Loading [MathJax]/extensions/tex2jax.js

0

2
3

文字

分享

0
2
3

巴黎時裝週:噴霧製衣,一體成形

胡中行_96
・2022/10/03 ・2083字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

2022 年 9 月 30 日,[1]在巴黎時裝週 2023 春夏大秀上,近乎全裸的超模 Bella Hadid 緩步走上伸展台。她氣定神閒地,任由與法國時尚品牌 Coperni 合作的科學家們,用噴槍將液態布料覆蓋在她身上。[2, 3]經剪刀裁去布邊,並劃出高衩,一件服貼簡約的雪白平口洋裝,當場完成,驚豔全場。[4]

巴黎時裝週 2023 春夏大秀上,噴霧製衣的現場表演。影/參考資料 4

時裝秀的科技時刻

英國品牌 Alexander McQueen 也曾於 1999 春夏系列時裝秀中,讓超模 Shalom Harlow 在緊湊高亢的音樂襯托下,接受二支機械手臂的顏料洗禮,演繹出時尚史上經典的噴墨洋裝。[5]不過,這兩次乍看雷同的科技嘗試,其實有根本上的差異:Alexander McQueen 的做法,是把洋裝當作畫布,透過機械手臂在上頭忘情揮灑。放蕩不羈的風格,使模特兒的皮膚上沾染不少墨水,帶著一縷淒美的頹喪。[5]然而,這次巴黎時裝週的白色洋裝製作,則是宛如迪士尼動畫《睡美人》的情節。噴槍就是設計師的魔杖,妙手一揮便幻化出成品,整個過程乾淨俐落。做完馬上走秀,都不怕沿路滴水。[4]

這款神奇的噴霧布料,是 Manel Torres 博士研發的 Fabrican。[3]

Alexander McQueen 1999 春夏系列服裝秀中,Shalom Harlow 與機械手臂演繹經典的噴墨洋裝。影/參考資料 5

Fabrican 噴霧的原理

來自西班牙的 Torres 博士,[6] 2003 年於英國倫敦創立 Fabrican 有限公司。他希望用皮膚般貼身的媒材,來製作衣服,並加速生產的流程。[7]一件 Fabrican 服飾的生成,從無到有約莫只要 9 到 15 分鐘,[1, 6]而且材質和顏色都有多元的選擇。[8, 9]無論是棉、毛、亞麻、尼龍或是奈米碳纖維等原料,[6, 9]加入特製的揮發性溶劑後,噴在人體上便會快乾成形。 [6]這種液態布料能做出一年四季的服飾,差別主要在於塗層的厚度。成品噴好後,不僅可以重複穿著和洗滌,也能以溶劑即刻還原再利用,[10]十分環保。

Torres 博士示範用 Fabrican 噴出T恤,女模表示會冷。影/參考資料 10

Fabrican 服飾的量產

Copern i 的二位品牌創辦人 Sébastien Meyer 與 Arnaud Vaillant ,在這次的巴黎時裝週開始前 6 個月,就已經緊鑼密鼓地和 Torres 博士,一起研究如何呈現這件白色洋裝。「我們不會因此賺錢」,回想秀場上的那一刻 Meyer 如是說:「但那是段美麗的時光 ── 一個創造情感的體驗。」[3]

-----廣告,請繼續往下閱讀-----

以人工一件一件地噴出衣服,並不符合經濟效益,所以除了上述量身訂做的方法,Torres 教授還開發出適合工業化量產的模式。這個概念有點類似 Alexander McQueen 1999 春夏系列服裝秀的演出,不過要把那位面目驚恐,非常入戲的模特兒,換成冰冷的人體模型。如此一來,裝有噴槍的機械手臂以及負責運算的可程式邏輯控制器(programmable logic controller,簡稱PLC),便能以每秒 9 公尺的速度噴出原料,不眠不休無休地將已經設計好的服飾,精準地製作出來。由於針對不同產品,只要依照個別需求,微調程式或液態布料的成份,Fabrican 官網宣稱,這比起仰賴為數龐大的傳統機器,更適合剛起步的事業和開發程度較低的國家。[11]

Fabrican 的其他用途

此外,同樣的技術也能運用在汽車內裝,[11]以及醫療器材上。比方說,口罩、繃帶、藥物貼片、創傷敷料,[12]還有取代石膏的骨折固定器等。[13]比較出乎意料的是,據說 Fabrican 也有清除海洋汙染,例如:原油外洩等的功能,可惜相關的資訊不多。[14]看到如此萬用的布料科技,只能期望它無論如何都要打入一般市場,造福大眾。別像伸展台上的高級服飾,永遠那麼遙不可及。

Fabrican 可望取代醫療石膏。影/參考資料 13

延伸閱讀

蠶繭電池是綠能的未來?!

  1. Testa J. (02 OCT 2022) ‘The Best Moment of Bella Hadid’s Life’. The New York Times.
  2. Yang R, Chen L, Chiang R, Tseng R.(01 OCT 2022)〈巴黎時裝周2023春夏秀場盤點!Coperni現場噴墨製衣、Balmain邀請傳奇巨星Cher壓軸走秀〉Harpers Bazaar.
  3. Maguire L. (01 OCT 2022) ‘A spray-on dress and a solid gold bag: Coperni goes after Gen Z with novelty and fun’. Vogue Business.
  4. iDest. (01 OCT 2022) ‘Bella Hadid Closing Coperni Spring 2023 Collection’. YouTube.
  5. Couture Daily. (13 JAN 2013) ‘Alexander McQueen spring/summer 1999’. YouTube.
  6. Sample I. (17 SEP 2010) ‘Spray-on clothing becomes a reality’. The Guardian.
  7. Fabrican History’. Fabrican Spray-on fabric. (Accessed on 02 OCT 2022)
  8. FannVideo Best. ‘New Spray-on Clothing Future Technology’. (28 MAY 2013) YouTube.
  9. Fabrican Technology’. Fabrican Spray-on fabric. (Accessed on 02 OCT 2022.)
  10. New Scientist. ‘Spray-on clothing could be the future of fashion’. (17 SEP 2010) YouTube.
  11. Industrial – Industrial Application’. Fabrican Spray-on fabric. (Accessed on 02 OCT 2022.)
  12. Healthcare – Innovation, choice and flexibility in healthcare’. Fabrican Spray-on fabric. (Accessed on 02 OCT 2022.)
  13. fabricanltd. (15 MAY 2012) ‘Spray-on arm cast. Fabrican Ltd’. YouTube.
  14. Environmental – Protecting our environment from seaborne spills’. Fabrican Spray-on fabric. (Accessed on 02 OCT 2022.)
-----廣告,請繼續往下閱讀-----
文章難易度
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
「跌倒就骨折?」骨質疏鬆防治全攻略:從檢測到治療,守護骨骼健康!
careonline_96
・2025/01/03 ・2267字 ・閱讀時間約 4 分鐘

圖/照護線上

「曾經有位 50 多歲的女士,在走路時和行人稍微碰撞跌倒,結果就痛到站不起來。送急診室後,發現是髖部骨折。」中山醫學大學附設醫院骨外科病房主任林聖傑醫師表示,「患者很懊惱,認為骨折是因為運氣不好,但是經過雙能量 X 光吸收儀(dual-energy X-ray Absorptiometry,DXA)檢測才曉得自己有骨質疏鬆症,後續也開始接受治療。如果能夠早一點發現、早一點治療,應該有機會避免骨折發生。」

骨鬆性骨折會造成疼痛、影響生活品質、增加醫療花費,還可能導致失能,甚至增加死亡風險。林聖傑醫師指出,根據研究,髖關節骨折患者一年死亡率大約 20%[1],如果是第二次髖關節骨折,死亡率又會更高!

台灣 50 歲以上民眾,骨質疏鬆症的盛行率相當高,女性約佔38.3%,男性約佔 23.9%。林聖傑醫師說,在骨科患者中,可能有三分之一是與骨質疏鬆有關的髖關節骨折、脊椎壓迫性骨折、手腕的橈骨骨折等。

過去,民眾大多認為骨折是因為跌倒、年齡大、運氣不好所造成,並不清楚骨質疏鬆可能是導致骨折的主要因素。而且即使患者知道有骨質疏鬆的狀況,卻認為骨質疏鬆無法治療。林聖傑醫師說,我們希望透過持續不斷的宣導,讓大家能夠理解骨質疏鬆症不僅僅是老化的結果,而是一種疾病,也可以透過治療來改善。

-----廣告,請繼續往下閱讀-----
圖/照護線上

骨質疏鬆症的危險因子包括高齡、女性、家族病史、體重過輕、缺乏運動、抽菸、喝酒、長期使用類固醇、鈣質與維生素 D 攝取不足等。林聖傑醫師說,民眾須留意駝、矮、痛等警訊,「駝」是駝背,腰背無法挺直;「矮」是身高變矮,與年輕時相比下降 4 公分以上;「痛」是經常感到腰痠背痛。

大家可以在家自我檢測,站直貼牆檢查背部貼合度,若頭部與牆壁距離超過 3 公分,代表有駝背的狀況。林聖傑醫師再指出,在正常情況下,肋骨下緣與骨盆之間可放入四指寬度,若此間距小於 2 公分,可能有嚴重駝背。發現相關警訊時,請盡快就醫檢查。

關於骨質密度的檢查,常見的有:超音波骨密儀(QUS)和雙能量X光吸收儀(DXA)。林聖傑醫師表示, QUS 目前只能作為初步篩檢工具,並不建議做為追蹤治療的檢查工具。DXA 是利用兩種不同能量之 X 光照射腰椎及髖骨,為診斷骨質疏鬆症的標準檢查。

DXA 檢查報告會標示 T 值(T-Score),T 值是與健康成年人骨質密度做比較所計算出來的值。當 T 值大於或等於 -1.0 時屬於「骨質正常」;當T值介於 -1.0 至 -2.5 之間稱為「骨質缺乏(osteopenia)」;當 T 值等於或小於 -2.5 時,稱為「骨質疏鬆症(osteoporosis)」。

-----廣告,請繼續往下閱讀-----
圖/照護線上

根據 2023 台灣成人骨質疏鬆症防治之共識及指引[2],若符合以下其中一項,應考慮為極高骨折風險患者,像是骨密度 T 值非常低(低於 -3.0)、最近 12 個月內發生骨鬆性骨折、接受骨質疏鬆藥物治療仍發生骨折、有多處部位骨鬆性骨折、服用對骨骼損傷藥物發生骨折(如長期接受類固醇治療)、跌倒風險高、或有傷害性跌倒病史的患者、FRAX 骨折風險超高的患者(如主要骨質疏鬆性骨折 >30%,髖關節骨折>4.5%)。

先增加骨質生成,接續減少骨質流失

骨質疏鬆症患者一定要積極接受治療,對於骨密度極低的高風險患者,建議遵照醫囑考慮採「先行增加骨密度,鞏固骨骼」的治療策略,透過先增加骨質密度,鞏固骨骼結構。林聖傑醫師解釋,在骨質密度過低的情況下,使用促進骨質生成藥物可以先提升骨質密度,有助於降低骨折風險。後續則可使用減少骨質流失藥物,發揮長期保護的效果。

圖/照護線上

除了使用藥物治療,日常保養也相當重要。林聖傑醫師說,飲食方面請補充足夠的鈣質和維生素D,以促進骨骼健康。鈣質攝取量建議達每日1200毫克,維生素D攝取量建議達每日800 IU,無論是年輕人、老年人都要攝取充足營養。

適量運動對骨骼健康非常有幫助,根據患者的狀況,可能需要不同的運動處方,患者可與醫師詳細討論。另外也要戒菸、戒酒,減少骨質的流失!

-----廣告,請繼續往下閱讀-----
  1. IOF. https://www.osteoporosis.foundation/ (Accessed: April 2022)
  2. 中華民國骨質疏鬆症學會。台灣成人骨質疏鬆症防治之共識及指引。2023年版。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

5
1

文字

分享

0
5
1
液晶溫控纖維:捲窗簾、撐乳房、擁抱狗、掀燈罩
胡中行_96
・2023/11/20 ・2772字 ・閱讀時間約 5 分鐘

「教授」趴在辦公室的地板上,百無聊賴。材料科學家、互動設計師、工匠與工藝研究人員,整日於麻省理工學院媒體實驗室(MIT Media Lab),忙進忙出,沒空搭理。作為論文第一作者Jack Forman的愛犬,身兼創作謬思,「教授」可能從沒想過,自己終將獲邀貢獻學術,並且榮登致謝名單。[1]

第一作者的愛犬「教授」。圖/參考資料1,Figure 15a(CC BY 4.0

FibeRobo

「教授」備受冷落的這段時日,研究團隊一直忙於開發織物纖維:穿戴手套、實驗袍和護目鏡,隔著通風櫃,以液晶元(mesogen)為主要原料,適量加入能感光、增加黏性、降低驅動溫度,以及延長有效期限等的各種化學物質。然後,將調製好的液晶彈性體(liquid crystal elastomer;LCE),灌進精心設計的機器。利用液晶分子在常溫下整齊排列,遇熱就亂了陣腳,導致收縮的特性,生產出來的FibeRobo纖維,長度能為溫度所控制。製作步驟及機器各部位的功能,大致如下:[1]

左二為FibeRobo機器示意圖,最右是實體。圖/參考資料1,Figure 3(CC BY 4.0
  1. 可調控溫度的針筒幫浦,將原料加溫至約莫34°C,降低其黏性後,推擠出來。(圖片:Step 1的上半段。)[1]
  2. 紫外線照射,使纖維稍微硬化,避免蜷曲。(圖片:Step 1的下半段。)機器外圍的黃色壓克力板,能隔絕99%的紫外線,保護使用者。透過調光器,則可依需求適度調整光線強度。避免光線太弱,使纖維斷掉;或者是光線太強,而結塊並堵塞針筒的開口。[1]
  3. 鑷子夾住纖維兩端,把它拉得又直又細,再沾點礦物油,比較容易舒展。(圖片:Step 2。)[1]
  4. 經過滑輪的纖維,於緊拉的張力下,再照一次紫外線,加強硬化。(圖片:Step 3。)滑輪轉動的速度愈快,纖維就愈細。[1]
  5. 纖維被捲到機器最頂端的線軸上。(圖片:Step 4。)[1]
  6. 從線軸上取下纖維,撒點滑石粉,降低摩擦力,方便以後用機器紡織。等布料完成,再以溫熱的肥皂水,洗去滑石粉。[1]

通電與收縮

FibeRobo纖維搭配別種材料,可以創造不同的效果。然而傳統多股對絞的作法,會扭曲FibeRobo,使它收縮的特質變得難以預測。於是,研究團隊改將FibeRobo置於中央,在外面纏繞其他材料。比方說,拿以蠶絲包覆銅芯的利茲線(litz wire)來捆它。銅的電阻低,升溫快,能迅速使FibeRobo遇熱收縮。FibeRobo與利茲線合體後,接上2.5安培、8.5伏特的電,8秒即縮短37%;斷電30秒,則又恢復原狀。不過,這種混合纖維傾向堆成一團,不適用於針織、紡織與刺繡。研究團隊建議,最好分開製作,再搭配使用。[1]

a. & b. 不同材質的線,纏在一起。FibeRobo纖維與利茲線合體:c. 沒通電;d. 通電收縮。圖/參考資料1,Figure 5(CC BY 4.0

另外,他們也嘗試用導電塗料浸染纖維。如同調製LCE原料時,身穿防護衣著,隔著通風櫃,先將FibeRobo泡入含有重量百分濃度7%碳黑(carbon black)的甲苯(toluene)溶液裡。8小時後取出,置於80°C的烤箱中,烘烤1個鐘頭。如此一來,FibeRobo纖維就能通電,其電阻會跟著長度的伸縮變化。拉長變細的時候,電阻較高。[1]

-----廣告,請繼續往下閱讀-----

成品展示

研究團隊用FibeRobo纖維跟其他材料,做了些模型和成品,來展示實際用途。以下是其中幾個例子:[1]

  • FibeRoBra運動胸罩:當體溫隨運動逐漸上升,FibeRoBra便開始收縮,給予乳房無鋼圈、零負擔的支持。體溫下降後,布料又回到放鬆的狀態。[1]
圖/參考資料1,Figure 8(Edited;CC BY 4.0
  • FibeRoGlow燈具:開燈後升高的溫度,令燈罩緩緩上捲,彷彿打開花瓣。全程費時,大約5分鐘。[1]
圖/參考資料1,Figure 9(CC BY 4.0
  • ShadeRobo窗簾:窗簾不該因為陽光強烈,氣溫上升,就自動捲起來。因此,驅動此窗簾所需的溫度,被設計得比較高。布料只有在上面的利茲線通電時,才會有反應。4伏特、2.5安培的電,得花2分鐘,才能將這個5 x 5公分的小窗簾捲好。冷卻1分鐘後,又會完全攤平。[1]
圖/參考資料1,Figure 12CC BY 4.0
  • FurbeRobo遙控狗背心:論文的第一作者Jack Forman,為他的愛犬「教授」,織了一件小背心。本文開頭的那張照片,即是牠的定裝照。如果寵物在辦公室悲鳴,於實驗室忙碌的主人,就可以透過藍芽,啟動背心上的控制器。此時,連接12伏特、2.5安培電池利茲線,會通電並發熱,造成驅動溫度不高的布料,輕微收縮。就像給狗溫暖的擁抱,減輕牠的分離焦慮(separation anxiety)。不過,基於動物實驗倫理等因素,後來示範布料收縮的照片,都是穿在布偶上拍攝,「教授」再次被晾在一旁。[1]
圖/參考資料1,Figure 15(CC BY 4.0

成本與環保

2023年麻省理工學院的團隊,在美國計算機協會(Association of Computing Machinery)主辦的使用者介面軟體與技術(User Interface Software and Technology)研討會上,發表了這篇介紹FibeRobo的論文。研究團隊認為,他們的成果具有商業化的潛力。畢竟跟雷同的技術比起來,製作FibeRobo的成本相對低廉:機器的針筒幫浦約美金250元;裝滿5、10、20或30毫升原料的針筒,每個至多4元;而生產直徑0.5mm的纖維,每公尺約0.2元。[1]單人操作單機,一天或一個下午就能產出750公尺的纖維;[1, 2]亦有報導指稱是每日1公里。[3, 4]不過,FibeRobo不可回收,儘管某些新興LCE纖維可生物分解,有時搭配的導電材質,仍是廢料處理的阻礙。因此,在這方面還有改善的空間。[1]

麻省理工學院媒體實驗室的FibeRobo介紹影片。影/參考資料2

  

  1. Forman J, Afsar OK, Nicita S, et al. (2023) ‘FibeRobo: Fabricating 4D Fiber Interfaces by Continuous Drawing of Temperature Tunable Liquid Crystal Elastomers’. UIST ’23: Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, 9, pp. 1 – 17.
  2. MIT Media Lab. (27 OCT 2023) ‘FibeRobo: Powerful Body-Temperature Morphing Fibers’. YouTube.
  3. Paul A. (26 OCT 2023) ‘This liquid crystal fabric is ‘smart’ enough to adapt to the weather’. Popular Science.
  4. Global Update. (29 OCT 2023) ‘New Liquid Crystal Elastomer Fiber Makes Shape Shifting Fabrics a Reality – FibeRobo’. YouTube.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。