Processing math: 100%

0

4
1

文字

分享

0
4
1

對稱簡潔除了美也很實用:幾個應用對稱思維來破解的數理益智問題

賴昭正_96
・2019/08/15 ・3731字 ・閱讀時間約 7 分鐘 ・SR值 515 ・六年級

對於物理學家來說,美麗意味著對稱和簡單。如果理論是美觀的,這意味著它具有強大的對稱性,可以以最緊湊、最經濟的方式解釋大量數據。更確切地說,如果我們在方程式之內互換變數時,方程式能保持不變,那麼方程式將被認為是美觀的。

──Michio Kaku 理論物理學家、科普作者

語云愛美是人類的天性,儘管情人眼裡出西施,每個人的審美觀點可能不同,但基本上「美」是脫不了對稱簡潔!你聽說過鼻樑不正、左眼大右眼小的美女或俊男嗎?事實上讓人望而生畏的獅子或老虎,其長相也都具有左右對稱的美!花之所以美,更是脫離不了其對稱性。

物理學家也是人,因此當然也愛美,例如在〈近代物理的先驅:馬克斯威〉一文裡,筆者就談及馬克斯威看到了實驗導出之電磁方程式缺少對稱之美,因此人為加入「位移電流」,使他在 1865 年能導出電磁波的存在,並證明光是一種電磁波。現在,對稱已經是物理學家的一個主要工具:在尚不清楚基本粒子的作用時,他們就是靠對稱引導而發展出「標準模型」!

對喜好數學和物理的科普讀者,「對稱」與「簡潔」的概念也能幫助我們解決一些學習過程、或日常生活中所碰到的問題。

動動腦,思考一下這些數理問題吧!

  • [a] 人人都知道運動是「相對的」,因此說「太陽是以橢圓的軌跡繞地球運動」,事實上應該也是不錯的;可是為什麼科學家一定要說「地球繞太陽」呢?
  • [b] 四隻螞蟻分別佔據了正方形的 A、B、C、D 四個角落,每隻螞蟻均以等速永遠朝著另一隻螞蟻前進(不需沿著正方型的邊,如A→B、B→C、C→D、D→A),最後牠們會碰在一起嗎?
  • [c]  \iint_{a}^{b} \frac{x+y}{\sqrt{x}-\sqrt{y}}dxdy=?
  • [d] 一條固定長度的繩子彎曲折成四角形,最大面積的四角形之兩邊比為何?
  • [e] 用一條固定長度的繩子彎曲折成任何形狀,最大面積的圖形為何?
  • [f] 因為重男輕女的關係,世界組織規定:只要一生男孩就不能再生了;但如果是女孩,則一定要繼續再生,一直到生男孩為止。如果生男生女的機率完全一樣,那麼長時間以後,女性人口是不是會比男性多?
  • [g] 如下圖,所有的電阻都是 Ω,那麼 AB 兩點間的等效電阻是多少?
  • [h] 一個平面的正七角形,每個角上均帶 +Q 電荷,中心點的電場方向為何?

都想出來了嗎?看看解答怎麼說

  • [a] 答案是:運動的確都是相對的,如果將行星的運動解釋為地球及其他 8 個行星圍繞太陽,則它們的軌跡方程式將都是非常簡單(橢圓)——可以用最緊湊、最經濟的方式解釋大量數據。反之,如果認為地球是太陽系的中心,則除了太陽軌跡是橢圓外,其它行星的軌跡都將非常複雜!

 

915px-Cassini_apparent
如果認為地球是運行的中心,那就要用很複雜的系統才能解決某些觀察到的現象如「水星逆行」,上圖即為地心說的其中一個版本。圖/wikimedia commons

在相信上蒼不會那麼笨手笨腳,簡單就是美的「盲目信仰」下,「地球繞日」說自然佔了上風!你說科學家不是愛美愛得一塌糊塗?!

-----廣告,請繼續往下閱讀-----
  • [b] 因為這四隻螞蟻永遠等速朝著另一隻螞蟻運動,螞蟻的相對位置會形成越來越小的正方形,所以最後會在中心碰在一起。
    筆者對這一問題特別有印象,在籌劃創辦「科學月刊」(1969 年)之時候,由一位學數學的同學提出來的;當學物理的還在思考著如何找出其運動方程式時,筆者已衝口而出謂「當然碰在一起」!筆者當時閃過腦中的想法是:如果牠們最後是在那裡繞圈子永遠不相逢,那麼圈子應該是多大的?從對稱的觀點來看,任何圈子不是都應該可能嗎?只有中間的一點是特別的「圈子」,因此毫無疑問地,牠們將在哪裡碰在一起!
    到了寫這篇文章,筆者發現當時的想法事實上是錯誤的:因為永遠朝著另一隻螞蟻運動,是不可能形成圈子的(見圖),只能形成越來越小的正方形,所以最後一定要碰在一起!單隻螞蟻的路徑會是逐漸內縮的螺旋型,但略微想了一下,覺得運動方程式事實上很難找註1
永遠朝著另一隻螞蟻運動,是不可能形成圈子的。圖/作者提供
  • [c] 此一積分具有(x,y)互換的「反」對稱,因此答案為零。
    一個大家所熟悉的例子是:如果一個函數 f(x) 具有 y-軸的「反」對稱{ f(-x)= -f(x)},則從 -a 到 +a 的積分應等於零。這一題目的對稱軸是同時與 x-軸及 y-軸成 45 度的斜線。
    不用對稱之運算證明如下(第 1 個等號「=」是 x、y 互換的結果;第 2 個等號「≅」號是因 x、y 只是用來表示變數,與用什麼符號來表示無關:例如 ax2+bx+c=0 與 ay2+by+c=0 根本是相同的方程式,只是用不同的符號來表示變數而已):

 \iint_{a}^{b} \frac{x+y}{\sqrt{x}-\sqrt{y}}dxdy =-\iint_{a}^{b}\frac{y+x}{\sqrt{y}-\sqrt{x}}dy dx  \cong -\iint_{a}^{b}\frac{x+y}{\sqrt{x}-\sqrt{y}}dx dy

將最後一項移到左邊與第一項合併

 2\iint_{a}^{b}\frac{x+y}{\sqrt{x}-\sqrt{y}} dx dy=0

  • [d] 答案是邊長一樣的正方形
    因為如果邊長不一樣,那麼我們不免要問,為什麼是這一個長方形、而不是另一個長方形呢?只有正方形是一個特殊的長方形!
  • [e] 基於上面的邏輯,相信許多讀者已經知道答案了:當然是圓形
    這裡的邏輯事實上是與前面有點不一樣的,因為任何正多角形事實上是都很「獨特」的,但同樣的問題還是存在:如果是正六角形,為什麼不是正五角形和正八角形呢?圓形具最高的對稱性,沒有這一問題!
    在這裡筆者想到了一個自然界的現象:為什麼許多皮膚病多是呈圓形的呢?固定長度,圓形面積最大;反之,固定面積,圓形邊長應該最短:這不是最有利於細菌反抗「外面」的攻擊嗎?城堡很少是圓形的,就這點來看,人類顯然還是比細菌笨了一點!同樣的道理,體積一樣、面積最小的立體結構應是圓球——這是否與自然界中許多動植物(如細胞或水果)都是以圓球形狀出現有關?
  • [f] 新婚生小孩,除了一半家庭是只有一個男孩的外,其他一半家庭最後都是女多於男(或相等);因此直覺的反應可能是:千百年後,女的將比男的多!可是換一個角度看,每天新生出來的小孩總是男、女數相等,怎麼可能破壞男女的平衡呢?雖然決定誰可以繼續生小孩時,男女的平等被破壞了,但這一條件,並沒有破壞決定生男育女機率相等的「物理定律」,因此應該不會影響男女數的平衡。事實上,問題之條件(只要一生男孩就不能再生了;但如果是女孩,則一定要繼續再生,一直到生男孩為止)完全是故意用來擾亂你的思路的:任何一刻之男女數的增加都是相等的,與什麼樣的夫妻可以再生無關。
    在「時間的方向性」一文裡,筆者提到了大物理學家波茲曼(Ludwig Boltzmann)於 1872 年用牛頓力學導出具有時間方向性的「H-理論」;可是牛頓力學具有時間對稱性,怎能產生一個不具時間對稱性的結果呢?因此「H-理論」提出後便立即受到攻擊。我們不能在這裡犯同樣的錯誤。
  • [g] 用傳統的線路分析將是非常困難的(超過普通物理程度)註2;但利用對稱則輕而易舉。以通過 AB 兩點的連線為軸,這網絡具有一個旋轉 120 度的正三角形對稱;因此(x、y、z)三點可視為同一點 A’ ──永遠具有同樣的電位。同樣地,(x’、y’、z’)三點也可視為同一點 B’。AA’ 間共有三個相同的電阻並聯,故其等效電阻為 Ω/3。同樣地,BB’ 間也共有三個相同的電阻並聯,故其等效電阻亦為 Ω/3。A’B’ 間則共有六個相同的電阻並聯,故其等效電阻為 Ω/6。這三個等效電阻串聯,故 AB 間的等效電阻為 5Ω/6!
用傳統的線路分析非常困難,但利用對稱則輕而易舉。
  • [h] 因為對稱的關係,任何方向均應該有七個對稱方向。如果答案只能有一個方向,不用三角幾何計算,我們就應該知道答案只能為「零電場」。

結論

以上是筆者想到或者在網路上看到的、可以用「對稱」解決的幾個問題——相信應該還有很多類似的問題。從[c] 題我們可以看出:如果知道怎麼直接計算,我們根本不需要「對稱」!但如果命題具有對稱性,則像[a] 及[g] 一樣,我們根本可以完全不知道怎麼計算,就可以輕輕鬆鬆地得到答案:這正是數學上「對稱理論」—「群論」—的巨大力量!

註解

  1. 真正的意思是:筆者還不知道怎麼找運動方程式來解決這一個問題。不怕被方程式嚇倒的讀者可以參考 4 Bugs chasing each other differential equation(裡面有幾種解決的方法)。
  2. 所謂「普物程度」就是筆者所知道之「透過電阻串聯及並聯的理論來簡化」(事實上大概不可能用此一理論來解決這一個問題)。想知道電機系的學生如何解決此一問題的讀者可以參考 The resistor cube problem

延伸閱讀

  1. 有關對稱與物理、化學的關係,請參閱:
    「對稱與物理」(科學月刊,2010 年三月號)
    「規範對稱與基本粒子」(科學月刊,2014 年十一月號)
    左旋還是右旋?化學對稱跟你我的身體有關」(泛科學,2015/09/25)
    「時間的方向性」(科學月刊,2016 年二月號)
    「群論、對稱、與基本粒子」(科學月刊,2018 年 9 月號)
    基本粒子的標準模式 」(泛科學,2018/10/9)
    2017 年 8 月以前的上面文章均轉載於「我愛科學」(華騰文化有限公司,2017 年 12 月出版)。
  2. 有關科學家的盲目信仰,請參閱「愛因斯坦相信的上帝,是你以為的那位上帝嗎?」(泛科學,2018/3/30)。
  3. 「近代物理的先驅:馬克斯威」(科學月刊,2019 年四月號)。
-----廣告,請繼續往下閱讀-----
文章難易度
賴昭正_96
47 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲它轉載我的科學月刊上的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」。

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

5
1

文字

分享

0
5
1
液晶溫控纖維:捲窗簾、撐乳房、擁抱狗、掀燈罩
胡中行_96
・2023/11/20 ・2772字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

「教授」趴在辦公室的地板上,百無聊賴。材料科學家、互動設計師、工匠與工藝研究人員,整日於麻省理工學院媒體實驗室(MIT Media Lab),忙進忙出,沒空搭理。作為論文第一作者Jack Forman的愛犬,身兼創作謬思,「教授」可能從沒想過,自己終將獲邀貢獻學術,並且榮登致謝名單。[1]

第一作者的愛犬「教授」。圖/參考資料1,Figure 15a(CC BY 4.0

FibeRobo

「教授」備受冷落的這段時日,研究團隊一直忙於開發織物纖維:穿戴手套、實驗袍和護目鏡,隔著通風櫃,以液晶元(mesogen)為主要原料,適量加入能感光、增加黏性、降低驅動溫度,以及延長有效期限等的各種化學物質。然後,將調製好的液晶彈性體(liquid crystal elastomer;LCE),灌進精心設計的機器。利用液晶分子在常溫下整齊排列,遇熱就亂了陣腳,導致收縮的特性,生產出來的FibeRobo纖維,長度能為溫度所控制。製作步驟及機器各部位的功能,大致如下:[1]

左二為FibeRobo機器示意圖,最右是實體。圖/參考資料1,Figure 3(CC BY 4.0
  1. 可調控溫度的針筒幫浦,將原料加溫至約莫34°C,降低其黏性後,推擠出來。(圖片:Step 1的上半段。)[1]
  2. 紫外線照射,使纖維稍微硬化,避免蜷曲。(圖片:Step 1的下半段。)機器外圍的黃色壓克力板,能隔絕99%的紫外線,保護使用者。透過調光器,則可依需求適度調整光線強度。避免光線太弱,使纖維斷掉;或者是光線太強,而結塊並堵塞針筒的開口。[1]
  3. 鑷子夾住纖維兩端,把它拉得又直又細,再沾點礦物油,比較容易舒展。(圖片:Step 2。)[1]
  4. 經過滑輪的纖維,於緊拉的張力下,再照一次紫外線,加強硬化。(圖片:Step 3。)滑輪轉動的速度愈快,纖維就愈細。[1]
  5. 纖維被捲到機器最頂端的線軸上。(圖片:Step 4。)[1]
  6. 從線軸上取下纖維,撒點滑石粉,降低摩擦力,方便以後用機器紡織。等布料完成,再以溫熱的肥皂水,洗去滑石粉。[1]

通電與收縮

FibeRobo纖維搭配別種材料,可以創造不同的效果。然而傳統多股對絞的作法,會扭曲FibeRobo,使它收縮的特質變得難以預測。於是,研究團隊改將FibeRobo置於中央,在外面纏繞其他材料。比方說,拿以蠶絲包覆銅芯的利茲線(litz wire)來捆它。銅的電阻低,升溫快,能迅速使FibeRobo遇熱收縮。FibeRobo與利茲線合體後,接上2.5安培、8.5伏特的電,8秒即縮短37%;斷電30秒,則又恢復原狀。不過,這種混合纖維傾向堆成一團,不適用於針織、紡織與刺繡。研究團隊建議,最好分開製作,再搭配使用。[1]

a. & b. 不同材質的線,纏在一起。FibeRobo纖維與利茲線合體:c. 沒通電;d. 通電收縮。圖/參考資料1,Figure 5(CC BY 4.0

另外,他們也嘗試用導電塗料浸染纖維。如同調製LCE原料時,身穿防護衣著,隔著通風櫃,先將FibeRobo泡入含有重量百分濃度7%碳黑(carbon black)的甲苯(toluene)溶液裡。8小時後取出,置於80°C的烤箱中,烘烤1個鐘頭。如此一來,FibeRobo纖維就能通電,其電阻會跟著長度的伸縮變化。拉長變細的時候,電阻較高。[1]

-----廣告,請繼續往下閱讀-----

成品展示

研究團隊用FibeRobo纖維跟其他材料,做了些模型和成品,來展示實際用途。以下是其中幾個例子:[1]

  • FibeRoBra運動胸罩:當體溫隨運動逐漸上升,FibeRoBra便開始收縮,給予乳房無鋼圈、零負擔的支持。體溫下降後,布料又回到放鬆的狀態。[1]
圖/參考資料1,Figure 8(Edited;CC BY 4.0
  • FibeRoGlow燈具:開燈後升高的溫度,令燈罩緩緩上捲,彷彿打開花瓣。全程費時,大約5分鐘。[1]
圖/參考資料1,Figure 9(CC BY 4.0
  • ShadeRobo窗簾:窗簾不該因為陽光強烈,氣溫上升,就自動捲起來。因此,驅動此窗簾所需的溫度,被設計得比較高。布料只有在上面的利茲線通電時,才會有反應。4伏特、2.5安培的電,得花2分鐘,才能將這個5 x 5公分的小窗簾捲好。冷卻1分鐘後,又會完全攤平。[1]
圖/參考資料1,Figure 12CC BY 4.0
  • FurbeRobo遙控狗背心:論文的第一作者Jack Forman,為他的愛犬「教授」,織了一件小背心。本文開頭的那張照片,即是牠的定裝照。如果寵物在辦公室悲鳴,於實驗室忙碌的主人,就可以透過藍芽,啟動背心上的控制器。此時,連接12伏特、2.5安培電池利茲線,會通電並發熱,造成驅動溫度不高的布料,輕微收縮。就像給狗溫暖的擁抱,減輕牠的分離焦慮(separation anxiety)。不過,基於動物實驗倫理等因素,後來示範布料收縮的照片,都是穿在布偶上拍攝,「教授」再次被晾在一旁。[1]
圖/參考資料1,Figure 15(CC BY 4.0

成本與環保

2023年麻省理工學院的團隊,在美國計算機協會(Association of Computing Machinery)主辦的使用者介面軟體與技術(User Interface Software and Technology)研討會上,發表了這篇介紹FibeRobo的論文。研究團隊認為,他們的成果具有商業化的潛力。畢竟跟雷同的技術比起來,製作FibeRobo的成本相對低廉:機器的針筒幫浦約美金250元;裝滿5、10、20或30毫升原料的針筒,每個至多4元;而生產直徑0.5mm的纖維,每公尺約0.2元。[1]單人操作單機,一天或一個下午就能產出750公尺的纖維;[1, 2]亦有報導指稱是每日1公里。[3, 4]不過,FibeRobo不可回收,儘管某些新興LCE纖維可生物分解,有時搭配的導電材質,仍是廢料處理的阻礙。因此,在這方面還有改善的空間。[1]

麻省理工學院媒體實驗室的FibeRobo介紹影片。影/參考資料2

  

  1. Forman J, Afsar OK, Nicita S, et al. (2023) ‘FibeRobo: Fabricating 4D Fiber Interfaces by Continuous Drawing of Temperature Tunable Liquid Crystal Elastomers’. UIST ’23: Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, 9, pp. 1 – 17.
  2. MIT Media Lab. (27 OCT 2023) ‘FibeRobo: Powerful Body-Temperature Morphing Fibers’. YouTube.
  3. Paul A. (26 OCT 2023) ‘This liquid crystal fabric is ‘smart’ enough to adapt to the weather’. Popular Science.
  4. Global Update. (29 OCT 2023) ‘New Liquid Crystal Elastomer Fiber Makes Shape Shifting Fabrics a Reality – FibeRobo’. YouTube.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

1

8
4

文字

分享

1
8
4
為什麼時間總是「往前」?熵是什麼?和時間有關聯嗎?——《關於宇宙我們什麼都不知道》
天下文化_96
・2023/11/07 ・2581字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

為什麼時間向前走?

既然我們不能回到過去,你可能會合理的問:「為什麼時間向前走?」

對我們來說,時間不向前走的概念是匪夷所思的。你不會期待烤箱能把煮熟的食物變回原料,或杯子內的飲料在炎熱的日子裡形成冰塊,甚至女童軍餅乾也不會憑空出現。所有事情都以我們非常熟悉的方式隨時間前進,但如果你看到逆著時間走的情形,你可能會想自己是否是藥吃多了。

同樣的,你可以記住過去發生的事,但是你不能想起未來發生的事 *1。時間似乎有一個偏好的方向,我們不知道為什麼。

為什麼時間只向前走?這個基本問題長久以來深深困擾著物理學家。事實上,「時間向前」到底意味著什麼?在某些宇宙中,時間可能流向其他方向。他們的科學家可能會定義往「那個方向」向前。 所以真正的問題應該是:「為什麼時間朝著它前進的方向移動?」

-----廣告,請繼續往下閱讀-----

我們先來考慮,如果時間往其他方向走,宇宙是否能夠運作。 物理學定律要求時間往單一方向流動嗎?想像你正在看某些宇宙影片,你能透過仔細檢查,來判斷影像是否正在向前或向後播放嗎? 例如,假設你正在觀看一個球上下彈跳的影片,只要球完全彈跳 (並且不會因為摩擦或空氣阻力失去任何能量),那麼這個影像無論是往前或往後播放,看起來都會一模一樣!在罐內反彈的氣體粒子或在河中流動的水分子也是如此。即使量子力學也能逆著時間運作 *2。事實上,幾乎每個物理定律在時間往前或往後都可以成立。

但這不是全部的故事。

完全彈跳球的例子是不現實的,因為它忽略了球在地面上的摩擦力、空氣阻力以及諸多其他讓球的能量耗散成熱量的方式。經過幾次彈跳後,即使寵物雪貂最喜愛的超級彈力球也會停止彈跳,最終穩定在地面上。球的所有能量將轉化成熱,傳至空氣分子、球分子或地面分子。

想像一下,倒著播放的彈跳球影像會變得多麼奇怪,坐在地上的球會突然開始彈跳起來,而且愈彈愈高。能量流將看起來更奇怪:空氣、球和地面會冷卻下來,失去的熱將轉化為球的動能。

-----廣告,請繼續往下閱讀-----

在這個例子中,你可以肯定指出時間向前和向後的區別。烹飪食物、融化冰塊和吃餅乾等也都相同。但是,如果物理學的大部分定律都能反向工作,特別是熱和擴散等微觀物理,為什麼宏觀過程似乎只在一個時間方向發生?原因是系統中的無序量,也就是熵,非常強烈傾向於單一時間方向。

熵總是隨時間增加。這稱為熱力學第二定律。熵視為某些事物中的無序量。你忘記餵食雪貂時,雪貂會毀壞客廳,撞翻整疊有完整簽名的這本書,雪貂透過增加亂度來提高客廳的熵。

如果你回家重新整理客廳,可以減少客廳的熵,但是這樣做需要相當程度的能量,你把能量釋放成熱、沮喪和低聲咒罵著要如何告訴室友說:「養雪貂是個壞主意。」在整理客廳時,你釋放的能量將保持總熵的增加。每當你產生任何局部秩序,例如:堆疊書籍、在方格紙上做標記,或打開空調時,你都會同時產生亂度這個副產品,且通常以熱的方式呈現。根據熱力學第二定律,平均而言,總熵沿順向時間減少是不可能發生的事。

(注意:這是機率描述。技術上來說,一群憤怒的雪貂有可能意外的組織一個完全有序的隊伍,從而減少了牠們的熵,但機率微乎其微。孤立事件可能發生,但平均熵總是增加。)

-----廣告,請繼續往下閱讀-----

這會導致令人不寒而慄的後果:因為熵只會增加,在最終非常非常久遠的未來,宇宙將會達到最大亂度,這有個聽起來很酷的名字:「宇宙熱寂」。在這種狀態下,整個宇宙將處於相同溫度,這表示一切都將完全無序,沒有一丁點有用的有序結構(如人類)。在熱寂之前,我們仍然有空間可以創造局部秩序,只因為宇宙還沒有達到最大亂度。

現在我們逆著時間回想。過去每個時刻,宇宙的熵比現在更少(更有秩序),一直回溯到大霹靂時。把大霹靂當成是搬家卡車和小孩來到新房子之前的那一刻。宇宙的初始狀態(當熵最低時)決定了宇宙從誕生到熱寂之間有多少時間。如果宇宙從一開始就已經有大量亂度,不需要太多時間就能達到熱寂。在我們自身的例子中,宇宙似乎始於非常有序的狀態,在達到最大熵之前給了我們很多時間。

為什麼宇宙從一開始是從高度有組織的低熵狀態中啟動?我們不知道,但是我們確實很幸運,因為宇宙在開始和結束之間,留下了很多時間來做有趣的事情,比如製造行星、人類和冰棒。

熵是否幫助我們了解時間?

熵是少數幾個關心時間如何流逝的物理定律之一。

-----廣告,請繼續往下閱讀-----

影響熵的多數過程(例如影響氣體分子如何互相反彈的運動學定律),可以完美的逆著時間走。但大體來說,它們遵循一項定則:有序數量隨時間前進而遞減。所以時間和熵互相以某種方式連接起來。但到目前為止只有一個相關性:熵隨時間而增加。

這是否代表熵導致時間只能向前流動,就像是山丘只讓水往下流那樣;或者熵是遵循時間的箭頭,像被捲入龍捲風的碎片?

即使你接受熵隨時間前進而增加,仍然不清楚為什麼時間只會向前進。例如,你可以想像一個時間向後的熵,熵隨負時間而減少,這將保持熵和時間的關係,而不會違反熱力學第二定律!

與其說熵洞察了時間的一切,不如說它是個線索。熵是我們關於時間如何運作的少數線索之一,所以值得注意。熵是理解時間方向的關鍵嗎?雖然很多人如此臆測,但我們還是毫無頭緒。不僅如此,我們能把這問題弄清楚的辦法也寥寥無幾。

-----廣告,請繼續往下閱讀-----

註解

  1. 如果你能記得未來的事,請打電話給我們,我們有些問題想請教你。
  2. 除了波函數的崩陷之外,有些人認為它是不可逆的、有些人則認為是失去同調性,而其他人只是為了辯論而辯論。

——本文摘自《關於宇宙我們什麼都不知道》,2023 年 9 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1
天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。