本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。
- 採訪編輯|歐宇甜、黃曉君;美術編輯|林洵安
生物有許多不可或缺的必要基因,例如:小小的酵母菌體內就有一千多個,如果某個必要基因消失,生物一定會死亡嗎?中研院基因體研究中心張典顯研究員發現,如果人為刪除酵母菌的必要基因 PRP28,酵母菌依然能勉強存活,甚至經過三百代演化後,還能恢復原本活力!論文成果於 2018 年 10 月登上國際學術期刊《自然生態演化》(Nature Ecology and Evolution)。
生物體內的「必要基因」
每種生物都有一群不可或缺的「必要基因」(Essential gene)。它們不只是從遠古流傳下來的基因,也是生物基因體的核心。
「在我們研究的細胞體系裡,如果人為把一個重要基因拿掉,細胞幾乎必死無疑。從基因的角度來看,這是細胞發生突變、重要基因消失,就像電影中的邪惡勢力殺掉正義聯盟的領袖,然而……」張典顯話鋒一轉:「在電影裡,正義之師仍然會繼續對抗惡勢力、等待復興的時機。那麼,如果去掉細胞內重要基因,細胞是否會隨演化發生轉機,繼續存活甚至恢復繁盛,出現宛如《星際大戰:原力覺醒》的戲劇性轉折?」
但生物演化通常需要漫長的歲月,怎麼研究?張典顯挑選酵母菌下手,酵母菌跟人類細胞一樣,都是真核細胞,除了用來釀酒和烘焙,也是分子生物學重要的模式生物。更重要的是,
人類一個世代傳承要花 60 年,更需要十萬年、百萬年的時間才看得出演化結果。酵母菌每 90 分鐘分裂一次、產生一個新世代,短時間就能看到演化歷程。
仔細研究酵母菌,它約有六千個基因,其中一千多個是必要基因,特別是與「遺傳資訊複製」相關的基因,一旦缺少恐將死亡……但,這是真的嗎?
張典顯的研究指出,即使刪除了一個必要基因 PRP28,酵母菌依然能勉強存活,演化三百代後甚至恢復了活力!?
基因 PRP28:RNA 的剪接師
基因 PRP28 是什麼?它負責協助 DNA 轉錄後,不可或缺的「剪接」工作!
生物所有基因的資訊全部是在 DNA 上,好比身上的「硬碟」,保存重要資料。細胞要使用這些資料,第一步是「轉錄」,把細胞核裡的 DNA 的資訊,轉成 RNA,這個步驟好比用「隨身碟」把硬碟資料拷貝出來。然後,RNA「隨身碟」的資訊會進入細胞質,進行「轉譯」,製作各種有用的蛋白質,好比把隨身碟內的資料列印成有用的文件。
但在轉錄、轉譯之間,還有一個很重要、一般人不熟悉的步驟,稱為「剪接」。因為 DNA 基因不是呈連續性的,中間穿插一些不需要的片段稱為內含子(introns)。因此 DNA 拷貝成 RNA 之後,必須剪去內含子,把有用片段接起來,變成信使 RNA(mRNA),細胞才能使用。
這個剪接步驟是在細胞核內的 RNA 剪接體(Spliceosome)中進行。每個人體內都有這部剪接機,它能將 pre-mRNA 中不需要的片段剪掉。這個剪接體與剪接步驟的正確性很重要,如果剪接體壞了,細胞沒有正確資訊可用就會死亡。
「我們的研究曾發現,酵母菌的剪接體中有一個很重要的蛋白質叫做 Prp28,能讓細胞的剪接過程運作順利,如果把 Prp28 拿掉,細胞就無法運作可能崩垮。」張典顯說。
顯然的,製作蛋白質 Prp28 的基因,是酵母菌的必要基因之一。
張典顯決定把 Prp28 的基因拿掉,看看酵母菌失去 Prp28 之後,是否可以存活?更進一步說,它們能不能透過一代代演化,重新爬回高峰?這在生物學稱為「彈性恢復力策略」,是指生物進入新的困難環境,一開始可能變很糟、掉入谷底,但經過一段時間,最後重新適應環境並恢復活力,重回高峰。
演化,讓酵母菌從破車變超跑!
「我們做的實驗很簡單,高中生也可以做!」張典顯笑著說。他們將一組保有 Prp28 蛋白質基因的酵母菌(野生型,wild type),種在培養基裡,分別放在攝氏 20 度、22 度和 28 度的環境培養,作為對照組。另一組是去掉 Prp28 蛋白質基因的酵母菌,也分別放在上面三種溫度的環境,觀察其生長情況。
一開始他們發現,如果將 PRP28 搭配的零組件進行互補性改變,細胞可以不需要 PRP28。但這種缺少 PRP28 的酵母菌,RNA 剪接效率低,生長得很緩慢,特別在低溫攝氏 20 度的培養基。
不過,隨著細胞不斷分裂,一個變兩個、兩個變四個 ……最後酵母菌仍可慢慢長滿培養基。等到酵母菌長滿,研究人員就取出其中一部分,種到新的培養基,直到再次長滿,再移到新的培養基……。
最後,神奇的現象發生了!失去 Prp28 蛋白質的酵母菌,起初要花 14 天才能長滿培養基,但一代傳一代,生長速度變越來越快,最後只花 5 天就長滿了!張典顯說:
這些酵母菌經過許多代演化,已產生有用的突變,活力變得越來越好,簡直像從一部破車,重新變回一部超跑!
細胞在分裂過程,DNA 複製可能出現錯誤而產生新突變,當突變對細胞有利即會被保留,而突變後的細胞的活力和繁殖力較好,會逐漸取代其他細胞。如果一代代傳下去,新的有利突變陸續加進來,可能走向另一條演化的道路,讓細胞恢復活力,就像電影的原力覺醒、瀕死復活一樣!
這個成果於 2018 年 10 月獲刊在《自然生態演化》,也是臺灣首度刊登於該期刊的論文。
破解酵母菌絕處逢生的秘密
下一個問題是:到底在酵母菌裡發生什麼事,居然可以起死回生?張典顯的團隊繼續追查,找到答案:酵母菌是透過降低 RNA 聚合酶進行轉錄作用的速度,讓細胞恢復健康。
把細胞想像成一座工廠,DNA 一直拷貝,轉錄成 RNA,再進行轉譯,最後變成蛋白質,中間有許多機器在工作。如果下游的機器(剪接機)壞了,但前面的機器(轉錄機)仍然一直生產,後面的機器無法及時處理,會產生一大堆廢料,導致這個細胞死亡。
不過,如果演化讓上游轉錄機也放慢速度(發生另外的突變),讓上下游機器速度再度同步,有種負負得正的概念,最後細胞仍可恢復活力,這就是酵母菌絕處逢生的秘密。
「我們的實驗結果顯示,生物系統中有許多錯綜複雜的基因表現路徑,不同步驟可以互相影響(例如:RNA 轉錄與 RNA 剪接),讓我們更了解細胞運轉的邏輯與生物系統的演化。」張典顯繼續延伸:「這個觀念可以被運用到生物系統的優化,提供未來設計調控生物系統的新方法,比如說,在開發治療疾病的藥物時,可針對標的物的上下游進行調整,以達到系統的整體平衡。」
生命的韌性、演化的奧妙,真的比電影劇情更曲折離奇、引人入勝,等待更多的科學家挖掘與發現。
延伸閱讀
本文轉載自中央研究院研之有物,原文為《酵母菌的原力覺醒:瀕死復活的演化大戲—-專訪張典顯》,泛科學為宣傳推廣執行單位