」(sensitivity) 常與「特異性」(specificity) 共同用來衡量檢測的準確度。

這些名詞,不熟悉醫檢學的讀者可能會覺得莫測高深,但其實它們與基本統計學所教的統計檢定的基本概念是互相對應的,只是著重點有所不同。這裡先簡單地解釋它們與統計檢定概念的關係,以利讀者了解醫檢學的術語。

-----廣告,請繼續往下閱讀-----

先說特異性。特異性是不帶原者中採檢陰性的比例,一般簡稱為「真陰性」的比例。而敏感性則是帶原者中採檢陽性的比例,也可稱為「真陽性」的比例。

表一、醫療檢測結果類型

受檢者
不帶原
(non-carrier)
帶原
(true-carrier)
採檢結果 陽性
(positive)
偽陽性
(false positive)
真陽性
(true positive)
陰性
(negative)
真陰性
(true negative)
偽陰性
(false negative)

如果把上圖跟基本統計學學生所熟悉的下圖相比較,就可以看出醫檢術語與傳統統計檢定概念的對應關係。

表二、統計結果檢定類型

-----廣告,請繼續往下閱讀-----
虛無假設(H0) v. 研究假設(HA)
虛無假設為真
(H0 Ture)
研究假設為真
(HA True)
採檢結果 拒絕虛無假設
(positive)
型一錯誤
(size of test=α)
檢定強度
(power of test=1-β)
無法拒絕虛無假設
(negative)
信心水平
(1-α)
型二錯誤
(β)

所以當我們把「比例」視同「機率」時,特異性其實就是統計檢定的信心水平,而敏感性就是統計強度。連結到型一錯誤的機率 α(即顯著水平,也稱檢定規模)、型二錯誤的機率 β,可以清楚看到:

特異性 = 真陰性的機率 = 信心水平 = 1 – α

敏感性 = 真陽性的機率 = 檢定強度 = 1 – β

因為 α、β 是錯誤的機率,愈小愈好,所以特異性、敏感性都是愈高愈好。但 α、β 並不是互相獨立的。如果樣本數固定、所要檢定的效應(即 H0 跟 HA 的差距)也固定,通常 α 愈小 β 會愈大、α 愈大 β 會愈小,因此特異性跟敏感性之間也有同樣的互換關係。

特異性、敏感性這兩個概念其實都還是傳統所謂「頻率學派」(frequentist) 統計學的概念,它們並未涉及貝氏定理的反機率。在討論新冠病毒採檢準確度的問題時,我們更需關注的其實是反機率的問題:「當採檢為陽性時,其為偽陽性的機率有多高?」反過來說:「當採檢為陰性時,其為偽陰性的機率有多高?」

這些問題,也是近年來撼動頻率學派統計檢定方法的貝氏學派統計學者所指出的問題。

-----廣告,請繼續往下閱讀-----

要算這些反機率就必須用到貝氏定理。最近在機器學習、自然語言處理等領域被廣泛使用的 F1 便是由「真陽性」的機率與反機率混合組成的一種檢測準確度 (accuracy) 的度量。

關於貝氏統計學派對傳統頻率學派統計檢定方法的批評,可參考:P 值的陷阱(上):P 值是什麼?又不是什麼?  P 值的陷阱(下):「摘櫻桃」問題

在討論新冠病毒採檢準確度的問題時,我們更需關注的其實是反機率的問題:「當採檢為陽性時,其為偽陽性的機率有多高?」反過來說:「當採檢為陰性時,其為偽陰性的機率有多高?」圖/GIPHY

數據科學中的「準確度」:F1 分數

F1 分數有時簡稱 F 分數,也稱為 Sørensen-Dice 係數。在數據科學裡,F1 常被用來做為搜尋、辨識「相似」資料準確度的度量。它可以用來衡量搜尋引擎的準確度,也常用在自然語言處理中資料的搜尋、辨識,當然它也可以用於人臉辨識。

想像你要用文本分析的方法來研究瘟疫流行期間海峽兩岸情緒的互動。台灣這邊,你要找出一月以來所有與疫情及兩岸情緒互動有關的貼文;大陸那邊,你專注於搜尋微信上面的貼文。你使用的辨識工具是一組包括疫情及兩岸關係的關鍵詞;你希望這組關鍵詞能夠正確地指認出每一篇相關貼文。

你知道你的辨識工具的準確度跟你使用的關鍵詞有關,為了要正確找出相關貼文,你希望辨識的準確度越高越好;但是不論你使用了哪些關鍵詞,你的工具的準確度不會是百分之百。有時一篇貼文明明跟你研究的主題有關,你的辨識工具卻指認不出來;有時明明跟研究主題無關的貼文,卻被認定有關。

-----廣告,請繼續往下閱讀-----
如何在網路上精準搜尋資料也是門學問呢!圖/GIPHY

不過,這樣的文本處理過程,其實與醫療檢測有類似之處:對同一篇貼文,用關鍵詞為工具來辨識貼文性質的結果可以有偽陽性、真陽性、真陰性、偽陰性四種類型,這基本上跟表一是一樣的。

F1 包含了兩個成分:召回率 (Recall) 和精密性 (Precision)。F1 是這兩個成分的平均數,但不是算數平均數而是調和平均數

F1=\frac{2}{\frac{1}{Recall}+\frac{1}{Precision}}

因為召回率精密性的值都介於 0 與 1 之間,F1 的值也會介於 0 與 1 之間。如果召回率和精密性之一的值趨近於 0,F1 的值也會趨近於 0;如果召回率和精密性的值都等於 1,F1 的值也會等於 1。

-----廣告,請繼續往下閱讀-----

特別值得注意的是:作為調和平均數,F1 的值永遠小於或等於召回率和精密性的算術平均數。這也就是說:相較於算術平均數,F1 的值會更被它的成份中比較小的那個數值拉低。不論召回率和精密性之中哪個成分的值較小,在計算 F1 時,較小那個成分實質上有較大的權重。這是調和平均數與算數平均數不同的地方。

那麼什麼是召回率?什麼是精密性?

召回率其實就是醫檢學中的敏感性(真陽性)。之所以喚作召回率,應該就是真正具有某種性質的受檢群體,有多少比例能夠被正確指認出來的意思。召回率可以用型二機率表示如下:

召回率 = 敏感性 = 真陽性的機率 = Pr(採檢結果陽性 | 受採檢者為帶原者)= 1 – β

精密性則是召回率的反機率:

精密性 = 召回率(敏感性、真陽性)的反機率 = Pr(受採檢者為帶原者 | 採檢結果陽性)

為什麼算準確度除了召回率還要加上召回率的反機率?這是因為反機率其實是更實際、更重要的考慮。召回率的分母是不特定的群體,而精密性(召回性的反機率)的分母是特定的。以醫療檢測來說,召回率(敏感性)的分母包括所有帶原者,但受採檢的個人並不知道自己帶不帶原,採檢的防疫人員也不知道帶原者是哪一群人,因此召回率只是一個抽象的概念。

-----廣告,請繼續往下閱讀-----

相對來說,精密性(敏感性的反機率)的分母是所有採檢陽性者,不但採檢陽性的個人知道自己是陽性,防疫人員也知道採檢陽性的是哪一群人,因此它是比較具體的概念。採檢陽性的人會極想知道自己是真正帶原還是不帶原,防疫人員更需要考量採檢陽性的人中有多少真正帶原或其實不帶原。

採檢陽性的人會極想知道自己是真正帶原,還是不帶原。圖/GIPHY

用貝氏定理計算反機率的詳細步驟,可參考:會算「貝氏定理」的人生是彩色的!該如何利用它讓判斷更準確、生活更美好呢?以及本文附錄。

但貝氏定理要求必須先對帶原、不帶原的先驗機率作出假設。我們假設所有受檢者中帶原者的比例為 π ──或者說每一隨機受檢者帶原的機率為 π ──而不帶原的比例為 1-π。

這 π 可以是客觀估計的頻率,也可以是醫生經由對受檢者問診或疫調形成的主觀判斷。我們算出的結果是:

Precision=\frac{(1-\beta )\pi }{\alpha+ (1-\alpha -\beta )\pi }

-----廣告,請繼續往下閱讀-----

精密性(敏感性的反機率)可能甚小於敏感性。例如當 π = 0.1,α=0.05,β=0.2 時,敏感性為 0.8,敏感性的反機率約為 0.14。這是因為採檢陽性者當中有甚多是偽陽性者的緣故。

假設桃園機場每天有 1000 位入境旅客全部接受篩檢,其中未帶原者有 990 人而帶原者只有 10 人。雖然偽陽性 (α) 只有 5%,990 位未帶原者中也會有將近 50 位被誤檢為陽性,而真陽性 (1-β) 雖然高達 80%,10 位帶原者中也只有 8 位確診陽性。這樣採檢陽性者一共 58 人中,帶原者的比例也只有 8/58,大約 14%。

假設受檢者 1000 人, π = 0.1,α=0.05,β=0.2 時,敏感性為 0.8

   \受檢者(人)
採檢結果\
不帶原
990
帶原
10
陽性 偽陽性
50*
真陽性
8
陰性 真陰性
940
偽陰性
2

*因 990 的 5%為 49.5 人不合常理,此處四捨五入

這就是貝氏定理的奧妙之處:雖然型一、型二的錯誤機率都不能說很大,當真正帶原者的比例很小時,以採檢陽性者為分母來算,偽陽性的比例會比 α 高甚多,而真陽性的比例會比 1 – β 低甚多。這是與一般人的直覺很不一樣的。因為大多數人不帶原,只要有一點點偽陽性的機率(α),採檢陽性的人中便會有許多不帶原者。如果不了解貝氏定理而對這一點感到困惑,便是犯了所謂「基率謬誤」(base rate fallacy)。

從精密性的公式可以看出:當 α=0,特異性 100% 的時候,精密性也是 100%。此時 F1 的公式簡化為:

F1=\frac{2}{\frac{1}{Recall}+\frac{1}{Precision}}=\frac{2Recall}{1+Recall}

也就是 F1 完全由召回率(敏感性、真陽性)來決定,召回率越高,F1 也越高;此時沒有反機率的問題。

將 F1 應到到醫學檢驗上

要用 F1 來衡量醫事檢驗的準確度,只要把召回率改成敏感性(真陽性)、把精密性改成敏感性(真陽性)的反機率就可得到下列 F1 分數:

F1=\frac{2}{\frac{1}{Recall}+\frac{1}{Precision}}=\frac{2(1-\beta )\pi }{\alpha+ (2-\alpha -\beta )\pi }

這個公式包含了三個變項:α、β、π。

在醫學檢驗,α 是偽陽性也是特異性的反面,β 是偽陰性也是敏感性的反面。在統計分析中,α 是研究者自己可以設定的,就是一般所謂的顯著水平,通常設在 α=0.05。近年因為學界廣泛對 p 值的質疑,有不少學者主張要從嚴用 α=0.005。在採檢新冠狀病毒的時候,核酸檢測的設計極大化了特異性,也就是極小化了偽陽性的機率 α;快篩則因為較難以區別各種冠狀病毒而會有較大的 α。

圖一、二中,我們分別以 α=0.05 及 α=0.005 這兩個顯著水平為參數,在所有受檢者中帶原者的比例 π=0.01 的假設下,劃出召回率(敏感性、真陽性)、精密性(敏感性、真陽性的反機率)、F1 對於 β 的函數圖形。

這兩個圖形的橫軸,β,是型二錯誤機率,也即偽陰性,它是敏感性(真陽性)1 – β 的反面。偽陰性是防疫專家很關心的一個指數;防疫中心指揮官陳時中之所以堅持不肯在機場對入境旅客進行普篩的主要原因就是因為篩檢的偽陰性高,他擔心旅客採檢陰性就放下心防趴趴走。若偽陰性的檢測結果太多,則病毒將在社區廣泛傳播。

防疫中心似乎從不曾明確說出快篩偽陰性的機率,張上淳醫師則說他相信三採陰的核酸檢測敏感性「幾乎是百分之百」。中文網頁曾被引用的敏感性數字如「約 10%~70%」、「只有 50-80%」等,似乎指的都是流感的快篩而不是新冠狀病毒的快篩。

其實,即使 4 月 9 日的 Science Daily 都還引用一篇 Mayo Clinic Proceedings 的論文,指出醫學文獻尚未就現有核酸檢測工具的敏感性有清楚、一致的報告。如果快篩敏感性「只有 50-80%」,那我們必須考慮的 β 數值應在 20-50% 之間。如果偽陰性的機率是 0.2,三採陰性仍為偽陰性的機率是 0.008,那麼三採陰的敏感性的確是張上淳醫師所說的「幾乎是百分之百」。

然而敏感性並不是計算準確度的唯一成分,除了敏感性,我們還要考慮敏感性的反機率。圖一、二顯示,至少在 0 < β < 0.5 的區間,精密性(敏感性的反機率)要小於召回率(敏感性),而兩者的和諧平均數 F1 要比算術平均數更靠近數值較低的精密性。換句話說,當我們在計算準確度時,因為把敏感性的反機率納入考慮,準確度會被拉低

接續前面的例子,當 p=0.1,α=0.05,β=0.2 時,敏感性為 0.8,敏感性的反機率為 0.14,準確度 F1 只有不到 0.24!如果我們把 α 從嚴降低到 α=0.005,則 β=0.2 時,敏感性仍然為 0.8,敏感性的反機率為 0.62,準確度 F1 可以提高到 0.70。如果這樣的準確度仍然不令人放心,那只好「順時中」以三採陰性才算真陰性。如此偽陰性的機率降低到 β=0.008,敏感性增為 0.992,敏感性的反機率為 0.667,準確度 F1 可以提高到將近 0.80。

但是多重採檢也有可能出現統計檢定中所謂「多重假說檢定」 (multiple hypothesis test) 的問題。例如在 α=0.05 時,對一位實際不帶原者進行三次採檢,理論上得到至少一次偽陽性的機率是 1 – (1 – 0.05)= 0.1426,採檢越多次這個機率越大。其實,即使偽陰性降到 0、敏感性達到百分之百,敏感性的反機率仍然只有 0.67,F1 還是只有比 0.80 高一點點。

這癥結所在就不再是敏感性的問題而是特異性 (1-α) 的問題了,只有把偽陽性的機率 α 降到更小,讓特異性趨近百分之百,這樣才能解決反機率的問題,讓 F1 完全由召回率(敏感性、真陽性)來決定。

然而即使核酸檢測能做到這樣,快篩卻不一定行。根據報載,中研院基因體研究中心所發展出來的快篩試劑可以達到 95% 以上的特異性。雖然如此,如圖一所示,在 α=0.05 的水平,敏感性的反機率其實是非常值得注意的問題。

只要普檢仰賴快篩,我們便不能只以特異性及敏感性來衡量醫療檢測的準確度。

只要普檢仰賴快篩,我們便不能只以特異性及敏感性來衡量醫療檢測檢測的準確度。圖/Polina Tankilevitch@Pexels

後記:防疫中心數據核算

(2020/4/30 更新)

本文在泛科學刊出之後不久,防疫中心指揮官陳時中部長即在例行記者會上對快篩偽陽性的問題進行了詳盡的解說。陳部長的解說最珍貴的地方是他提供了防疫中心檢測工具特異性、敏感性的數值,以及專業人員對新冠病毒在台盛行率的估計。這些決定了防疫政策的參數,都是我在撰寫本文時無法確知的。

陳時中在記者會中使用的幾張投影片,正好為我的結論提出了完美的專業驗證。這裡只就兩張投影片的數據來核算。

首先,他設定了兩組參數:

  1. PCR(核酸檢測):特異性=0.9999,敏感性=0.95,盛行率=0.0018 or 0.000016。對應於我所使用的統計學參數:α=0.0001,β=0.05,π=0.0018 or 0.000016。
  2. 快篩:特異性=0.99,敏感性=0.75,盛行率=π=0.0018 or 0.000016。對應於我所使用的統計學參數:α=0.01,β=0.25,π=π=0.0018 or 0.000016。
  • 講解中提到兩種盛行率:π=0.0018 以及 π=0.000016,前者被稱為「極大值」,後者為「合理值」。

請注意:這裡快篩的特異性已經高達 0.99了,但是 PCR 的特異性可以更高到 0.9999,很趨近百分之百了,但還不到百分之百。

我文中提出的精密性公式是:

精密性=敏感性(真陽性)的反機率=Pr(受採檢者為帶原者|採檢結果陽性)= Precision=\frac{(1-\beta )\pi }{\alpha+ (1-\alpha -\beta )\pi }

依此公式來算,盛行率為極大值(π=0.0018)的情況下:

  • PCR 的精密性=0.9448
  • 快篩 的精密性=0.1191

在極大值的假設下,陳時中估計台灣有 4,800,000 因呼吸道症狀就醫的人,PCR會檢驗出 8,687 陽性患者,其中有 8,208 真正的帶原者。這結果(精密性= 0.9448)可說很不錯,但是還是會有 479 偽陽性案例。

但是如果仰賴快篩,則快篩會檢驗出 54,394 陽性患者,其中只有 6,480 真正的帶原者。這結果(精密性 0.1191)太糟糕了。

此所以我說:只有把偽陽性 α 降到更小,讓特異性趨近百分之百,這樣才能解決反機率的問題。然而即使核酸檢測能做到這樣,快篩卻不一定行。只要普檢必須仰賴快篩,敏感性的反機率仍然是值得注意的問題。

在第二張投影片,陳時中把盛行率降低到百萬分之 16(0.000016)。這是他認為比較合理的數值,反映了防疫中心的先驗信仰。在其它參數不變的條件下,π=0.000016 得到下列結果:

  • PCR的精密性=0.1319
  • 快篩的精密性=0.0012

這樣的精密性,連 PCR 都慘不忍睹。其原因是因為偽陽性的個案數目幾乎不變,而真陽性的個案數目大為減少,自然精密性也就大為減小了。這樣普篩數百萬人的後果就是會有許多偽陽性(以及偽陰性)的個案,造成許多個人、家庭、社區的困擾。


附錄:如何計算精密性——敏感性(真陽性)的反機率?

敏感性的反機率如何計算?在〈會算「貝氏定理」的人生是彩色的!該如何利用它讓判斷更準確、生活更美好呢?〉一文中,我提出一個計算貝氏機率的捷徑:從「行的條件機率」為出發點,貝氏定理所要求的反機率就是「列的條件機率」。

如果採取這個觀點,則不需要死背難記的公式就能計算反機率。這包括兩個步驟:

  1. 把「行的條件機率」乘上「行的邊際機率」就可以得到「聯合機率」。
  2. 把「聯合機率」除以「列的邊際機率」就可以得到「列的條件機率」。

這裡「行的邊際機率」就是算貝氏定理必需要先知道的「先驗機率」。至於「列的邊際機率」則把各列的聯合機率相加就可求得。

表三顯示醫事檢驗結果類型以 α、β 表示之「行的條件機率」。我們假設所有受檢者中帶原者的比例為 π ——或者說每一隨機受檢者帶原的機率為 π ——而不帶原的比例為 1 – π。

這 π 的值通常不難估計,即使無法估計也可以假設不同的數值做為討論基礎,有更多資訊時再求改進。π 與 1 – π 是「行的邊際機率」,也就是「先驗機率」。

表三、醫療檢測結果類型之「行的機率」(以α、β 表示)

受檢者
不帶原
(non-carrier)
帶原
(true-carrier)
採檢結果 陽性
(positive)
偽陽性
α
真陽性
1 – β
陰性
(negative)
真陰性
1 – α
偽陰性
β
行的邊際機率
(隨機採檢人士帶原的先驗機率)
1 – π π

有了「行的條件機率」和「先驗機率」,我們依步驟一算得 4 種類型的「聯合機率」,如表四。再依步驟二,我們很容易依次算得「列的邊際機率」及「列的條件機率」如表五。

表四、醫療檢測結果類型之「聯合機率」(以α、β 表示)

受檢者 列的邊際機率
不帶原
(non-carrier)
帶原
(true-carrier)
採檢結果 陽性
(positive)
偽陽性
α(1 – π)
真陽性
(1 – β)π
α + (1 – α – β)π
陰性
(negative)
真陰性
(1 – α)(1 – π)
偽陰性
βπ
(1 – α) + (1 – α – β)π
行的邊際機率
(隨機採檢人士帶原的先驗機率)
1 – π π 1

表五、醫療檢測結果類型之「列的條件機率」(以α、β 表示)

受檢者 列的邊際機率
不帶原
(non-carrier)
帶原
(true-carrier)
採檢結果 陽性
(positive)
偽陽性
\frac{\alpha (1-\pi) }{\alpha+ (1-\alpha -\beta )\pi }
真陽性
\frac{(1-\beta) \pi }{\alpha+ (1-\alpha -\beta )\pi }
α + (1 – α – β)π
陰性
(negative)
真陰性
\frac{(1-\alpha) (1-\pi) }{(1-\alpha)+ (1-\alpha -\beta )\pi }
偽陰性
\frac{\beta \pi }{(1-\alpha)+ (1-\alpha -\beta )\pi }
(1 – α) + (1 – α – β)π
行的邊際機率
(隨機採檢人士帶原的先驗機率)
1 – π π 1

 

所以敏感性(真陽性)的反機率是:

Precision=\frac{(1-\beta )\pi }{\alpha+ (1-\alpha -\beta )\pi }

-----廣告,請繼續往下閱讀-----
文章難易度
林澤民_96
37 篇文章 ・ 245 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
預測市場?預測股票?如何讓預測有更高的準確率?——《超越直覺》
一起來
・2024/05/04 ・1635字 ・閱讀時間約 3 分鐘

我們發現在足球賽中,只要知道一個簡單的訊息(主隊過去的獲勝機率超過一半),預測力就會明顯好過隨便亂猜。如果再加上第二個簡單的訊息(勝負紀錄較佳的隊伍會略占優勢),可以再進一步提升預測力。除此之外,你可能還想收集其他訊息,像是四分衛最近的表現、球隊有沒有傷兵、明星跑衛的花邊新聞,但這些資訊對預測的幫助不大。換句話說,預測複雜系統這件事依循著「收益遞減定律」:第一個訊息很有幫助,但很快就找不到有幫助的其他訊息。

對於某些事件,我們當然會非常計較預測的準確性,像是投放線上廣告或投資高頻交易(HFT),可能一天內就要預測數百萬、數十億次,而且金額相當龐大。投入極大心力與費用、運用最精細的運算模型來開發複雜的預測方式,在那種情況下或許值得。但在其他商業領域,例如製作電影、出版書籍到發展新技術,只需要一年預測數十次、頂多數百次,而且這不過是整個決策過程中的一部分。這時,我們只要借助相對簡單的方式,就可以讓預測臻至完善。

預測時,不該只根據一人的意見就做決定——尤其是你自己的意見。雖然人們善於察覺與特定問題相關的因素,卻往往不會評估因素之間的相對重要性。譬如,預測電影的首映週末票房時,你可能會認為一些變項都是高度相關,例如製作費、宣傳費、上映廳數、試映會評價。沒錯。但我們要如何權衡「評價不優」與「額外行銷預算:一千萬美元」之間的比重?這沒有一定答案。同樣,在決定分配行銷預算的方法時,要如何判斷多少人會受到網路或雜誌廣告影響,又有多少人會從親朋好友那邊聽到產品訊息?我們也不清楚。唯一知道的是,這些因素都可能相關。

圖/envato

你可能會以為,精準判斷應該是專家的強項。但正如泰特洛克的試驗結果,專家在量化預測上的表現,其實跟普通人一樣糟糕,甚至可能更糟。然而,我們依賴專家之所以會成效不彰,不是因為專家的預測力跟一般人沒兩樣。問題在於,我們通常一次只會諮詢一位專家(否則何必找專家)。但我們應該要綜合多人的意見(無論是專家或非專家)再取平均值。至於要如何達成?這其實沒那麼重要。

-----廣告,請繼續往下閱讀-----

儘管預測市場有各種花俏的噱頭與技術,表現也比民調這類簡單方式好一點,但這種微小差異,還不如採用某種方式簡單綜合許多觀點再取平均。或者,我們也可以直接根據歷史數據,評估各項因素的相對重要性——這實際上就是統計模型在做的事。我必須再強調一次,雖然複雜模型可能會比簡單模型好一點,但兩者的差異小到幾乎沒有差別。到頭來,模型跟群眾所能達到的預測目的都一樣。第一,這兩種預測方式都要靠人為判斷,確認哪些因素與預測相關。第二,兩者皆需要估計、權衡那些因素的相對重要性。正如心理學家羅賓.道斯所言:「訣竅在於,找到要注意的變項,然後知道如何加入它們。」

只要一直使用這個訣竅,一段時間後,就會知道哪一些預測的失誤率較小,哪一些較大。舉例來說,當你要預測一個事件的結果,假如其他條件都相同,那越早做預測的失誤率就越大。不管你用什麼方法預測電影票房,在「剛開拍」時會比「上映前幾週」時要難得多。同樣,如果你想預測尚未上市的新產品銷量,那準確度可能不會高過預測已上市的產品。

你無法解決這個問題,唯一能做的只有:使用其中一種方式,或甚至結合幾種方式,就像我們研究預測市場時的方法,然後隨時觀察、記錄預測的表現。我在第 6 章開頭也提過,一般人通常不習慣追蹤自己的預測。我們做了大量預測,卻很少回頭檢視自己對了幾次。然而,留意並記錄預測成效或許才是最重要的事,唯有如此,你才能知道準確度是多少,進而知道自己預測的可信度。

——本文摘自《超越直覺》,2024 年 01 月,一起來出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
找回擁有食物的主導權?從零開始「菇類採集」!——《真菌大未來》
積木文化
・2024/02/25 ・4266字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

菇類採集

在新冠肺炎(COVID-19)大流行後,馬斯洛「需求層次理論」裡的食品與安全在眾目睽睽下被抽離出來,變成後疫情時代最重要的兩個元素。對食物的焦慮點燃人們大腦中所有生存意志,於是大家開始恐慌性地購買,讓原本就已經脆弱、易受攻擊的現代糧食系統更岌岌可危。

值得慶幸的是,我們的祖先以前就經歷過這一切,留下來的經驗值得借鏡。菇類採集的興趣在艱難時期達到顛峰,這反映了人類本能上對未來產生的恐懼。1 無論是否有意,我們意識到需要找回擁有食物的主導權,循著古老能力的引導來找尋、準備我們自己的食物,如此才能應付食物短缺所產生的焦慮。

在新冠肺炎大流行後,馬斯洛「需求層次理論」裡的食品與安全在眾目睽睽下被抽離出來,變成後疫情時代最重要的兩個元素。圖/pexels

我們看見越來越多人以城市採集者的身分對野生菇類有了新的品味,進而找到安全感並與大自然建立起連結。這並不是說菇類採集將成為主要的生存方式,而是找回重新獲得自給自足能力的安全感。此外,菇類採集的快感就足以讓任何人不斷回歸嘗試。

在這個數位時代,菇類採集是讓我們能與自然重新連結的獨特活動。我們早已遺忘,身體和本能,就是遺傳自世世代代與自然和諧相處的菇類採集者。走出現代牢籠、進入大自然從而獲得的心理和心靈滋養不容小不容小覷。森林和其他自然空間提醒著我們,這裡還存在另一個宇宙,且和那些由金錢、商業、政治與媒體統治的宇宙同樣重要(或更重要)。

-----廣告,請繼續往下閱讀-----
在這個數位時代,菇類採集是讓我們能與自然重新連結的獨特活動。圖/unsplash

只有願意撥開遮蓋的落葉並專注尋找,才能體認到菇類的多樣性和廣泛分布。一趟森林之旅能讓人與廣大的生態系統重新建立連結,另一方面也提醒我們,自己永遠屬於生命之網的一部分,從未被排除在外。

腐爛的樹幹不再讓人看了難受,而是一個充滿機遇的地方:多孔菌(Bracket Fungi)──這個外觀看起來像貨架的木材分解者,就在腐爛的樹幹上茁壯成長,規模雖小卻很常見。此外,枯葉中、倒下的樹上、草地裡或牛糞上,也都是菇類生長的地方。

菇類採集是一種社會的「反學習」(遺忘先前所學)。你不是被動地吸收資訊,而是主動且專注地在森林的每個角落尋找真菌。不過度採集、只拿自身所需,把剩下的留給別人。你不再感覺遲鈍,而是磨練出注意的技巧,只注意菇類、泥土的香氣,以及醒目的形狀、質地和顏色。

只有願意撥開遮蓋的落葉並專注尋找,才能體認到菇類的多樣性和廣泛分布。圖/unsplash

菇類採集喚醒身體的感官感受,讓心靈與身體重新建立連結。這是一種可以從中瞭解自然世界的感人冥想,每次的發現都振奮人心,運氣好的話還可以帶一些免費、美味又營養的食物回家。祝您採集愉快。

-----廣告,請繼續往下閱讀-----

計畫

菇類採集就像在生活中摸索一樣,很難照既定計畫執行,而且以前的經歷完全派不上用場。最好的方法就是放棄「非採集到什麼不可」的念頭,持開放心態走出戶外執行這項工作。菇類採集不僅是享受找到菇的滿足感,更重要的是體驗走過鬆脆的樹葉、聞著森林潮濕的有機氣味,並與手持手杖和柳條筐的友善採菇人相遇的過程。

菇類採集很難照既定計畫執行,最好的方法就是放棄「非採集到什麼不可」的念頭。採集過程幾乎就像玩捉迷藏,只不過你根本不確定自己在找什麼,甚至根本不知道要找的東西是否存在。圖/unsplash

你很快就會明白為什麼真菌會有「神秘的生物界」的稱號。真菌無所不在但又難以捉摸,採集過程幾乎就像玩捉迷藏,只不過你根本不確定自己在找什麼,甚至根本不知道要找的東西是否存在。但還是要有信心,只要循著樹木走、翻動一下原木、看看有落葉的地方,這個過程就會為你指路。一點點的計畫,將大大增加你獲得健康收益的機會。所以,讓我們開始吧。

去哪裡找?

林地和草原,是你將開始探索的兩個主要所在。林地底層提供真菌所需的有機物質,也為樹木提供菌根關係。橡樹、松樹、山毛櫸和白樺樹都是長期的菌根夥伴,所以循著樹種,就離找到目標菇類更近了。

林地底層提供真菌所需的有機物質,也為樹木提供菌根關係。圖/pexels

草原上也會有大量菇類,但由於這裡的樹木多樣性和環境條件不足,所以菇類種類會比林地少許多。如果這些地點選項對你來說都太遠了,那麼可以試著在自家花園或在地公園綠地當中尋找看看。這些也都是尋菇的好地方。

-----廣告,請繼續往下閱讀-----

澳洲新南威爾斯州奧伯倫

澳洲可以說是真菌天堂。與其他大陸隔絕的歷史、不斷變化的氣候以及營養豐富的森林,讓澳洲真菌擁有廣大的多樣性。澳洲新南威爾斯州(New South Wales)的奧伯倫(Oberon)就有一座超過四萬公頃的松樹林,是採集菇類的最佳地點之一。

在那裡,有廣受歡迎的可食用菌松乳菇(又稱紅松菌),據說這種真菌的菌絲體附著在一棵歐洲進口樹的根部,而意外被引進澳洲。 1821 年,英國真菌學家塞繆爾・弗里德里克・格雷(Samuel Frederick Gray)將這種胡蘿蔔色的菇命名為美味乳菇(Lactarius deliciosus),這的確名符其實,因為「Deliciosus」在拉丁語中意為「美味」。如果想要在奧伯倫找到這些菇類,秋天時就要開始計劃,在隔年二月下旬至五月的產季到訪。

位於澳洲新南威爾斯州的奧伯倫就有一座超過四萬公頃的松樹林,是採集菇類的絕佳地點。圖/unsplash

英國漢普郡新森林國家公園

在英國,漢普郡的新森林國家公園(Hampshire’s New Forest)距離倫敦有九十分鐘的火車車程。它由林地和草原組成,當中有種類繁多的植物群、動物群和真菌可供遊客觀賞,甚至還有野生馬匹在園區裡四處遊蕩。

這片森林擁有兩千五百多種真菌,其中包括會散發惡臭的臭角菌(Phallus impudicus),它的外觀和結構就如圖鑑中描述般,與男性生殖器相似且不常見。還有喜好生長於橡樹上,外觀像架子一樣層層堆疊的硫色絢孔菌(Laetiporus sulphureus ,又稱林中雞)。該國家公園不允許遊客採收這裡的菇,所以請把時間花在搜尋、鑑別與欣賞真菌上。如果幸運的話,該地區可能會有採集團體可以加入,但能做的也僅限於採集圖像鑑別菇類,而非採集食用。

-----廣告,請繼續往下閱讀-----
在英國,漢普郡的新森林國家公園由林地和草原組成,當中有種類繁多的植物群、動物群和真菌可供遊客觀賞。該國家公園不允許遊客採收這裡的菇,所以請把時間花在搜尋、鑑別與欣賞真菌上。圖/unsplash

美國紐約市中央公園

甚至紐約市的中央公園也有採集菇類的可能性。雖然在 1850 年代公園建造之時並未刻意引進菇類物種,但這個占地八百四十英畝的公園現已登錄了四百多種菇類,足以證明真菌孢子的影響之深遠。

加里・林科夫(Gary Lincoff)是一位自學成才、被稱作「菇類吹笛人」2 的真菌學家,他住在中央公園附近,並以紐約真菌學會的名義會定期舉辦菇類採集活動。林科夫是該學會的早期成員之一,該學會於 1962 年由前衛作曲家約翰・凱吉(John Cage)重新恢復運作。凱吉也是一位自學成才的業餘真菌學家,並靠自己的能力成為專家。

甚至紐約市的中央公園也有採集菇類的可能性。雖然在 1850 年代公園建造之時並未刻意引進菇類物種,但這個占地八百四十英畝的公園現已登錄了四百多種菇類。圖/wikipedia

進行菇類採集時,找瞭解特定物種及其棲息地的在地專家結伴同行,總是有幫助的。如果你需要一個採集嚮導,求助於所在地的真菌學會會是一個正確方向。

何時去找?

在適當的環境條件下(例如溫度、光照、濕度和二氧化碳濃度),菌絲體全年皆可生長。某些物種對環境條件較敏感,但平均理想溫度介於 15~24 ℃ 之間,通常是正要進入冬季或冬季剛過期間,因此秋季和春季會是為採集菇類作計畫的好季節。

-----廣告,請繼續往下閱讀-----
秋季和春季是為採集菇類作計畫的好季節,但因為菇類受溫度變化模式和降雨量的影響很大,所以每年採菇的旺季時間會略有不同。圖/unsplash

當菌絲體從周圍吸收水分時,會產生一股破裂性的力量,讓細胞充滿水分並開始出菇。這就是菇類通常會出現在雨後和一年中最潮濕月份的原因。牢記這些條件,就可以引導你找到寶藏。但也要記得,因為菇類受溫度變化模式和降雨量的影響很大,所以每年採菇的旺季時間會略有不同。

註解

  1. Sonya Sachdeva, Marla R Emery and Patrick T Hurley, ‘Depiction of wild food foraging practices in the media: Impact of the great recession’, Society & Natural Resources, vol. 31, issue 8, 2018, <doi.org/10.1080/08941920.2 018.1450914>. ↩︎
  2. 譯注:民間傳說人物。吹笛人消除了哈梅林鎮的所有老鼠,但鎮上官員拒絕給予承諾的報酬,於是他就吹奏著美麗的音樂,把所有孩子帶出哈梅林鎮。 ↩︎

——本文摘自《真菌大未來:不斷改變世界樣貌的全能生物,從食品、醫藥、建築、環保到迷幻》,2023 年 12 月,積木文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----