Loading [MathJax]/extensions/tex2jax.js

0

19
2

文字

分享

0
19
2

從 Game Boy 到大螢幕 ,童年電玩螢幕的黑科技你知道多少?

鳥苷三磷酸 (PanSci Promo)_96
・2021/09/13 ・3778字 ・閱讀時間約 7 分鐘

本文由 GIGABYTE 技嘉科技 委託,泛科學企劃執行。

小時候熬夜躲在棉被裡,拿著手電筒玩 GAME BOY 是許多人共同的回憶。任天堂在 1998 年推出的 GAMEBOY COLOR 打著新穎的掌上彩色螢幕,征服了全球無數大人小孩的心。跟今日的手機平板相比之下,可以隨身攜帶的彩色螢幕好像不算什麼,但在那時候可是貨真價實的稀有黑科技。

在液晶螢幕(LCD)還不普及的年代,電腦和電視的顯示器普遍使用陰極射線管(Cathode ray tube, CRT,或稱映像管)技術,也就是以往國小教室裡會出現的正方體電視。這種設計笨重且耗電,完全不適合用於隨身裝置。因此從二十世紀下半開始,科技公司紛紛投入液晶顯示器技術的尖端研究,但注意到了嗎?現在新的手機、平板、電玩液晶螢幕,越來越多採用 OLED 是什麼原因呢?就讓我們從液晶的起源娓娓道來。

液晶本身不會發光!

液晶最早在 19 世紀中葉被科學家發現,因同時具有「固態的晶體結構」與「液態的流動性」,因此稱為「液晶」,這些特性讓液晶可藉由微弱的電場改變晶體方向,達到讓特定光線進入的效果。

因此,液晶是不會發光的!我們現在所用的液晶螢幕,包含「液晶面板」與「背光模組」兩個部分,由背光模組提供的穩定光源打在控制光線進入的液晶面板上,才能顯示出絢麗的圖案。

-----廣告,請繼續往下閱讀-----
同時具有「固態的晶體結構」與「液態的流動性」——液晶。圖/維基百科

Game boy 液晶螢幕大解密

最早的商用液晶螢幕,搭載的液晶面板為扭曲向列液晶(Twisted Nematic, TN),由於 TN 面板的黑白對比度不夠好,因此後來又推出了超級扭曲向列液晶(Super Twisted Nematic, STN)來改善這個問題。

STN 面板被廣泛使用在 80-90 年代,只需進行單色顯示的隨身電子產品上,舉凡 Game boy、計算機、電子錶、電子辭典、電子雞……等,都使用了 STN 面板,早期的電子雞就是這個原理,想想小時候,掌上型的遊戲也不能少了這一款,在學校有一隻電子雞真是走在潮流的尖端?!STN 面板雖然只有單色,但省電是它的一大賣點,因為單色的每個像素,只需要一個液晶單元,而彩色每個像素,需要有紅、綠、藍三個不同顏色的液晶單元,控制液晶面板的耗電量直接三倍起跳。

此外,上述的這些裝置皆沒有配備「背光面板」,而是採用外部光源反射在液晶面板,這樣做不只能減輕重量,也不需要供電給背光面板,讓續航力更上一層樓,更符合隨身電子產品的需求。

不過,也因為沒有背光面板,小時候就沒辦法躲在烏漆墨黑的被窩裡,偷打 Game boy 或養電子雞了。

-----廣告,請繼續往下閱讀-----
咒術迴戰的電子雞。圖/Tamagotchi

在討論 Game Boy Color 之前,得先說說彩色液晶螢幕的原理。

彩色液晶螢幕的原理,就只是把液晶單元前面貼上紅、綠、藍的玻璃紙(當然不是用玻璃紙,只是比喻),讓液晶螢幕可以發出光的三原色,再用三個不同顏色的液晶單元,組合成一個像素就可以了。

彩色液晶螢幕的技術不難,只是幫液晶面板貼色紙而已,但重點還是前面提到的耗電問題(一個像素從一個液晶單元變三個)。

而當時拿來貼色紙的液晶面板,正好是可以用外部光源顯示的 STN 面板,這表示以 STN 面板為基礎的彩色螢幕,未必需要加裝背光面板才能顯示!

-----廣告,請繼續往下閱讀-----

Game Boy Color 為了因應彩色帶來的耗電量激增,便採取外部光源反射顯示。不加裝背光面板雖然犧牲了對比度與飽和度,卻讓 Game Boy Color 有著輕便與高續航力的優勢,勝過採用背光面板、畫質較好的 Sega Game Gear,獲得當時玩家的青睞。

美版的 Game Gear 普通機型。圖/維基百科

突飛猛進的面板發展

隨著電池技術的進步,耗電量已不再是考量的重點。無論是行動裝置的液晶螢幕或一般的液晶螢幕,皆裝上了「背光面板」(終於可以在被窩裡玩手機)。此時,人們開始將注意力放在液晶螢幕的對比度、可視角度、色彩呈現與更新率(每秒更新的畫面數量)上了。

為了做出色彩更加鮮豔、更新率更高的螢幕,除了上述提到的 TN 面板外,後續也發展出了 VA 面板與 IPS 面板,而他們各自都有自己的優勢與劣勢。

TN 面板(扭曲向列型液晶)

最早發展的 TN 面板,其面板內的液晶分子在未通電時,會呈現如 DNA 的螺旋狀,這時光線可以穿透。當通電時,液晶分子會排成垂直螢幕的方向,這時光線就無法穿透。

-----廣告,請繼續往下閱讀-----

TN 面板有較好的更新率,且因技術成熟,目前市面上的 TN 面板螢幕,價格相對較低,但 TN 面板的缺點也非常明顯,可視角度狹窄,稍微側面看螢幕就會嚴重失真,色彩與對比度的表現也較差。

VA 面板(垂直排列液晶)

VA 面板是繼 TN 面板後問世的液晶面板,其工作機制與 TN 面板正好相反,在未通電時,面板內的液晶分子會呈垂直排列,無法讓光通過;通電時中間部分的液晶分子會轉為水平,讓光線通過。

VA 面板改善了過往 TN 面板在色彩與對比度上的不足,清晰的對比度讓畫面更銳利,可視角也變得更寬廣,不過更新率較低,一般的 VA 面板應付日常上網或看電影還算可以,但對於有高更新率需求的第一人稱射擊遊戲或電競,VA 面板就顯得沒那麼適合。

IPS 面板(橫向電場效應顯示技術)

IPS 面板是相對後期發展的液晶面板,在未通電時所有液晶分子會像梯子一樣水平排列,這時光線無法穿透,而通電後液晶分子會變成類似 VA 面板的 DNA 螺旋狀,此時光線可以穿透。

-----廣告,請繼續往下閱讀-----

IPS 面板最大特點,正是液晶分子的旋轉方向,始終都在同一個平面上,這樣的設計使得可視角度大幅提升,且顏色更加飽滿,反應速度雖然比 VA 面板好,但還是比不上 TN 面板。

新世代的 OLED 螢幕

不同面板的液晶螢幕各有各的優缺點,可以依據自己需求選擇適合的螢幕,那有沒有哪一種螢幕,可以網羅所有優點呢?

答案是有的,這就是最晚才開始發展的新世代螢幕——OLED(有機發光二極體)螢幕!

OLED 螢幕利用夾在玻璃基板之間的有機分子自行發光,因此不需要背後的發光面板,比起過往的液晶螢幕更加省電,也能做得更輕薄。此外,自行發光也代表不會有液晶螢幕的可視角度的問題,並有著趨近於無窮的黑白對比度,色彩飽和度上也表現得可圈可點。

-----廣告,請繼續往下閱讀-----

在更新率上,OLED 螢幕是透過控制輸入電壓來更新畫面,可以一步到位,而液晶螢幕則是透過電場控制液晶分子方向後,才能更新畫面,因此 OLED 螢幕,理論上的更新率是優於一般液晶螢幕的。

新世代 OLED 螢幕囊括諸多優點,給你最佳的娛樂體驗。圖/GIGABYTE 技嘉科技

過往 OLED 螢幕因價格昂貴,很少出現在我們的生活中,但隨著技術成熟,OLED 螢幕的價格已不再是問題,新一代的手機與平板電腦,或其他行動裝置,也紛紛開始採用 OLED 螢幕,像是今年即將推出的新版 Nintendo Switch,也準備將原本搭配的 IPS 液晶螢幕,換成 OLED 螢幕。


OLED 擁有卓越的色彩和反應時間,用來打遊戲再適合不過。

技嘉 AORUS FO48U 專業電競螢幕採用 OLED 面板,融合電競與影音的雙重享受,120 Hz 的更新頻率搭配 4K 高畫質,帶來最清晰流暢的視覺體驗。搭載 2.1 聲道音響系統及 Space Audio 技術享受環繞音場效果,不論是在電競遊戲、電影、音樂都能感受影音的雙重饗宴。

除了最尖端的顯示器技術,技嘉也仍舊以玩家為本,加入了包括遊戲助手 Game Assist 和瞄準穩定器等 8 種獨家功能,提供令人耳目一新的電競體驗。

-----廣告,請繼續往下閱讀-----

GIGABYTE AORUS FO48U 4K HDR電競螢幕:https://www.gigabyte.com/tw/Monitor/AORUS-FO48U#kf

即日起到 2021/9/30,登錄就送 AORUS 充氣沙發

-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
226 篇文章 ・ 314 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

5
1

文字

分享

0
5
1
液晶溫控纖維:捲窗簾、撐乳房、擁抱狗、掀燈罩
胡中行_96
・2023/11/20 ・2772字 ・閱讀時間約 5 分鐘

「教授」趴在辦公室的地板上,百無聊賴。材料科學家、互動設計師、工匠與工藝研究人員,整日於麻省理工學院媒體實驗室(MIT Media Lab),忙進忙出,沒空搭理。作為論文第一作者Jack Forman的愛犬,身兼創作謬思,「教授」可能從沒想過,自己終將獲邀貢獻學術,並且榮登致謝名單。[1]

第一作者的愛犬「教授」。圖/參考資料1,Figure 15a(CC BY 4.0

FibeRobo

「教授」備受冷落的這段時日,研究團隊一直忙於開發織物纖維:穿戴手套、實驗袍和護目鏡,隔著通風櫃,以液晶元(mesogen)為主要原料,適量加入能感光、增加黏性、降低驅動溫度,以及延長有效期限等的各種化學物質。然後,將調製好的液晶彈性體(liquid crystal elastomer;LCE),灌進精心設計的機器。利用液晶分子在常溫下整齊排列,遇熱就亂了陣腳,導致收縮的特性,生產出來的FibeRobo纖維,長度能為溫度所控制。製作步驟及機器各部位的功能,大致如下:[1]

左二為FibeRobo機器示意圖,最右是實體。圖/參考資料1,Figure 3(CC BY 4.0
  1. 可調控溫度的針筒幫浦,將原料加溫至約莫34°C,降低其黏性後,推擠出來。(圖片:Step 1的上半段。)[1]
  2. 紫外線照射,使纖維稍微硬化,避免蜷曲。(圖片:Step 1的下半段。)機器外圍的黃色壓克力板,能隔絕99%的紫外線,保護使用者。透過調光器,則可依需求適度調整光線強度。避免光線太弱,使纖維斷掉;或者是光線太強,而結塊並堵塞針筒的開口。[1]
  3. 鑷子夾住纖維兩端,把它拉得又直又細,再沾點礦物油,比較容易舒展。(圖片:Step 2。)[1]
  4. 經過滑輪的纖維,於緊拉的張力下,再照一次紫外線,加強硬化。(圖片:Step 3。)滑輪轉動的速度愈快,纖維就愈細。[1]
  5. 纖維被捲到機器最頂端的線軸上。(圖片:Step 4。)[1]
  6. 從線軸上取下纖維,撒點滑石粉,降低摩擦力,方便以後用機器紡織。等布料完成,再以溫熱的肥皂水,洗去滑石粉。[1]

通電與收縮

FibeRobo纖維搭配別種材料,可以創造不同的效果。然而傳統多股對絞的作法,會扭曲FibeRobo,使它收縮的特質變得難以預測。於是,研究團隊改將FibeRobo置於中央,在外面纏繞其他材料。比方說,拿以蠶絲包覆銅芯的利茲線(litz wire)來捆它。銅的電阻低,升溫快,能迅速使FibeRobo遇熱收縮。FibeRobo與利茲線合體後,接上2.5安培、8.5伏特的電,8秒即縮短37%;斷電30秒,則又恢復原狀。不過,這種混合纖維傾向堆成一團,不適用於針織、紡織與刺繡。研究團隊建議,最好分開製作,再搭配使用。[1]

a. & b. 不同材質的線,纏在一起。FibeRobo纖維與利茲線合體:c. 沒通電;d. 通電收縮。圖/參考資料1,Figure 5(CC BY 4.0

另外,他們也嘗試用導電塗料浸染纖維。如同調製LCE原料時,身穿防護衣著,隔著通風櫃,先將FibeRobo泡入含有重量百分濃度7%碳黑(carbon black)的甲苯(toluene)溶液裡。8小時後取出,置於80°C的烤箱中,烘烤1個鐘頭。如此一來,FibeRobo纖維就能通電,其電阻會跟著長度的伸縮變化。拉長變細的時候,電阻較高。[1]

-----廣告,請繼續往下閱讀-----

成品展示

研究團隊用FibeRobo纖維跟其他材料,做了些模型和成品,來展示實際用途。以下是其中幾個例子:[1]

  • FibeRoBra運動胸罩:當體溫隨運動逐漸上升,FibeRoBra便開始收縮,給予乳房無鋼圈、零負擔的支持。體溫下降後,布料又回到放鬆的狀態。[1]
圖/參考資料1,Figure 8(Edited;CC BY 4.0
  • FibeRoGlow燈具:開燈後升高的溫度,令燈罩緩緩上捲,彷彿打開花瓣。全程費時,大約5分鐘。[1]
圖/參考資料1,Figure 9(CC BY 4.0
  • ShadeRobo窗簾:窗簾不該因為陽光強烈,氣溫上升,就自動捲起來。因此,驅動此窗簾所需的溫度,被設計得比較高。布料只有在上面的利茲線通電時,才會有反應。4伏特、2.5安培的電,得花2分鐘,才能將這個5 x 5公分的小窗簾捲好。冷卻1分鐘後,又會完全攤平。[1]
圖/參考資料1,Figure 12CC BY 4.0
  • FurbeRobo遙控狗背心:論文的第一作者Jack Forman,為他的愛犬「教授」,織了一件小背心。本文開頭的那張照片,即是牠的定裝照。如果寵物在辦公室悲鳴,於實驗室忙碌的主人,就可以透過藍芽,啟動背心上的控制器。此時,連接12伏特、2.5安培電池利茲線,會通電並發熱,造成驅動溫度不高的布料,輕微收縮。就像給狗溫暖的擁抱,減輕牠的分離焦慮(separation anxiety)。不過,基於動物實驗倫理等因素,後來示範布料收縮的照片,都是穿在布偶上拍攝,「教授」再次被晾在一旁。[1]
圖/參考資料1,Figure 15(CC BY 4.0

成本與環保

2023年麻省理工學院的團隊,在美國計算機協會(Association of Computing Machinery)主辦的使用者介面軟體與技術(User Interface Software and Technology)研討會上,發表了這篇介紹FibeRobo的論文。研究團隊認為,他們的成果具有商業化的潛力。畢竟跟雷同的技術比起來,製作FibeRobo的成本相對低廉:機器的針筒幫浦約美金250元;裝滿5、10、20或30毫升原料的針筒,每個至多4元;而生產直徑0.5mm的纖維,每公尺約0.2元。[1]單人操作單機,一天或一個下午就能產出750公尺的纖維;[1, 2]亦有報導指稱是每日1公里。[3, 4]不過,FibeRobo不可回收,儘管某些新興LCE纖維可生物分解,有時搭配的導電材質,仍是廢料處理的阻礙。因此,在這方面還有改善的空間。[1]

麻省理工學院媒體實驗室的FibeRobo介紹影片。影/參考資料2

  

  1. Forman J, Afsar OK, Nicita S, et al. (2023) ‘FibeRobo: Fabricating 4D Fiber Interfaces by Continuous Drawing of Temperature Tunable Liquid Crystal Elastomers’. UIST ’23: Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, 9, pp. 1 – 17.
  2. MIT Media Lab. (27 OCT 2023) ‘FibeRobo: Powerful Body-Temperature Morphing Fibers’. YouTube.
  3. Paul A. (26 OCT 2023) ‘This liquid crystal fabric is ‘smart’ enough to adapt to the weather’. Popular Science.
  4. Global Update. (29 OCT 2023) ‘New Liquid Crystal Elastomer Fiber Makes Shape Shifting Fabrics a Reality – FibeRobo’. YouTube.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

3
0

文字

分享

0
3
0
高端玩家必看!顯示器的反應時間是怎麼定義?最新推出的 VESA ClearMR 認證,重新定義電競螢幕動態顯示規格
宜特科技_96
・2023/08/30 ・4272字 ・閱讀時間約 8 分鐘

玩家使用電競螢幕玩遊戲
圖/宜特科技

電競顯示器五花八門,但你了解廠商主打 1ms 反應時間的意思嗎? 而 2022 年推出的 VESA ClearMR 認證,是如何重新定義動態畫面的模糊比例,又有什麼測試重點呢?

本文轉載自宜特小學堂〈VESA 最新推出 ClearMR 認證 重新定義電競螢幕動態顯示規格〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

點擊圖片收看影片版

近十年全球電競產業可謂炙手可熱,吸引了大量的關注和投資。根據數據分析公司 Newzoo 的報告顯示,2022 年全球電競市場規模就已突破了 10 億美元的大關。而該公司也預測,到了 2025 年全球每 11 個人中,就有1人將成為電競賽事的觀眾,凸顯了電競產業的快速增長和受眾擴大,將帶來更多商機和成長潛力。

全神貫注比賽的電競選手
全神貫注的電競選手。圖/Insider Intelligence

而遊戲勝負的關鍵,除了依靠選手本身的反應力,設備優劣也是不可或缺的條件之一,尤其電競中極度仰賴的「畫面」的反應時間,輸贏往往就取決在短短幾毫秒的動態表現。當消費者在挑選顯示器時,會看到許多廠商都標榜「1ms 反應時間」,但是細看規格會發現,有些標示 1ms GtG,有些標示 1ms MPRT,由於業界對於影像動態模糊的顯示規格不一,讓消費者在購買時很容易產生混淆。

電商平台會以 "1ms 反應時間"作為消費者選購的參考
電商平台會以 1ms 反應時間作為消費者選購的參考。圖/momo購物網

有鑒於此,2022年,視訊電子標準協會(Video Electronics Standards Association,簡稱VESA)針對螢幕在動態顯示時的表現進行標準化,提出 ClearMR (Clear Motion Ratio Compliance Test Specification)認證,清楚地界定「螢幕在顯示快速移動影像時,清晰和模糊畫素的比例」,這是注重顯示器動態表現的電競選手與玩家們會關注的焦點。

-----廣告,請繼續往下閱讀-----

那麼,兩種主流規格 GtG 和 MPRT 到底差在哪裡?ClearMR 又是怎麼定義動態畫面的模糊比例?它與市面上已有的其他規格有何不同?本文章將先介紹目前主流的兩種規格—MPRT 和 GtG,再進一步介紹最新 VESA ClearMR 測試規範的重點。

一、 GTG(灰階對灰階反應時間),僅針對灰階,無法定義畫面的模糊

LCD 液晶顯示器(Liquid-Crystal Display)就像拼圖一樣,是由大量像素點拼湊成一個完整的畫面,每個像素點中 RGB 三原色比例,決定了呈現的顏色。例如,紅色的比例越高就越紅,藍色比例提高、紅色下降則會變紫,如果想展現出亮紅或暗紅的差異,則是根據電壓大小來改變亮度。

LCD 液晶顯示器的像素放大圖及 RGB 比例改變後,顏色產生變化的示意圖
LCD 液晶顯示器的像素放大圖及 RGB 比例改變後,顏色產生變化的示意圖。圖/wiki & 宜特科技繪製

我們可以想像當白光通過紅色的亮度越高,就會顯示出亮紅色,反之光源越暗,就會呈現出暗紅色。如果畫面只有最暗跟最亮就會變得很極端,所以現在的顯示器,就是透過從最暗到最亮共有256個灰階的變化,呈現出各種精緻的色彩。

螢幕的256個灰階影像變化
256個灰階影像變化。圖/moblie01

前面講了那麼多,我們終於要講到正題的 GtG(Gray to Gray,灰階對灰階的反應時間),一般 LCD 液晶顯示器所標示的反應時間,是指液晶全開/全關所需的時間,但因液晶螢幕呈現的內容,其實就是不同灰階之間的轉換跟變化。最亮和最暗兩者中間的層次愈多,就愈能夠呈現出愈細膩的畫面。當轉換的時間越長畫面就容易產生殘影,相反的,轉換時間越短畫面就越乾淨,遊戲體驗也就越好。

-----廣告,請繼續往下閱讀-----

然而,GtG 的數值只是針對不同灰階之間的反應時間,各家廠商的測試標準與定義也有些不同,GtG 也無法去定義畫面的模糊。那,什麼又是 MPRT 呢?

二、 用 MPRT(動態畫面反應時間)處理畫面殘影,卻導致螢幕變暗

由於 LCD 液晶顯示器的特性與人眼視覺暫留的關係,影像在移動時,使用者會看到殘影或拖影的畫面模糊現象,我們以下圖來舉例,當畫面從綠色切到藍色,中間的過度色在人眼的辨識上就會產生殘影,進而造成模糊。

ULMB 超低運動模糊技術的概念動圖
ULMB 超低運動模糊技術的概念圖。圖/宜特科技

為了解決此問題,於是透過開關螢幕的背光或是插入黑畫面,以縮減每幀畫面的顯示時間,來降低視覺暫留,讓畫面快速移動時較為清晰,暫且解決模糊問題,這個技術就被稱為 ULMB(Ultra Low Motion Blur,超低運動模糊技術)。在剛才舉例中,我們讓綠色切到藍色中間變成了黑畫面,快速的切換可以讓畫面更為清晰。而在 ClearMR 問世前,業界最常用 MPRT(Motion Picture Response Time,動態畫面反應時間)的數值來表示從 A 畫面切到 B 畫面的反應速度。

但是,透過 ULMB 去達到降低 MPRT 的反應時間,也就意味著頻繁的開關背光或是插入黑畫面,會造成螢幕亮度降低,也可能讓使用者看到螢幕閃爍的情形,並且會發生過衝(Overshoot)和下衝(Undershoot)等現象,最糟甚至會導致訊號失真,對圖像品質造成影響或是面板壽命變短。

-----廣告,請繼續往下閱讀-----

訊號測試小知識

過衝(Overshoot):是指信號在從一個值轉變到另一個值時,瞬時值超過了最終(穩態)值,並產生在電源電平之上的額外電壓效應。這意味著信號在轉換過程中超過了預期的目標值。

下衝(Undershoot):則是指信號在從一個值轉變到另一個值時,瞬時值低於最終值,並產生在參考地電平之下的額外電壓效應。這意味著信號在轉換過程中低於了預期的目標值。

過衝和下衝都是電子訊號處理中不利的現象,常常發生在訊號轉換、開關操作或電路切換的過程中。它們可能導致訊號失真、噪音增加,甚至對電子元件和電路造成損壞。而在顯示器上,嚴重的過衝與下衝,會導致面板的壽命變短,畫面過於銳利,而導致失真。

三、 全新推出的 ClearMR,精準定義畫面模糊的標準

講完了 GtG 與 MPRT ,我們終於要來介紹,最新定義畫面模糊的標準規範,它就是 VESA 在去年發布的 ClearMR(Clear Motion Ratio)。

VESA 於2022年7月,正式發布一致性測試規範(ClearMR CTS)V1.0,總共定義了7種不同級距(ClearMR 3000 至 ClearMR 9000),該年底更往上延伸至11個級距,加入了 ClearMR 10000 至 ClearMR 13000。級距的數字,代表著清晰影像與模糊影像的性能比,例如30:1=ClearMR 3000,70:1=ClearMR 7000,90:1=ClearMR 9000。數字愈高,表示該產品在動態上的表現愈清晰。

VESA ClearMR 有11個級距
最新的 ClearMR 共有11個級距。圖/VESA ClearMR官網

(一) 不同級距下,清楚顯現出動態模糊的差異

ClearMR 可針對螢幕的動態模糊定義與分級,讓顯示器動態模糊有了更清楚的定義可依循,不但取代了現有僅基於時間的模糊指標(如前述提及的MPRT、GtG),針對畫面模糊的狀況,提供更完整且公平的比較基礎。

從下圖可看出在不同級距下,待測螢幕顯示的動態輪胎的模糊表現。Still image代表靜止畫面,我們比較從 ClearMR 3000 到 ClearMR 9000,可以明顯比較出模糊差異,等級越高則影像越清晰。

-----廣告,請繼續往下閱讀-----
轉動的輪胎的模糊級距,從最低的 ClearMR 3000 到較清晰的 ClearMR 9000,最後一張為靜止畫面,可比較出其中的模糊差異
轉動的輪胎的模糊級距,從最低的 ClearMR 3000 到較清晰的 ClearMR 9000,最後一張為靜止畫面,可比較出其中的模糊差異。
圖/VESA ClearMR CTS and Logo Program Meda Slides FINAL3

(二)那 ClearMR 的數值是如何測量?

ClearMR 是利用可每秒拍攝10000張以上相片的高速攝影機,拍攝待測螢幕中,由左至右移動的亮光區塊(VESA協會提供的範例程式所產生),會區分為 Leading(領導)與 Trailing(尾隨)。

待測螢幕中亮光區塊 Leading(領導)與 Trailing(尾隨)端的畫面
待測螢幕中亮光區塊 Leading(領導)與 Trailing(尾隨)端的畫面。圖/VESA ClearMR CTS 1.0

再透過拍攝的圖片,產生所謂模糊的輪廓,再來計算其相對應的 CMR 值(Clear Motion Ratio)。我們可以從下圖看到結果,黃框中的 CMR 值是4782,就可以對應級距圖得到待測螢幕的ClearMR級距落在 ClearMR 5000的範圍內,即為螢幕的性能表現。

(a)上衝/下衝數值;(b)上衝/下衝轉折點,可做為工程師除錯參考;(c)決定 CMR 值的各參數列表;(e)黃框中的 CMR 值,即為待測螢幕的性能表現
(a)上衝/下衝數值;(b)上衝/下衝轉折點,可做為工程師除錯參考;(c)決定 CMR 值的各參數列表;(e)黃框中的 CMR 值,即為待測螢幕的性能表現。圖/CMR Tools User Guide v2022.0405

唯有通過測試認證的產品,才有資格使用 VESA ClearMR 的 LOGO ,此規範也在推出後的第一時間,獲得多家顯示器大廠如三星、HP、LG 響應並支持,目前獲得認證的產品都有名列在 VESA 的官方網站上。或許 ClearMR 還無法完全取代,現今主流的 GtG 或 MPRT 的「反應時間概念」,但對於市面上百家爭鳴、不斷強打的 1ms 的顯示器來說,它可以為消費者提供更直觀的評選指標。

宜特訊號測試實驗室也在今年獲得 VESA 授權成為 ClearMR 認證中心,具備所有 ClearMR 認證測試設備、測試環境(包含暗房)與技術能力,可以提供動態清晰率(Clear Motion Rate,CMR)、變異係數(Coefficient of Variation,CV)、過載(Overload)、亮度退化(Luminance Degradation)、背光掃描(Backlight Strobing)測試,可協助多家顯示器、筆電、電競品牌與代工廠進行 VESA ClearMR 測試,助其產品符合規範,取得認證標章。

-----廣告,請繼續往下閱讀-----

文出自 www.istgroup.com

-----廣告,請繼續往下閱讀-----
宜特科技_96
14 篇文章 ・ 4 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室