1

5
3

文字

分享

1
5
3

低調卻又無所不在:你我身邊熟悉的陌生人,臺灣森林裡的「野生釀酒酵母菌」

研之有物│中央研究院_96
・2022/07/11 ・6154字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/寒波、簡克志
  • 美術設計/蔡宛潔

臺灣「野生釀酒酵母」的多樣性研究

釀酒酵母,一種被人類廣泛利用的微生物,釀酒、做麵包都會用到,此外也被大量用於科學研究。可以說不論在食品或學術上,釀酒酵母早已進入你我的生活。然而,釀酒酵母除了人類常用菌株(strain)是來自原有已知的幾個馴化譜系(domesticated lineage)之外,其實還有非常多野生譜系不為人知。中央研究院「研之有物」專訪院內生物多樣性研究中心蔡怡陞副研究員,他與研究團隊尋覓臺灣野生的釀酒酵母,意外發現臺灣島的面積雖然相比之下較小,野生釀酒酵母的遺傳多樣性卻是世界最高!論文已於 2022 年 3 月 31 日發表於《基因組研究》(Genome Research)。

不管釀酒還是做麵包,都不可或缺的釀酒酵母

釀酒酵母的學名叫作 Saccharomyces cerevisiae(簡稱 S. cerevisiae),它在釀酒或烘焙等食品業中最具代表性,也是最常見的模式生物之一。釀酒酵母作為單細胞真核生物的代表,大量用於學術研究,蔡怡陞團隊的成果即是一例。

至於釀酒酵母的產業應用,例如常見的愛爾(Ale)與拉格(Lager)啤酒來說,前者發酵溫度在 20℃ 左右,菌株就是上述的 S. cerevisiae,味道較濃郁;後者的特色是低溫發酵 10℃ 左右,菌株是人類特別選殖的雜交品系(註 1),味道較清爽。

常溫發酵的愛爾啤酒較濃郁、顏色深,低溫發酵的拉格啤酒較清淡、顏色淺。圖/Pexels

有趣的是,世界各地的人、歷史與文化也許有別,愛酒的心卻都一樣,歐洲培育出發酵啤酒的品系,日本也獨立馴化獲得釀造清酒的酵母菌。

-----廣告,請繼續往下閱讀-----

除了釀酒之外,製作麵包也需要釀酒酵母,故 S. cerevisiae 也稱作麵包酵母。仰賴小規模手工業的古時候,麵包師都有自己的獨家酵母,師傅教徒弟時,傳承的不只技術,也包括酵母麵團。

邁入近代社會以後,各行各業都走向標準化,釀酒酵母也不例外。如今不同麵包師大都使用同一種量產酵母。

釀酒酵母不只用於釀酒,烘焙業也常拿來讓麵團發酵,做出好吃的麵包。圖/Unsplash

啤酒與麵包這些案例鮮活地說明,釀酒酵母深受人類影響,這也是大部分酵母菌演化研究關注的主題。

然而蔡怡陞實驗室則不同,他關心的對象是處於人類影響以外、還沒有被馴化的野生釀酒酵母們。這些野生釀酒酵母們和食品業常用的菌株是同一物種(species),學名都是 S. cerevisiae,但是為不同菌株(strain)。

-----廣告,請繼續往下閱讀-----

由於釀酒酵母的產業運用和微觀機制探討已經相當成熟,但是人們對於釀酒酵母在生態中的角色依然所知有限,以前人們甚至懷疑過,真的有野生的釀酒酵母嗎?後來才知道不但有,而且多樣性還不小,與人類密切接觸的只是少數幾款。

那麼,蔡怡陞團隊是如何找出低調的臺灣野生釀酒酵母呢?

看不到卻無所不在:臺灣野生釀酒酵母的探尋之旅

蔡怡陞過去就對酵母菌相當有興趣,因為這是他在倫敦帝國學院就讀博士班的起家主題!當時他研究的是釀酒酵母最近的親戚 Saccharomyces paradoxus

回到中研院後,他決定在臺灣再度開啟野生釀酒酵母的研究,與博士生李佳燁、助理劉育菁、柳韋安等人多年奮鬥後,有了出乎意料的發現!如今回首 6 年來的探索過程,並不容易。

-----廣告,請繼續往下閱讀-----

要研究野生的釀酒酵母,第一步當然是去野外採集,可是人的眼睛看不見酵母菌,所以沒辦法用視覺辨識直接採樣,要把樣本帶回實驗室,初步處理後浸入培養液,等待兩個星期才能得知結果:釀酒酵母是否存在。

實驗室使用特製培養液,有利於釀酒酵母生長,不利其他微生物。理想上,即使釀酒酵母原本的存在感很低,也能在培養液中放大。

因為酵母菌肉眼不可見,研究團隊需在廣大森林中採樣,並將處理後的樣本浸入培養液長達兩週,之後嘗試分離微生物並鑑定,才能確認是否成功採集到釀酒酵母。圖/研之有物(酵母菌圖源/蔡怡陞提供、腦海工作室製圖)

假如等待一段時間後,培養液長不出酵母菌, 也許是一開始就真的沒有,但是有沒有可能是因為採樣和培養時有缺失,害得酵母菌長不出來?或是釀酒酵母確實存在,卻由於數量太少而無法見到?

蔡怡陞回憶,開始這項計畫的第一年,幾乎一無所獲。根據歐洲與美洲的研究經驗,野生釀酒酵母常常於橡樹表面生長,橡樹屬於殼斗科植物,所以一開始多半以市區外圍森林,如殼斗科的樹皮為目標,卻不斷失敗。

-----廣告,請繼續往下閱讀-----

後來往更廣的範圍採樣,並與生多中心研究人員鍾國芳黃仁磐等實驗室合作,這才克服難關,順利從多種植物的果實、樹葉、樹幹、地面、甚至是地衣等來源獲得酵母菌,並且訝異地得知,釀酒酵母在臺灣的森林其實非常普遍。

蔡怡陞歸納出的模式是:臺灣野外森林中,釀酒酵母普遍存在,但是比例非常低,可謂低調卻無所不在。

釀酒酵母在顯微鏡下的照片。釀酒酵母有人類馴化過的菌株,也有野生譜系。野生的釀酒酵母在自然界中普遍存在,但是比例相當低。
圖/Wikimedia

如何歸納出以上結論呢?這要利用如今基因體學的新工具:總體基因體學(metagenomic)。原理是取得環境樣本後,直接定序其中所有 DNA 片段,或是所有物種都有的擴增子(amplicon),再與資料庫對照;如此一來,便能估計目標佔整體的比例,蔡怡陞團隊就是去估算釀酒酵母佔其生長環境中的比例。

從環境採樣培養出釀酒酵母以後,由中研院定序核心實驗室的呂美曄,回頭定序該樣本的擴增子,接著由蔡怡陞實驗室的林渝非分析。野外採集的樣本中,絕大部分是細菌,通常高達至少 99% 之多;剩下多半為真菌(和原生生物等等),其中只有極低比例是釀酒酵母,最多也只佔 0.012%。因此同樣是細菌、真菌等微生物,釀酒酵母的存在感是低於 1% 中的 0.012% 以下,換句話說,不超過百萬分之 12!

透過總體基因體學的分析,能夠量化釀酒酵母在天然環境下的存在感。蔡怡陞也強調培養液很重要,否則無法讓低調的酵母菌現形。抓到目標後就能分離酵母菌,培育建立新的菌株,並且經由團隊成員李昕翰、柯惠棉的定序、組裝獲得完整的基因組。藉此獲得一百多個臺灣各地的菌株及其遺傳訊息,用於進一步研究。

-----廣告,請繼續往下閱讀-----
蔡怡陞實驗室中,放入培養液和樣本的 6 支試管。培養液相當重要,負責讓低調但無處不在的釀酒酵母現身。圖/研之有物

釀酒酵母的多樣性,臺灣竟然世界最複雜?

要了解蔡怡陞實驗室新論文的意義,必須先認識別人過去的研究。

2018 年就有研究者從世界各地收集超過一千個釀酒酵母品系,探討親緣關係。分析發現野生釀酒酵母們彼此的變化差異還不小,東亞的中國為最多變之處;將所有酵母菌擺在一起畫演化樹,中國採集到的品系能歸類到不同譜系(lineages),包括與同類最早分家,差異最大的譜系。

演化樹是一種建構親緣關係的工具,所有樣本中,兩個樣本假如有最近的共同祖先,通常遺傳上的差異也會愈少,便會被歸類到一塊;這一批和其次相近的另一批樣本們,又會被歸類到一群,就這樣一直向前回溯(見下圖),形成看似樹狀的關係。而這棵樹上愈早分離的譜系,也就代表差異愈大,愈早和其他樣本分家。

演化樹與地理關係的示意圖,通常有兩種情況,左邊表示不同地點(A,B,C,D)採集的樣本,在演化樹上有明確先後次序,可推論出如何在地理上傳播;右圖表示不同地點(A,B,C,D)採集的樣本,在演化樹上無明確先後次序,傳播路徑交織在一起。圖/研之有物

中國採集的釀酒酵母們,不但有些被歸類到較晚分家的不同群,幾個樣本更自成一群,形成最早分出的演化樹枝。這些證據有力地支持:中國是釀酒酵母的起源地。然而,案情並不單純!

-----廣告,請繼續往下閱讀-----

將臺灣的一百多個菌株擺進演化樹,驚奇的事發生了!臺灣存在的釀酒酵母們,竟然也被歸類進各大譜系,並有新的譜系,這表示臺灣的釀酒酵母多樣性,和中國一樣高。而且還有一款進入之前於中國採集到,與同類最早分家的那一群。

驚奇之處在於,擺在全世界的尺度下看,臺灣只是一個很小的島,地處東亞大陸邊緣。中國面積龐大,釀酒酵母具備全世界最高的多樣性並不意外,也被認為很可能是發源地;可是小小的臺灣,竟然也存在一樣高的複雜度。

簡化過的野生釀酒酵母演化樹示意圖,蔡怡陞團隊採集到的臺灣野生釀酒酵母譜系中,發現有一款和先前中國採集樣本都是最早分家的一群(黃框處),地理傳播也交織在一起。這表示臺灣的釀酒酵母多樣性,和中國一樣高,兩者皆為世界第一。圖/研之有物(資料來源/蔡怡陞)

有沒有可能臺灣多變的品系,並非起源自當地,而是被人類無意間帶來的呢?應該不可能,因為根據遺傳差異估計,那些野生譜系們分家後衍生的年代,都早於人類在附近活動的時間;由此可以推論,目前的分佈狀況,非常可能是自然傳播的結果(或許是隨著殼斗科森林)。

所以我們可以說,臺灣是釀酒酵母最初的起源地嗎?不行。符合已知證據,比較合理的解釋是,釀酒酵母於東亞發跡,所以在東亞地區的遺傳多樣性也最高;而臺灣也包含於此一交流範圍之內,從最早的始祖開始,從古至今逐漸分家的釀酒酵母們,可能陸續,或是在同一段交流時期進入臺灣,一直低調默默生存到現在,仍保持原鄉的面貌。

-----廣告,請繼續往下閱讀-----

然而,好的研究不只要知道有多少已知,更要知道還有多少未知。蔡怡陞提醒我們,目前研究有個盲區:東南亞地區的取樣仍十分有限。根據已知的樣本,最早與同類分家的酵母菌,它們的後裔位於中國和臺灣,故推論東亞地區是起源地。

可是取樣匱乏的東南亞,會不會住著更早分家前輩的後裔呢?這是目前無法回答的問題。

野生釀酒酵母在中國與臺灣的實際採樣分布,發現臺灣譜系的數量是全世界同尺度地區中最高的。其中 TW1 和 CHN-IX 皆為最早分家的一群,證明了台灣是發跡地之一。小小的臺灣卻擁有如此高的多樣性,就是讓人驚奇之處。圖/研之有物(資料來源/蔡怡陞)
釀酒酵母實際的演化樹,這是從樹狀圖捲曲起來的另一種表達形式,其中 TW1 和 CHN-IX 皆為野生樣本,且是最早分家的一群。圖/研之有物(資料來源/蔡怡陞)

你我所不知道的小世界,野生釀酒酵母的生殖、生態學

總之根據現有的資訊,臺灣釀酒酵母的多樣性在同樣尺度下比較確實為世界最高

大量取樣下還能觀察到,距離非常近的採集地點,竟然同時住著遺傳上差異很大,不同譜系的菌株(甚至在同一棵樹!)。相比之下,中國酵母的多樣性也高,但是分佈並不密集,相近的地理範圍內通常存在遺傳上類似的菌株。

不同研究的手法不同,這會不會是中國研究者採集較為稀疏,取樣方式導致的偏誤呢?蔡怡陞表示,的確無法排除前述可能性;但是他反而認為過去的採集方式,說不定都忽略了微生物近距離的分佈與多樣性,所以更需要反思過往認知微生物的生物地理關係。

不過他也認為中國的釀酒酵母確實住的比較分散;因此差異大的品系住在附近這回事,搞不好真的是臺灣特色,至少是率先在臺灣觀察到。

了調查臺灣野生釀酒酵母的多樣性,蔡怡陞團隊也發現野生的釀酒酵母大部分是採取無性生殖,不同品系之間雖然會有遺傳交流,但是相當有限。圖/研之有物

另一件有趣的發現是遺傳交流。釀酒酵母是單細胞真核生物,實驗室環境下可以無性生殖,自己複製自己;也可以隨時切換成有性生殖,和同類一起生寶寶。利用菌株間的遺傳差異,可以預測自然界的釀酒酵母,大部分時候採行無性生殖(這是蔡怡陞博士班時期努力的主題!)。

既然臺灣存在許多遺傳有別的野生品系,有時候又住的很近,它們之間會遺傳交流嗎?

比對基因組得知,會,不過不常見,大約每幾百到幾萬次無性生殖才有 1 次有性生殖。這證實蔡怡陞對酵母菌生殖的推論,替釀酒酵母生態學新添一分認識。

讓學術研究結合產業應用,找到野生釀酒酵母之後

有趣歸有趣,但是研究臺灣野生釀酒酵母有什麼意義呢?

從學術上來說,蔡怡陞指出,臺灣生態系複雜,本次透過基因體學手法得到量化證據,支持釀酒酵母這種微生物,在臺灣的多樣性很高。這項在臺灣採樣的本土研究,也大幅增進全世界對釀酒酵母的認識,並可更進一步開始探討釀酒酵母在自然界所扮演的角色。

從產業上來說,在蔡怡陞團隊的辛苦調查與記錄之後,未來我們是否可以期待廠商用臺灣在地的野生釀酒酵母做啤酒呢?

釀酒酵母是與人類互動最密切的微生物之一,但是人們對野生的釀酒酵母了解卻很有限,可謂無比熟悉的陌生人。蔡怡陞採集到眾多野生的菌株品系,不論學術研究或產業應用,都可能有進一步發展。

目前實驗室正在把這些菌株「帶」回實驗室,開始量化相關的表現型(phenotypes)。等到時機成熟,他歡迎各界合作,一起探索臺灣自然資源的潛力。

蔡怡陞與實驗室團隊合影,前排由左往右為:李佳燁、柯惠棉;後排由左往右為:蕭禎、劉育菁、蔡怡陞、林渝非。這次論文中公開的眾多野生釀酒酵母菌株,不論學術研究或產業應用,都有相當的發展潛力。圖/研之有物

註解

  1. 拉格啤酒採用的菌株是 Saccharomyces pastorianus,為 S. cerevisiae 及 S. eubayanus 兩者雜交而成。

參考資料

  1. 蔡怡陞(2017)。〈多樣性決定味覺豐富度,釀酒酵母的「萬年傳統全新感受」〉,《環境資訊中心》。
  2. Lee, T. J., Liu, Y.-C., Liu, W.-A., et al. (2022). Extensive sampling of Saccharomyces cerevisiae in Taiwan reveals ecology and evolution of predomesticated lineages. Genome Research.
  3. Peter, J., De Chiara, M., Friedrich, A. et al. (2018). Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature, 556, 339–344.
  4. Duan, S. F., Han, P. J., Wang, Q. M. et al. (2018). The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. Nat Commun, 9, 2690.
  5. White, C., & Zainasheff, J. (2010). Yeast: The Practical Guide to Beer Fermentation. Brewers Publications.
  6. Tsai, I. J., Bensasson, D., Burt, A., & Koufopanou, V. (2008). Population genomics of the wild yeast Saccharomyces paradoxus: Quantifying the life cycle. PNAS, 105(12), 4957–4962.

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3620 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
2

文字

分享

0
2
2
每次呼吸都會吸入十個孢子?一朵菇如何形成?無所不在的真菌生命循環!——《真菌大未來》
積木文化
・2024/02/21 ・3532字 ・閱讀時間約 7 分鐘

真菌的生命週期

一切始於一顆孢子

孢子是真菌生命週期的開始,也是結束。這些單細胞單元裡,包含著新真菌個體的繁衍密碼。面對無數微生物競爭者和惡劣的環境條件,孢子萌芽的機率極低,因此真菌釋放出數萬億個孢子來提高生存機會。孢子維持在一個暫停於生死之間的狀態,密切留意周遭世界並尋找適合落腳的地方。孢子很微小,無處不在,所以根本無法躲避它們,以我們自己而言,每次的呼吸都會吸入十個孢子。

孢子是真菌生命週期的開始,也是結束。圖/unsplash

被稱為「胚種假說」(Panspermia)的生命起源論甚至認為:生命的藍圖被包裹在一顆孢子當中,並在太空中旅行,在宇宙中尋找適合落腳的家園。儘管對此假說爭論不休,但我們確實知道孢子可以耐受極端溫度、抗輻射,甚至可以在真空狀態的太空中存活。 1988 年,和平號空間站(mir)的俄羅斯太空人就注意到,他們的鈦石英窗外有「東西」在生長,而且正在漸漸「啃穿」鈦石英。後來證實,這個「東西」就是一種真菌。1

就像植物一樣,大多數真菌也都採用「紮根在土壤當中」這種耗時的繁殖方式:它們利用菌絲體生長,或透過孢子飄散到新的棲息地。在渴望繁衍其 DNA 的動力下,有些真菌採取巧妙的策略,確保其孢子在新環境中得以繁殖。

擁有誘人香氣的美食佳餚黑松露(Tuber melanosporum)就是一個很好的例子。這種跟黃金一樣珍貴的真菌生長在地底下,隨著孢子成熟,其所散發出的香氣會吸引動物、松露獵人和來自世界各地的美食家。松露的孢子不易被消化,所以最終會安全通過有幸一飽口福者的消化道;在理想狀況下,孢子應已遠離原來被採集到松露的位置。

-----廣告,請繼續往下閱讀-----
擁有誘人香氣的美食佳餚黑松露就是一個很好的例子,松露的孢子不易被消化,所以最終會安全通過有幸一飽口福者的消化道。圖/pexels

在地面上,圓形的巨型馬勃(Calvatia gigantea)子實體保護著數以百萬在內部熟成的孢子。有趣的是,只要戳一下成熟的馬勃,它就會噴出一股煙霧狀的孢子粉,讓風帶走飄散的孢子。

生長在糞便之中的水玉黴菌屬(Pilobolus)真菌,藉由分泌水分充滿泡囊增加壓力,最後像水槍一樣排射出泡囊頂部的孢子囊。有研究經計算發現,孢子囊能以至少 20,000 g (重力)的速率被噴射出去。相較之下,訓練有素的美國國家航空暨太空總署(NASA)太空人在太空船中穿著抗重力服(G-Suit)所承受的重力是 3 g ,而子彈是以 9,000 g 的加速度行進的。

生長在糞便之中的水玉黴菌屬真菌,藉由分泌水分充滿泡囊增加壓力,最後像水槍一樣排射出泡囊頂部的孢子囊。圖/wikipedia

還有能在黑暗中發光的真菌,光線會吸引昆蟲將它們的孢子散布到森林底層。例如,加德納臍菇(Neonothopanus gardneri,俗稱椰子花)就受到晝夜節律的調節,在夜間會發出明亮的光。 2所有這些演化而來的調整,都是為了確保繁殖能夠延續。

為菌絲找到一個家

當孢子落在一個溫度適中、靠近食物和水的地方時,它就會萌芽。孢子經由細胞壁吸收水分,並長出一種稱為菌絲的線狀管。當菌絲在營養基質上生長,就會分支出更多菌絲並形成一條細線。原本的菌絲繼續利用可能是木頭、昆蟲或土壤的基質,由尖端處長出更多菌絲。菌絲間開始融合相連,形成一個相互連接、被稱為菌絲體的物質。

-----廣告,請繼續往下閱讀-----
當孢子落在一個溫度適中、靠近食物和水的地方時,它就會萌芽。圖/wikipedia

每條菌絲的生長都結合了物理力量和化學策略。菌絲會分泌出作用相當於強力消化酸的酵素來分解物質。這個分泌酵素的作用,讓真菌能穿透最堅硬的基質:先將營養物質萃取出來,再經由菌絲體吸收。就像我們唾液中的酵素一樣,很快就可以將口中的麵包變成濕糊狀。

數英里的菌絲體,也許再來一朵菇

菌絲體如同漣漪一般,從孢子萌芽之處輻射向外生長。附近有營養物質出現時,菌絲體就會以圓形的方式使其表面積最大化,朝營養來源方向生長。當一個區域的食物來源耗盡,菌絲體中心處的舊菌絲就會被自己消化掉。殘存在被消化舊菌絲當中的可用資源,則會被重新傳送到菌絲體最外圈,供生長正旺盛的菌絲所用。

最後,菌絲體會長成一個廣大的空心環,也就是有時我們在草地上看見的「仙女環」。隨著資源被重新傳送到菌絲體生長的外緣,中心會逐漸消失,環的周長則逐漸增加。只要有養分和水,菌絲體就可以持續以這種方式不斷地生長下去。

菌絲體會長成一個廣大的空心環,也就是有時我們在草地上看見的「仙女環」。圖/wikipedia

在此階段,除了酵母菌以外的真菌就能由菌絲形成孢子,進行無性生殖。黴菌、銹病和粉狀黴菌等微型真菌總是以這種方式繁殖,例如麵包上所見的黴菌黑點就含有超過五萬個孢子。

-----廣告,請繼續往下閱讀-----

然而,屬於單細胞微型真菌的酵母菌,則採取不同於絲狀真菌的方式進行無性生殖。酵母菌利用分裂產生複製體進行無性生殖,雖然這種方法很有效率,但卻因此錯過了可以經由有性生殖確保遺傳多樣性的樂趣。3

除了透過無性生殖的方式繁殖,若環境條件惡劣(通常情況就是這樣),大型真菌也可以進行有性生殖。當兩個有性生殖相容的菌絲體相遇,它們就會進行融合並形成更大的團塊。

融合後已經具備遺傳多樣性的新菌絲體,等待著合適的環境條件到來,就會聚集它的菌絲、吸收水分膨脹,並形成被稱為原基(primordium)的菇蕾。幾天後,原基逐漸伸長菌柄,將菌傘推出基質表面。最後,菌傘打開就變成了一個完全成熟的菇。菇類的顏色、質地和形狀會因種類而異。

最後,菌傘打開就變成了一個完全成熟的菇。菇類的顏色、質地和形狀會因種類而異。圖/unsplash

根據菇類產生和釋放孢子的方式,可以將大型真菌分成兩群:一群是在封閉囊內產生孢子的子囊菌(asomycota),另一群是從菌褶中形成並釋放孢子的擔子菌(basidiomycota)。擔子菌的菌褶有一層菌膜保護,隨著菇的成熟,該菌膜就會剝落。

-----廣告,請繼續往下閱讀-----

菇的本身可以說就是一個慶典,慶祝擁有數萬億待釋放新世代真菌(孢子)的出現。孢子將再次進入那已經持續循環數十億年的過程之中。自然不會多愁善感,所以慶典終將結束;菇類在完成產生孢子的工作之後,就會開始腐爛消失。

菇的本身可以說就是一個慶典,菇類的出現是真菌生命循環的最美麗時刻。圖/unsplash

它們已經達成自然所交付的任務,而且也不吝讓我們一窺正大自然發自內在的美。菇類的出現是真菌生命循環的最美麗時刻,也許因為這樣,菇類才會如此受到歡迎。

註解

  1. Matthew Phelan, ‘Why fungi adapt so well to life in space’, Scienceline, 7 March 2018, . ↩︎
  2. Anderson G Oliveira, Cassius V Stevani, Hans E Waldenmaier, Vadim Viviani Jillian M Emerson, Jennifer J Loros and Jay C Dunlap, ‘Circadian control sheds light on fungal bioluminescence’, Current Biology, vol. 25, issue 7, 2015, . ↩︎
  3. 譯注:酵母菌也會進行有性生殖,遺傳物質亦會重新洗牌。 ↩︎

——本文摘自《真菌大未來:不斷改變世界樣貌的全能生物,從食品、醫藥、建築、環保到迷幻》,2023 年 12 月,積木文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----