Loading [MathJax]/extensions/tex2jax.js

1

5
3

文字

分享

1
5
3

低調卻又無所不在:你我身邊熟悉的陌生人,臺灣森林裡的「野生釀酒酵母菌」

研之有物│中央研究院_96
・2022/07/11 ・6154字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/寒波、簡克志
  • 美術設計/蔡宛潔

臺灣「野生釀酒酵母」的多樣性研究

釀酒酵母,一種被人類廣泛利用的微生物,釀酒、做麵包都會用到,此外也被大量用於科學研究。可以說不論在食品或學術上,釀酒酵母早已進入你我的生活。然而,釀酒酵母除了人類常用菌株(strain)是來自原有已知的幾個馴化譜系(domesticated lineage)之外,其實還有非常多野生譜系不為人知。中央研究院「研之有物」專訪院內生物多樣性研究中心蔡怡陞副研究員,他與研究團隊尋覓臺灣野生的釀酒酵母,意外發現臺灣島的面積雖然相比之下較小,野生釀酒酵母的遺傳多樣性卻是世界最高!論文已於 2022 年 3 月 31 日發表於《基因組研究》(Genome Research)。

不管釀酒還是做麵包,都不可或缺的釀酒酵母

釀酒酵母的學名叫作 Saccharomyces cerevisiae(簡稱 S. cerevisiae),它在釀酒或烘焙等食品業中最具代表性,也是最常見的模式生物之一。釀酒酵母作為單細胞真核生物的代表,大量用於學術研究,蔡怡陞團隊的成果即是一例。

至於釀酒酵母的產業應用,例如常見的愛爾(Ale)與拉格(Lager)啤酒來說,前者發酵溫度在 20℃ 左右,菌株就是上述的 S. cerevisiae,味道較濃郁;後者的特色是低溫發酵 10℃ 左右,菌株是人類特別選殖的雜交品系(註 1),味道較清爽。

常溫發酵的愛爾啤酒較濃郁、顏色深,低溫發酵的拉格啤酒較清淡、顏色淺。圖/Pexels

有趣的是,世界各地的人、歷史與文化也許有別,愛酒的心卻都一樣,歐洲培育出發酵啤酒的品系,日本也獨立馴化獲得釀造清酒的酵母菌。

-----廣告,請繼續往下閱讀-----

除了釀酒之外,製作麵包也需要釀酒酵母,故 S. cerevisiae 也稱作麵包酵母。仰賴小規模手工業的古時候,麵包師都有自己的獨家酵母,師傅教徒弟時,傳承的不只技術,也包括酵母麵團。

邁入近代社會以後,各行各業都走向標準化,釀酒酵母也不例外。如今不同麵包師大都使用同一種量產酵母。

釀酒酵母不只用於釀酒,烘焙業也常拿來讓麵團發酵,做出好吃的麵包。圖/Unsplash

啤酒與麵包這些案例鮮活地說明,釀酒酵母深受人類影響,這也是大部分酵母菌演化研究關注的主題。

然而蔡怡陞實驗室則不同,他關心的對象是處於人類影響以外、還沒有被馴化的野生釀酒酵母們。這些野生釀酒酵母們和食品業常用的菌株是同一物種(species),學名都是 S. cerevisiae,但是為不同菌株(strain)。

-----廣告,請繼續往下閱讀-----

由於釀酒酵母的產業運用和微觀機制探討已經相當成熟,但是人們對於釀酒酵母在生態中的角色依然所知有限,以前人們甚至懷疑過,真的有野生的釀酒酵母嗎?後來才知道不但有,而且多樣性還不小,與人類密切接觸的只是少數幾款。

那麼,蔡怡陞團隊是如何找出低調的臺灣野生釀酒酵母呢?

看不到卻無所不在:臺灣野生釀酒酵母的探尋之旅

蔡怡陞過去就對酵母菌相當有興趣,因為這是他在倫敦帝國學院就讀博士班的起家主題!當時他研究的是釀酒酵母最近的親戚 Saccharomyces paradoxus

回到中研院後,他決定在臺灣再度開啟野生釀酒酵母的研究,與博士生李佳燁、助理劉育菁、柳韋安等人多年奮鬥後,有了出乎意料的發現!如今回首 6 年來的探索過程,並不容易。

-----廣告,請繼續往下閱讀-----

要研究野生的釀酒酵母,第一步當然是去野外採集,可是人的眼睛看不見酵母菌,所以沒辦法用視覺辨識直接採樣,要把樣本帶回實驗室,初步處理後浸入培養液,等待兩個星期才能得知結果:釀酒酵母是否存在。

實驗室使用特製培養液,有利於釀酒酵母生長,不利其他微生物。理想上,即使釀酒酵母原本的存在感很低,也能在培養液中放大。

因為酵母菌肉眼不可見,研究團隊需在廣大森林中採樣,並將處理後的樣本浸入培養液長達兩週,之後嘗試分離微生物並鑑定,才能確認是否成功採集到釀酒酵母。圖/研之有物(酵母菌圖源/蔡怡陞提供、腦海工作室製圖)

假如等待一段時間後,培養液長不出酵母菌, 也許是一開始就真的沒有,但是有沒有可能是因為採樣和培養時有缺失,害得酵母菌長不出來?或是釀酒酵母確實存在,卻由於數量太少而無法見到?

蔡怡陞回憶,開始這項計畫的第一年,幾乎一無所獲。根據歐洲與美洲的研究經驗,野生釀酒酵母常常於橡樹表面生長,橡樹屬於殼斗科植物,所以一開始多半以市區外圍森林,如殼斗科的樹皮為目標,卻不斷失敗。

-----廣告,請繼續往下閱讀-----

後來往更廣的範圍採樣,並與生多中心研究人員鍾國芳黃仁磐等實驗室合作,這才克服難關,順利從多種植物的果實、樹葉、樹幹、地面、甚至是地衣等來源獲得酵母菌,並且訝異地得知,釀酒酵母在臺灣的森林其實非常普遍。

蔡怡陞歸納出的模式是:臺灣野外森林中,釀酒酵母普遍存在,但是比例非常低,可謂低調卻無所不在。

釀酒酵母在顯微鏡下的照片。釀酒酵母有人類馴化過的菌株,也有野生譜系。野生的釀酒酵母在自然界中普遍存在,但是比例相當低。
圖/Wikimedia

如何歸納出以上結論呢?這要利用如今基因體學的新工具:總體基因體學(metagenomic)。原理是取得環境樣本後,直接定序其中所有 DNA 片段,或是所有物種都有的擴增子(amplicon),再與資料庫對照;如此一來,便能估計目標佔整體的比例,蔡怡陞團隊就是去估算釀酒酵母佔其生長環境中的比例。

從環境採樣培養出釀酒酵母以後,由中研院定序核心實驗室的呂美曄,回頭定序該樣本的擴增子,接著由蔡怡陞實驗室的林渝非分析。野外採集的樣本中,絕大部分是細菌,通常高達至少 99% 之多;剩下多半為真菌(和原生生物等等),其中只有極低比例是釀酒酵母,最多也只佔 0.012%。因此同樣是細菌、真菌等微生物,釀酒酵母的存在感是低於 1% 中的 0.012% 以下,換句話說,不超過百萬分之 12!

透過總體基因體學的分析,能夠量化釀酒酵母在天然環境下的存在感。蔡怡陞也強調培養液很重要,否則無法讓低調的酵母菌現形。抓到目標後就能分離酵母菌,培育建立新的菌株,並且經由團隊成員李昕翰、柯惠棉的定序、組裝獲得完整的基因組。藉此獲得一百多個臺灣各地的菌株及其遺傳訊息,用於進一步研究。

-----廣告,請繼續往下閱讀-----
蔡怡陞實驗室中,放入培養液和樣本的 6 支試管。培養液相當重要,負責讓低調但無處不在的釀酒酵母現身。圖/研之有物

釀酒酵母的多樣性,臺灣竟然世界最複雜?

要了解蔡怡陞實驗室新論文的意義,必須先認識別人過去的研究。

2018 年就有研究者從世界各地收集超過一千個釀酒酵母品系,探討親緣關係。分析發現野生釀酒酵母們彼此的變化差異還不小,東亞的中國為最多變之處;將所有酵母菌擺在一起畫演化樹,中國採集到的品系能歸類到不同譜系(lineages),包括與同類最早分家,差異最大的譜系。

演化樹是一種建構親緣關係的工具,所有樣本中,兩個樣本假如有最近的共同祖先,通常遺傳上的差異也會愈少,便會被歸類到一塊;這一批和其次相近的另一批樣本們,又會被歸類到一群,就這樣一直向前回溯(見下圖),形成看似樹狀的關係。而這棵樹上愈早分離的譜系,也就代表差異愈大,愈早和其他樣本分家。

演化樹與地理關係的示意圖,通常有兩種情況,左邊表示不同地點(A,B,C,D)採集的樣本,在演化樹上有明確先後次序,可推論出如何在地理上傳播;右圖表示不同地點(A,B,C,D)採集的樣本,在演化樹上無明確先後次序,傳播路徑交織在一起。圖/研之有物

中國採集的釀酒酵母們,不但有些被歸類到較晚分家的不同群,幾個樣本更自成一群,形成最早分出的演化樹枝。這些證據有力地支持:中國是釀酒酵母的起源地。然而,案情並不單純!

-----廣告,請繼續往下閱讀-----

將臺灣的一百多個菌株擺進演化樹,驚奇的事發生了!臺灣存在的釀酒酵母們,竟然也被歸類進各大譜系,並有新的譜系,這表示臺灣的釀酒酵母多樣性,和中國一樣高。而且還有一款進入之前於中國採集到,與同類最早分家的那一群。

驚奇之處在於,擺在全世界的尺度下看,臺灣只是一個很小的島,地處東亞大陸邊緣。中國面積龐大,釀酒酵母具備全世界最高的多樣性並不意外,也被認為很可能是發源地;可是小小的臺灣,竟然也存在一樣高的複雜度。

簡化過的野生釀酒酵母演化樹示意圖,蔡怡陞團隊採集到的臺灣野生釀酒酵母譜系中,發現有一款和先前中國採集樣本都是最早分家的一群(黃框處),地理傳播也交織在一起。這表示臺灣的釀酒酵母多樣性,和中國一樣高,兩者皆為世界第一。圖/研之有物(資料來源/蔡怡陞)

有沒有可能臺灣多變的品系,並非起源自當地,而是被人類無意間帶來的呢?應該不可能,因為根據遺傳差異估計,那些野生譜系們分家後衍生的年代,都早於人類在附近活動的時間;由此可以推論,目前的分佈狀況,非常可能是自然傳播的結果(或許是隨著殼斗科森林)。

所以我們可以說,臺灣是釀酒酵母最初的起源地嗎?不行。符合已知證據,比較合理的解釋是,釀酒酵母於東亞發跡,所以在東亞地區的遺傳多樣性也最高;而臺灣也包含於此一交流範圍之內,從最早的始祖開始,從古至今逐漸分家的釀酒酵母們,可能陸續,或是在同一段交流時期進入臺灣,一直低調默默生存到現在,仍保持原鄉的面貌。

-----廣告,請繼續往下閱讀-----

然而,好的研究不只要知道有多少已知,更要知道還有多少未知。蔡怡陞提醒我們,目前研究有個盲區:東南亞地區的取樣仍十分有限。根據已知的樣本,最早與同類分家的酵母菌,它們的後裔位於中國和臺灣,故推論東亞地區是起源地。

可是取樣匱乏的東南亞,會不會住著更早分家前輩的後裔呢?這是目前無法回答的問題。

野生釀酒酵母在中國與臺灣的實際採樣分布,發現臺灣譜系的數量是全世界同尺度地區中最高的。其中 TW1 和 CHN-IX 皆為最早分家的一群,證明了台灣是發跡地之一。小小的臺灣卻擁有如此高的多樣性,就是讓人驚奇之處。圖/研之有物(資料來源/蔡怡陞)
釀酒酵母實際的演化樹,這是從樹狀圖捲曲起來的另一種表達形式,其中 TW1 和 CHN-IX 皆為野生樣本,且是最早分家的一群。圖/研之有物(資料來源/蔡怡陞)

你我所不知道的小世界,野生釀酒酵母的生殖、生態學

總之根據現有的資訊,臺灣釀酒酵母的多樣性在同樣尺度下比較確實為世界最高

大量取樣下還能觀察到,距離非常近的採集地點,竟然同時住著遺傳上差異很大,不同譜系的菌株(甚至在同一棵樹!)。相比之下,中國酵母的多樣性也高,但是分佈並不密集,相近的地理範圍內通常存在遺傳上類似的菌株。

不同研究的手法不同,這會不會是中國研究者採集較為稀疏,取樣方式導致的偏誤呢?蔡怡陞表示,的確無法排除前述可能性;但是他反而認為過去的採集方式,說不定都忽略了微生物近距離的分佈與多樣性,所以更需要反思過往認知微生物的生物地理關係。

不過他也認為中國的釀酒酵母確實住的比較分散;因此差異大的品系住在附近這回事,搞不好真的是臺灣特色,至少是率先在臺灣觀察到。

了調查臺灣野生釀酒酵母的多樣性,蔡怡陞團隊也發現野生的釀酒酵母大部分是採取無性生殖,不同品系之間雖然會有遺傳交流,但是相當有限。圖/研之有物

另一件有趣的發現是遺傳交流。釀酒酵母是單細胞真核生物,實驗室環境下可以無性生殖,自己複製自己;也可以隨時切換成有性生殖,和同類一起生寶寶。利用菌株間的遺傳差異,可以預測自然界的釀酒酵母,大部分時候採行無性生殖(這是蔡怡陞博士班時期努力的主題!)。

既然臺灣存在許多遺傳有別的野生品系,有時候又住的很近,它們之間會遺傳交流嗎?

比對基因組得知,會,不過不常見,大約每幾百到幾萬次無性生殖才有 1 次有性生殖。這證實蔡怡陞對酵母菌生殖的推論,替釀酒酵母生態學新添一分認識。

讓學術研究結合產業應用,找到野生釀酒酵母之後

有趣歸有趣,但是研究臺灣野生釀酒酵母有什麼意義呢?

從學術上來說,蔡怡陞指出,臺灣生態系複雜,本次透過基因體學手法得到量化證據,支持釀酒酵母這種微生物,在臺灣的多樣性很高。這項在臺灣採樣的本土研究,也大幅增進全世界對釀酒酵母的認識,並可更進一步開始探討釀酒酵母在自然界所扮演的角色。

從產業上來說,在蔡怡陞團隊的辛苦調查與記錄之後,未來我們是否可以期待廠商用臺灣在地的野生釀酒酵母做啤酒呢?

釀酒酵母是與人類互動最密切的微生物之一,但是人們對野生的釀酒酵母了解卻很有限,可謂無比熟悉的陌生人。蔡怡陞採集到眾多野生的菌株品系,不論學術研究或產業應用,都可能有進一步發展。

目前實驗室正在把這些菌株「帶」回實驗室,開始量化相關的表現型(phenotypes)。等到時機成熟,他歡迎各界合作,一起探索臺灣自然資源的潛力。

蔡怡陞與實驗室團隊合影,前排由左往右為:李佳燁、柯惠棉;後排由左往右為:蕭禎、劉育菁、蔡怡陞、林渝非。這次論文中公開的眾多野生釀酒酵母菌株,不論學術研究或產業應用,都有相當的發展潛力。圖/研之有物

註解

  1. 拉格啤酒採用的菌株是 Saccharomyces pastorianus,為 S. cerevisiae 及 S. eubayanus 兩者雜交而成。
  1. 蔡怡陞(2017)。〈多樣性決定味覺豐富度,釀酒酵母的「萬年傳統全新感受」〉,《環境資訊中心》。
  2. Lee, T. J., Liu, Y.-C., Liu, W.-A., et al. (2022). Extensive sampling of Saccharomyces cerevisiae in Taiwan reveals ecology and evolution of predomesticated lineages. Genome Research.
  3. Peter, J., De Chiara, M., Friedrich, A. et al. (2018). Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature, 556, 339–344.
  4. Duan, S. F., Han, P. J., Wang, Q. M. et al. (2018). The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. Nat Commun, 9, 2690.
  5. White, C., & Zainasheff, J. (2010). Yeast: The Practical Guide to Beer Fermentation. Brewers Publications.
  6. Tsai, I. J., Bensasson, D., Burt, A., & Koufopanou, V. (2008). Population genomics of the wild yeast Saccharomyces paradoxus: Quantifying the life cycle. PNAS, 105(12), 4957–4962.

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3649 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
3

文字

分享

0
2
3
每次呼吸都會吸入十個孢子?一朵菇如何形成?無所不在的真菌生命循環!——《真菌大未來》
積木文化
・2024/02/21 ・3532字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

真菌的生命週期

一切始於一顆孢子

孢子是真菌生命週期的開始,也是結束。這些單細胞單元裡,包含著新真菌個體的繁衍密碼。面對無數微生物競爭者和惡劣的環境條件,孢子萌芽的機率極低,因此真菌釋放出數萬億個孢子來提高生存機會。孢子維持在一個暫停於生死之間的狀態,密切留意周遭世界並尋找適合落腳的地方。孢子很微小,無處不在,所以根本無法躲避它們,以我們自己而言,每次的呼吸都會吸入十個孢子。

孢子是真菌生命週期的開始,也是結束。圖/unsplash

被稱為「胚種假說」(Panspermia)的生命起源論甚至認為:生命的藍圖被包裹在一顆孢子當中,並在太空中旅行,在宇宙中尋找適合落腳的家園。儘管對此假說爭論不休,但我們確實知道孢子可以耐受極端溫度、抗輻射,甚至可以在真空狀態的太空中存活。 1988 年,和平號空間站(mir)的俄羅斯太空人就注意到,他們的鈦石英窗外有「東西」在生長,而且正在漸漸「啃穿」鈦石英。後來證實,這個「東西」就是一種真菌。1

就像植物一樣,大多數真菌也都採用「紮根在土壤當中」這種耗時的繁殖方式:它們利用菌絲體生長,或透過孢子飄散到新的棲息地。在渴望繁衍其 DNA 的動力下,有些真菌採取巧妙的策略,確保其孢子在新環境中得以繁殖。

擁有誘人香氣的美食佳餚黑松露(Tuber melanosporum)就是一個很好的例子。這種跟黃金一樣珍貴的真菌生長在地底下,隨著孢子成熟,其所散發出的香氣會吸引動物、松露獵人和來自世界各地的美食家。松露的孢子不易被消化,所以最終會安全通過有幸一飽口福者的消化道;在理想狀況下,孢子應已遠離原來被採集到松露的位置。

-----廣告,請繼續往下閱讀-----
擁有誘人香氣的美食佳餚黑松露就是一個很好的例子,松露的孢子不易被消化,所以最終會安全通過有幸一飽口福者的消化道。圖/pexels

在地面上,圓形的巨型馬勃(Calvatia gigantea)子實體保護著數以百萬在內部熟成的孢子。有趣的是,只要戳一下成熟的馬勃,它就會噴出一股煙霧狀的孢子粉,讓風帶走飄散的孢子。

生長在糞便之中的水玉黴菌屬(Pilobolus)真菌,藉由分泌水分充滿泡囊增加壓力,最後像水槍一樣排射出泡囊頂部的孢子囊。有研究經計算發現,孢子囊能以至少 20,000 g (重力)的速率被噴射出去。相較之下,訓練有素的美國國家航空暨太空總署(NASA)太空人在太空船中穿著抗重力服(G-Suit)所承受的重力是 3 g ,而子彈是以 9,000 g 的加速度行進的。

生長在糞便之中的水玉黴菌屬真菌,藉由分泌水分充滿泡囊增加壓力,最後像水槍一樣排射出泡囊頂部的孢子囊。圖/wikipedia

還有能在黑暗中發光的真菌,光線會吸引昆蟲將它們的孢子散布到森林底層。例如,加德納臍菇(Neonothopanus gardneri,俗稱椰子花)就受到晝夜節律的調節,在夜間會發出明亮的光。 2所有這些演化而來的調整,都是為了確保繁殖能夠延續。

為菌絲找到一個家

當孢子落在一個溫度適中、靠近食物和水的地方時,它就會萌芽。孢子經由細胞壁吸收水分,並長出一種稱為菌絲的線狀管。當菌絲在營養基質上生長,就會分支出更多菌絲並形成一條細線。原本的菌絲繼續利用可能是木頭、昆蟲或土壤的基質,由尖端處長出更多菌絲。菌絲間開始融合相連,形成一個相互連接、被稱為菌絲體的物質。

-----廣告,請繼續往下閱讀-----
當孢子落在一個溫度適中、靠近食物和水的地方時,它就會萌芽。圖/wikipedia

每條菌絲的生長都結合了物理力量和化學策略。菌絲會分泌出作用相當於強力消化酸的酵素來分解物質。這個分泌酵素的作用,讓真菌能穿透最堅硬的基質:先將營養物質萃取出來,再經由菌絲體吸收。就像我們唾液中的酵素一樣,很快就可以將口中的麵包變成濕糊狀。

數英里的菌絲體,也許再來一朵菇

菌絲體如同漣漪一般,從孢子萌芽之處輻射向外生長。附近有營養物質出現時,菌絲體就會以圓形的方式使其表面積最大化,朝營養來源方向生長。當一個區域的食物來源耗盡,菌絲體中心處的舊菌絲就會被自己消化掉。殘存在被消化舊菌絲當中的可用資源,則會被重新傳送到菌絲體最外圈,供生長正旺盛的菌絲所用。

最後,菌絲體會長成一個廣大的空心環,也就是有時我們在草地上看見的「仙女環」。隨著資源被重新傳送到菌絲體生長的外緣,中心會逐漸消失,環的周長則逐漸增加。只要有養分和水,菌絲體就可以持續以這種方式不斷地生長下去。

菌絲體會長成一個廣大的空心環,也就是有時我們在草地上看見的「仙女環」。圖/wikipedia

在此階段,除了酵母菌以外的真菌就能由菌絲形成孢子,進行無性生殖。黴菌、銹病和粉狀黴菌等微型真菌總是以這種方式繁殖,例如麵包上所見的黴菌黑點就含有超過五萬個孢子。

-----廣告,請繼續往下閱讀-----

然而,屬於單細胞微型真菌的酵母菌,則採取不同於絲狀真菌的方式進行無性生殖。酵母菌利用分裂產生複製體進行無性生殖,雖然這種方法很有效率,但卻因此錯過了可以經由有性生殖確保遺傳多樣性的樂趣。3

除了透過無性生殖的方式繁殖,若環境條件惡劣(通常情況就是這樣),大型真菌也可以進行有性生殖。當兩個有性生殖相容的菌絲體相遇,它們就會進行融合並形成更大的團塊。

融合後已經具備遺傳多樣性的新菌絲體,等待著合適的環境條件到來,就會聚集它的菌絲、吸收水分膨脹,並形成被稱為原基(primordium)的菇蕾。幾天後,原基逐漸伸長菌柄,將菌傘推出基質表面。最後,菌傘打開就變成了一個完全成熟的菇。菇類的顏色、質地和形狀會因種類而異。

最後,菌傘打開就變成了一個完全成熟的菇。菇類的顏色、質地和形狀會因種類而異。圖/unsplash

根據菇類產生和釋放孢子的方式,可以將大型真菌分成兩群:一群是在封閉囊內產生孢子的子囊菌(asomycota),另一群是從菌褶中形成並釋放孢子的擔子菌(basidiomycota)。擔子菌的菌褶有一層菌膜保護,隨著菇的成熟,該菌膜就會剝落。

-----廣告,請繼續往下閱讀-----

菇的本身可以說就是一個慶典,慶祝擁有數萬億待釋放新世代真菌(孢子)的出現。孢子將再次進入那已經持續循環數十億年的過程之中。自然不會多愁善感,所以慶典終將結束;菇類在完成產生孢子的工作之後,就會開始腐爛消失。

菇的本身可以說就是一個慶典,菇類的出現是真菌生命循環的最美麗時刻。圖/unsplash

它們已經達成自然所交付的任務,而且也不吝讓我們一窺正大自然發自內在的美。菇類的出現是真菌生命循環的最美麗時刻,也許因為這樣,菇類才會如此受到歡迎。

註解

  1. Matthew Phelan, ‘Why fungi adapt so well to life in space’, Scienceline, 7 March 2018, . ↩︎
  2. Anderson G Oliveira, Cassius V Stevani, Hans E Waldenmaier, Vadim Viviani Jillian M Emerson, Jennifer J Loros and Jay C Dunlap, ‘Circadian control sheds light on fungal bioluminescence’, Current Biology, vol. 25, issue 7, 2015, . ↩︎
  3. 譯注:酵母菌也會進行有性生殖,遺傳物質亦會重新洗牌。 ↩︎

——本文摘自《真菌大未來:不斷改變世界樣貌的全能生物,從食品、醫藥、建築、環保到迷幻》,2023 年 12 月,積木文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

0

3
3

文字

分享

0
3
3
減碳新招:二氧化碳再利用!光觸媒材料可以把二氧化碳還原成工業化學原料?——專訪中研院原分所陳貴賢特聘研究員
研之有物│中央研究院_96
・2023/11/03 ・5793字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|簡克志
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

降低碳排還不夠,奈米材料幫你直接減少二氧化碳!

氣候變遷問題日益嚴重,2023 年 9 月成為全球有史以來最熱的月份,臺灣夏天飆破 38 ℃ 的頻率逐漸增加。為了避免地表升溫超過工業化前水準的 +1.5 ℃,世界各國訂出 2050 年淨零排放的目標,設法減少大氣中的溫室氣體。減碳解方除了低碳電力之外,直接減少二氧化碳也是一條路徑。中央研究院「研之有物」專訪院內原子與分子科學研究所陳貴賢特聘研究員,他的研究專長是奈米能源材料,我們將介紹一種複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),在太陽光照射下,此材料表面發生的氧化還原反應,會將二氧化碳還原成有用的工業化學原料!

為了避免全球升溫超過工業化前水準的 +1.5 ℃,我們需要減少碳排放與開發負碳技術,並盡量在 2050 年左右達到全球溫室氣體淨零排放量的目標。所謂的「工業化前水準」是指 1850-1900 年的平均溫度。
圖|iStock

地球「保冷」計畫——減碳是關鍵

我們每天排放多少二氧化碳?根據 Our World in Data 的人均二氧化碳排放數據,2021 年全球每人排放的二氧化碳為 4.69 噸,而燃燒 1 公升的汽油大概會產生 2.3 公斤的二氧化碳。換算一下,每人每天排放二氧化碳約為 12.8 公斤,相當於每人每天消耗 5.6 公升的汽油!

根據聯合國政府間氣候變化專門委員會(IPCC)的特別報告「全球暖化 1.5 ℃」,人類活動排放的溫室氣體,已經讓地球表面平均溫度上升了 1 ℃。若以人類目前經濟模式發展下去,碳排放量可預期將不斷上升,大量溫室氣體將讓暖化現象與極端天氣事件更加劇。

氣候科學家警示,地球表面平均溫度需控制在 +1.5 ℃ 以內 註 1,否則將有不可逆的後果,例如生物多樣性大幅度降低的風險。因此,世界各國有了 2050 年淨零排放的共同目標,並不是說都不排碳了,而是要設法讓溫室氣體的碳排放量和碳減少量相互抵消,達到「淨零」的目標。

-----廣告,請繼續往下閱讀-----

要達到淨零的目標,除了尋找與開發減碳電力之外,直接減少二氧化碳也是一個方法。想像一下,如果可以像植物一樣,只要照太陽光,就把二氧化碳變成有價值的碳氫化合物,聽起來不錯吧?但是二氧化碳做為燃燒後的產物已相當穩定,要如何以人工方式讓二氧化碳再次參與反應?

我們可運用「陽光」與「光催化材料」(又稱光觸媒,photocatalyst),不僅可以減碳,還能產生有價值的碳氫化合物,是一種「一舉兩得」的方法!

光觸媒(光催化)材料是什麼?

在談到光催化材料之前,先複習一下「催化劑」這個概念,催化劑不參與化學反應,但是它讓原先不可能的化學反應變得可行!陳貴賢分享,這就像過去從臺北到宜蘭需要翻過雪山,經過九彎十八拐的北宜公路;但如今有了「雪山隧道」之後,就大大降低臺北到宜蘭的時間與難度。「雪山隧道」就是臺北通往宜蘭的催化劑。

除此之外,催化劑也可以說是推進人類歷史發展的重要角色!在過去,農作物施肥只有天然氮肥可以使用,產量有限。而肥料意味著糧食增加與生產力增加,《巫師與先知》這本書就提到位於秘魯的鳥糞島嶼成為各家跨國公司必爭之地。另一方面,波斯人也在各地建造供鳥類休息的高塔,用來收集當肥料用的鳥糞。

-----廣告,請繼續往下閱讀-----

到了近代,陳貴賢提到在 20 世紀初,德國科學家哈伯(Fritz Haber)透過催化劑,在高溫高壓的條件下,以鐵粉做為催化劑,讓氮氣和氫氣轉換成氨。這讓人工固氮成為可能,人類不用再依賴緩慢的生物固氮反應就可以合成化學氮肥,農作物產量也大幅提昇。

本文主角「光催化材料」,顧名思義就是協助光化學反應的催化劑,但光催化材料與一般催化劑不同的地方在於,其化學反應通常發生在固態的表面環境,目標反應物、光子和電子都有參與反應。

比起光催化材料,你可能更常聽到它的同義詞「光觸媒」,例如某某產品宣稱具有「奈米光觸媒消毒」的功能,其實就是照射足夠的光,讓材料表面的氧化還原反應把細菌分解。而之所以光觸媒需要做到奈米尺寸,這是因為奈米小顆粒可以改變物質的電子能量結構,且大幅增加反應的表面積,讓光催化反應更有效率。

陳貴賢:「一個高表面積的奈米粉末,它的表面積可能是薄膜的一萬倍,甚至於十萬倍。」

給你電子,還你原形!光催化材料上的氧化還原反應是怎麼發生的?

光催化材料之所以能夠減少二氧化碳,是因為照光後材料表面發生「氧化還原反應」,氧化反應會失去電子,還原反應會得到電子。陳貴賢與團隊開發的複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),可以讓二氧化碳還原成甲醇(CH3OH)和乙醛(CH3CHO),這兩種產物都是工業常用的化學原料。反應式如下:

-----廣告,請繼續往下閱讀-----

要持續減少二氧化碳,就要持續發生上述還原反應,持續供給電子。不過,我們要怎麼讓電子快速又順利的補充到材料表面?這裡就開始涉及到半導體的核心問題:電子與電洞的產生、分離和傳輸

陳貴賢與團隊開發的複合光催化材料:ZnS/ZIS,是結合兩種奈米半導體材料,透過水熱法合成,將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,形成 0D-2D 結構的 ZnS/ZIS 複合物,就像製作巧克力豆餅乾,不過要複雜得多。

陳貴賢團隊將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,就好像做巧克力豆餅乾一樣,形成複合的異質半導體,做為光催化材料用途。左圖是示意圖,右圖是電子顯微鏡下的照片,Zn:In 比例為 1:0.46。
圖|研之有物(資料來源|Nano Energy

既然 ZnS/ZIS 是半導體,當受到光照之後,原來的價帶(valence band)電子會被光激發成導帶(conduction band)電子,原本價帶電子佔據的位置則留下一個空位,就是電洞。電子和電洞的遷移,就是半導體形成電流的原因,因此電子和電洞都稱為「載子」(charge carrier)

還記得上面的還原反應嗎?

-----廣告,請繼續往下閱讀-----

對光催化材料來說,為了在光照環境下把二氧化碳還原成乙醛和甲醇,必須獲得穩定的電子來源,材料內部要迅速補充電子到表面,因此:

照光產生的電荷載子數量越多越好;產生的電子和電洞要傾向分離,分得越遠越好;電子和電洞越快移動到表面參與反應越好。

載子輸送要快速穩定,首先照光產生的載子要多,就有更多電子和電洞參與反應。分離載子是為了避免復合,照光產生的電子和電洞很容易復合,一旦復合,等同於減少載子。再來是載子越快移動到表面越好,可以讓每次的氧化還原反應都是最佳效率。

尋找最有效的光催化材料

陳貴賢團隊總共做了 4 種不同比例的 ZnS/ZIS 光催化材料,依照 Zn:In 比例 1:0.12、1:0.26、1:0.46 和 1:0.99,分別標記為 ZnS/ZIS-1、ZnS/ZIS-2、ZnS/ZIS-3 和 ZnS/ZIS-4。其中,ZnS/ZIS-3 的光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇(如下圖)。

水熱法製備的 ZnS/ZIS-3 光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇。最右邊是將 ZnS 和 ZIS 簡單物理混合的對照組,沒有介面效應的輔助,催化效果不佳。
圖|研之有物(資料來源|Nano Energy

為了驗證光催化材料產生有效載子的效率,陳貴賢團隊計算了 ZnS/ZIS-3 的總 AEQ 值(apparent quantum efficiency),用來評估「照到光催化材料上的每顆光子數量,產生了多少實際參與催化反應的電子數」。測量之後,ZnS/ZIS-3 的 AEQ 值為 0.8%,量子效率比單獨的 ZnS 材料提高了將近 200 倍!

-----廣告,請繼續往下閱讀-----

這也是為什麼陳貴賢團隊要使用兩種不同的材料結合,因為單一半導體材料照光產生的電子和電洞有很高的復合機率,選擇兩種不同的半導體材料組合,讓兩種材料形成特殊的「能量階梯」就可以有效分離電子和電洞,並且把電子送到它該去的材料表面。

此外,使用兩種半導體材料的好處還有「二次激發電子到更高能階」,以符合光催化反應的能量門檻,自由電子掙脫 ZnS 的束縛之後,繼續往 ZIS 跑,光的能量會繼續把電子往上送到更高能級的材料表面,還原二氧化碳的反應在此發生。

Z 字形跑比較快!控制材料之間的微應變提升氧化還原效率

關於光催化材料的二次激發,陳貴賢提到:「材料低能階,然後光子進來後,把電子激發到高能階去做反應,太陽能電池也是這樣。但是呢,有時候沒那麼剛好,例如激發後的能階不夠高,雖然激發上去了,但電子沒有辦法跟二氧化碳做反應。那我把兩個材料拼在一起,電子上去以後又下來,然後再吸收第二個光子上去,那就變得很高了,高了以後它的反應效率就提升很多。」

如果我們把光催化材料的二次激發過程畫成示意圖,如下圖所示,電子在 ZnS 束縛區受到第一次光子的激發,變成自由電子,接著經過設計完善的材料介面,先降到較低的 ZIS 束縛區,受到第二次光子的激發,再次變成自由電子,跑到光催化材料的表面,和二氧化碳發生還原反應,將二氧化碳變成可再利用的乙醛和甲醇。

-----廣告,請繼續往下閱讀-----

看看電子走過的路,如果向左歪著頭看,是不是就是一個 Z 字呢?科學家把這個過程稱為「直接 Z 方案」(Direct Z-scheme)。「直接」的意思是,電子從 ZnS 跑到 ZIS 的過程,不需要再經過一個中間地帶,降低電子和電洞復合的機會。

為了將二氧化碳轉換成可用化學原料,電子在材料內部能階走 Z 字路徑,過程中受到光的二次激發,最後到達材料表面。電子參與還原反應,將二氧化碳變成乙醛和甲醇。電洞參與氧化反應,將水變成氧氣。
圖|研之有物(資料來源|Nano Energy

為什麼陳貴賢團隊設計的「直接 Z 方案」光催化材料,電子可以不需要中間的「轉接站」,直接轉移到另一個材料上呢?這裡也有一個巧思:不同材料之間的「微應變」

不同材料的晶體排列規律是不一樣的,當兩種材料接在一起時,接面處會發生「晶格不匹配」,也就是兩種材料的原子會互相卡到、晶格微微變形。但是,如果我們可以控制微應變(Strain)的程度,就可以控制兩種材料「能量階梯」的相對位置,微應變可以讓材料接面自動帶有「轉接站」的功能,進而形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。

總之,陳貴賢團隊開發的這套材料組合,是有微應變誘導的直接 Z 方案光催化材料,可做為未來量產光催化材料的研發設計參考,同時也是減碳的解方之一。

-----廣告,請繼續往下閱讀-----
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy

綠能趨勢——光催化材料未來可期

陳貴賢表示,目前表面科學和材料是中研院原分所的主要研究領域,他的實驗室選擇能源材料作為研究主軸,有太陽能電池和熱電材料,同時團隊也專注研究可還原二氧化碳的光催化材料,以及與燃料電池相關的催化劑。

陳貴賢看好將來能源材料的發展,因為在 2050 淨零排放之前,有愈來愈多企業紛紛加入「RE100 倡議」的行列,企業必須承諾最晚於 2030 年前使用 100% 再生能源。最著名案例是科技巨頭蘋果Google 和微軟等公司都已宣布其全球供應鏈將符合 RE100 的要求。其中,台積電為蘋果主要供應商,2020 年也加入 RE100,目前為臺灣再生能源的主要買家

可以預見,將來風能、太陽能與燃料電池的相關材料有其市場需求,而能夠減少二氧化碳的光催化材料,也將成為全球減碳的利器。陳貴賢提到,當前光催化材料還在基礎研究階段,目前的人工光合作用效率約 1%,接近大自然效率,而團隊希望提升到至少 5% 到 10% 以上,方能有其實用價值。

陳貴賢進一步強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值,不僅轉化後的燃料可以賣錢,處置二氧化碳原料亦可以收取負碳費用,是一種前所未有的概念。

陳貴賢強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值。
圖|研之有物

註解

  1. 根據 IPCC 的資料,如果要將全球暖化幅度控制在 +1.5 °C 以內,必須在 2050 年左右達到二氧化碳的淨零排放目標,同時也要大幅度降低非二氧化碳的溫室氣體排放,特別是甲烷。
-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3649 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook