0

0
2

文字

分享

0
0
2

製造防彈背心必備的纖維「克維拉」,為何能夠強鋼勝鐵?

李赫
・2018/11/22 ・3263字 ・閱讀時間約 6 分鐘 ・SR值 565 ・九年級

-----廣告,請繼續往下閱讀-----

輕量、高強度的先進材料,不只是在科幻片中存在,也已被真實的應用於我們的生活中。像是應用於防彈背心的高強度纖維,看似柔軟,強度卻勝過鋼鐵。這樣不太合乎一般人認知的產物,是怎麼發明出來的呢 ?

高強度纖維救了無數人的性命。 圖/CBS Chicago

過往要製造盔甲等護具,能夠選用的材料不外乎金屬有機物,例如最為人熟悉的盔甲原料──鐵。但鐵最大的問題就是材料密度高 ( 7.86 g/cm3),若當成防彈衣材料相當笨重,造成著裝的人行動不便。

原子間的作用力非常強,若可以大面積有序的排列,就有機會提供足夠的強度,應用在防彈衣上。所以,如果選用有機物來製作呢?

有機物中之碳、氮、氧 為分子中常見的元素,就原子量而言,三者皆比鐵的重量還輕。問題在於,如何能夠讓這些「輕」的元素產生足夠的強度,想辦法讓原子排列形成化學鍵甚至排列成更大的分子呢?

-----廣告,請繼續往下閱讀-----

材料的基礎:原子與分子間的作用力

討論如何調整的材料以製作盔甲之前,讓我們往回推一點點,認識所有材料的基礎:原子與分子間的作用力

1. 原子間的作用力──鍵結

原子與原子互相排列結合形成分子,原子間會有作用力穩定結構,這股將原子連在一起的力量稱為化學「鍵結」。鍵結可以細分為離子鍵金屬鍵共價鍵離子鍵存於正/負離子之間,金屬鍵存於金屬之間,共價鍵多存於有機物(非金屬)間。

有了鍵結之後,若要增加形成分子後整體結構的強度,則要依靠分子間的作用力

2. 分子間的作用力──凡德瓦爾作用力與氫鍵作用力

分子間的作用力有「凡德瓦爾作用力」與「氫鍵作用力」兩種。

-----廣告,請繼續往下閱讀-----

凡德瓦爾作用力的成因是因為分子間各個原子的電子分布不均勻而產生電偶極(electric dipole),電偶極與電偶極之間所產生的吸引力,就是凡德瓦爾力。

另一種氫鍵作用力則是氫原子特有。當氫原子與氮、氧、氟排列(-N-H、-O-H、-F-H)形成共價鍵時,兩者會因為拉引電子的能力差異較大,導致電荷分佈不均勻而形成電偶極,電偶極間的吸引力稱為氫鍵。

氫鍵的強度(鍵能最大約為 200 kJ/mol,一般為 5-30 kJ/mol)大於凡德瓦爾作用力( < 5 kJ/mol),能有效穩定蛋白質結構,所以廣泛存在於自然界生物體之蛋白質中,像是我們人體的 DNA、蛋白質結構,都是靠氫鍵來穩定的。  

水分子因為局部極化造成分子間作用的氫鍵

既然自然界這麼多物質都是依賴氫鍵穩定結構,那麼我們是否可以師法自然,用氫鍵的原理來增加材料的強度,製造防彈衣呢?

-----廣告,請繼續往下閱讀-----

這就是高強度纖維誕生的起點啦!

神奇纖維克維拉

克維拉(Kevlar)化學名為「聚對苯二甲酰對苯二胺」,化學式的重複單位是「-[-CO-C6H4-CONH-C6H4-NH-]-」。它是美國杜邦公司於1965年推出的一種芳香聚醯胺類合成纖維,由波蘭裔美國化學家斯蒂芬妮·克沃勒克發明。

發明克維拉的波蘭裔美國化學家斯蒂芬妮·克沃勒克。由 Science History Institute, CC BY-SA 3.0

克維拉有極佳的抗拉性能,抗拉伸強度為同等質量鐵的五倍之多,但密度僅為鋼鐵五分之一左右(克維拉密度為每立方公分 1.44 克;鋼鐵密度為每立方公分 7.86 克),因此 1970 年代初便開始被用於替代賽車輪胎中的部分鋼材,現在更被廣泛用於船體、飛機、自行車輪胎、軍用頭盔防彈背心等。

克維拉到底有什麼特別的?為何一個有機化合物的強度能高過鋼鐵五倍?

首先我們來看看克維拉的合成。它是由對苯二胺(para phenylene diamine )與對苯二甲醯氯(Terephthaloyl chloride)聚合後所形成的「聚對苯二甲酰對苯二胺」聚合物。

-----廣告,請繼續往下閱讀-----

對苯二胺(para phenylene diamine )與對苯二甲醯氯( Terephthaloyl chloride)聚合後所形成的「聚對苯二甲酰對苯二胺」聚合物──克維拉(Kevlar)。 [4]
其中「苯環(六角形之環狀結構)」的結構剛性較強,而且是平面結構不能夠轉動,能為分子帶來一定程度的剛硬性。

並且在形成高分子聚合物後,每一個「對苯二甲酰對苯二胺基本單元」會與鄰近的「對苯二甲酰對苯二胺基本單元」形成四組氫鍵(如下圖所示),更大大提升了克維拉(Kevlar)的強度。這與自然界蛋白質結構穩定的原理相同,都是應用氫鍵增加穩定性及結構強度。

對苯二甲酰對苯二胺之基本單元會與鄰近之對苯二甲酰對苯二胺單元形成氫鍵。 [2]

高分子鏈段強度再增加

一個有分子間作用力的高分子若分散於溶液中,會呈現有如凌亂毛線球的展開狀態,所以當我們要將高分子做成纖維來紡織時,會先將高分子材料拉成纖維絲,使高分子部分順向延伸。(如下圖所示[2])

但如果是一個具有高度分子間作用力的高分子,將之分散於溶液中則仍然存在部分有序狀態,經過拉絲後則會使高分子內部有序區塊順向排列延伸。此一結果大幅增加了高分子的強度 > 15倍) [6],此一現象就好像高分子間彼此有作用力將分子與分子束縛住來增加整體受力強度而使物理性質提升。這樣形成的高強度纖維可以用來當成防彈衣的材料。(如下圖所示[2])

-----廣告,請繼續往下閱讀-----

由於克維拉是有規則結構的高分子,而且高分子間的氫鍵又可促成特定的有序排列「結晶」[7],因此大大增強往後克維拉(Kevlar)拉成纖維後的物理性強度,也成就了它能抵禦子彈的強大能力。(如下圖所示[2])

(A)無序之高分子  (B)分子間作用力造鏈段有序排列之高分子

許多人類的發明靈感都來自於大自然,克維拉(Kevlar)所應用的原理,不過是高分子結構的特性罷了,卻創造出了這樣特殊且可以多樣化運用的高強度纖維。師法自然不只是回到原點,有時候也會成為新的起點。

蜘蛛網的強韌,也有一部分是因為高分子作用力喔! 圖/TRAPHITHO @Pixabay

參考資料 :

  • 文字編輯/翁郁涵
-----廣告,請繼續往下閱讀-----
文章難易度
李赫
9 篇文章 ・ 4 位粉絲
中央大學理學博士。為熱愛傳播知識與吸收知識的 作家/教育/研究學者。 對於居家設計與生活時尚亦有高度興趣 (FB作者專頁)。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

5
1

文字

分享

0
5
1
液晶溫控纖維:捲窗簾、撐乳房、擁抱狗、掀燈罩
胡中行_96
・2023/11/20 ・2772字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

「教授」趴在辦公室的地板上,百無聊賴。材料科學家、互動設計師、工匠與工藝研究人員,整日於麻省理工學院媒體實驗室(MIT Media Lab),忙進忙出,沒空搭理。作為論文第一作者Jack Forman的愛犬,身兼創作謬思,「教授」可能從沒想過,自己終將獲邀貢獻學術,並且榮登致謝名單。[1]

第一作者的愛犬「教授」。圖/參考資料1,Figure 15a(CC BY 4.0

FibeRobo

「教授」備受冷落的這段時日,研究團隊一直忙於開發織物纖維:穿戴手套、實驗袍和護目鏡,隔著通風櫃,以液晶元(mesogen)為主要原料,適量加入能感光、增加黏性、降低驅動溫度,以及延長有效期限等的各種化學物質。然後,將調製好的液晶彈性體(liquid crystal elastomer;LCE),灌進精心設計的機器。利用液晶分子在常溫下整齊排列,遇熱就亂了陣腳,導致收縮的特性,生產出來的FibeRobo纖維,長度能為溫度所控制。製作步驟及機器各部位的功能,大致如下:[1]

左二為FibeRobo機器示意圖,最右是實體。圖/參考資料1,Figure 3(CC BY 4.0
  1. 可調控溫度的針筒幫浦,將原料加溫至約莫34°C,降低其黏性後,推擠出來。(圖片:Step 1的上半段。)[1]
  2. 紫外線照射,使纖維稍微硬化,避免蜷曲。(圖片:Step 1的下半段。)機器外圍的黃色壓克力板,能隔絕99%的紫外線,保護使用者。透過調光器,則可依需求適度調整光線強度。避免光線太弱,使纖維斷掉;或者是光線太強,而結塊並堵塞針筒的開口。[1]
  3. 鑷子夾住纖維兩端,把它拉得又直又細,再沾點礦物油,比較容易舒展。(圖片:Step 2。)[1]
  4. 經過滑輪的纖維,於緊拉的張力下,再照一次紫外線,加強硬化。(圖片:Step 3。)滑輪轉動的速度愈快,纖維就愈細。[1]
  5. 纖維被捲到機器最頂端的線軸上。(圖片:Step 4。)[1]
  6. 從線軸上取下纖維,撒點滑石粉,降低摩擦力,方便以後用機器紡織。等布料完成,再以溫熱的肥皂水,洗去滑石粉。[1]

通電與收縮

FibeRobo纖維搭配別種材料,可以創造不同的效果。然而傳統多股對絞的作法,會扭曲FibeRobo,使它收縮的特質變得難以預測。於是,研究團隊改將FibeRobo置於中央,在外面纏繞其他材料。比方說,拿以蠶絲包覆銅芯的利茲線(litz wire)來捆它。銅的電阻低,升溫快,能迅速使FibeRobo遇熱收縮。FibeRobo與利茲線合體後,接上2.5安培、8.5伏特的電,8秒即縮短37%;斷電30秒,則又恢復原狀。不過,這種混合纖維傾向堆成一團,不適用於針織、紡織與刺繡。研究團隊建議,最好分開製作,再搭配使用。[1]

a. & b. 不同材質的線,纏在一起。FibeRobo纖維與利茲線合體:c. 沒通電;d. 通電收縮。圖/參考資料1,Figure 5(CC BY 4.0

另外,他們也嘗試用導電塗料浸染纖維。如同調製LCE原料時,身穿防護衣著,隔著通風櫃,先將FibeRobo泡入含有重量百分濃度7%碳黑(carbon black)的甲苯(toluene)溶液裡。8小時後取出,置於80°C的烤箱中,烘烤1個鐘頭。如此一來,FibeRobo纖維就能通電,其電阻會跟著長度的伸縮變化。拉長變細的時候,電阻較高。[1]

-----廣告,請繼續往下閱讀-----

成品展示

研究團隊用FibeRobo纖維跟其他材料,做了些模型和成品,來展示實際用途。以下是其中幾個例子:[1]

  • FibeRoBra運動胸罩:當體溫隨運動逐漸上升,FibeRoBra便開始收縮,給予乳房無鋼圈、零負擔的支持。體溫下降後,布料又回到放鬆的狀態。[1]
圖/參考資料1,Figure 8(Edited;CC BY 4.0
  • FibeRoGlow燈具:開燈後升高的溫度,令燈罩緩緩上捲,彷彿打開花瓣。全程費時,大約5分鐘。[1]
圖/參考資料1,Figure 9(CC BY 4.0
  • ShadeRobo窗簾:窗簾不該因為陽光強烈,氣溫上升,就自動捲起來。因此,驅動此窗簾所需的溫度,被設計得比較高。布料只有在上面的利茲線通電時,才會有反應。4伏特、2.5安培的電,得花2分鐘,才能將這個5 x 5公分的小窗簾捲好。冷卻1分鐘後,又會完全攤平。[1]
圖/參考資料1,Figure 12CC BY 4.0
  • FurbeRobo遙控狗背心:論文的第一作者Jack Forman,為他的愛犬「教授」,織了一件小背心。本文開頭的那張照片,即是牠的定裝照。如果寵物在辦公室悲鳴,於實驗室忙碌的主人,就可以透過藍芽,啟動背心上的控制器。此時,連接12伏特、2.5安培電池利茲線,會通電並發熱,造成驅動溫度不高的布料,輕微收縮。就像給狗溫暖的擁抱,減輕牠的分離焦慮(separation anxiety)。不過,基於動物實驗倫理等因素,後來示範布料收縮的照片,都是穿在布偶上拍攝,「教授」再次被晾在一旁。[1]
圖/參考資料1,Figure 15(CC BY 4.0

成本與環保

2023年麻省理工學院的團隊,在美國計算機協會(Association of Computing Machinery)主辦的使用者介面軟體與技術(User Interface Software and Technology)研討會上,發表了這篇介紹FibeRobo的論文。研究團隊認為,他們的成果具有商業化的潛力。畢竟跟雷同的技術比起來,製作FibeRobo的成本相對低廉:機器的針筒幫浦約美金250元;裝滿5、10、20或30毫升原料的針筒,每個至多4元;而生產直徑0.5mm的纖維,每公尺約0.2元。[1]單人操作單機,一天或一個下午就能產出750公尺的纖維;[1, 2]亦有報導指稱是每日1公里。[3, 4]不過,FibeRobo不可回收,儘管某些新興LCE纖維可生物分解,有時搭配的導電材質,仍是廢料處理的阻礙。因此,在這方面還有改善的空間。[1]

麻省理工學院媒體實驗室的FibeRobo介紹影片。影/參考資料2

  

參考資料

  1. Forman J, Afsar OK, Nicita S, et al. (2023) ‘FibeRobo: Fabricating 4D Fiber Interfaces by Continuous Drawing of Temperature Tunable Liquid Crystal Elastomers’. UIST ’23: Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, 9, pp. 1 – 17.
  2. MIT Media Lab. (27 OCT 2023) ‘FibeRobo: Powerful Body-Temperature Morphing Fibers’. YouTube.
  3. Paul A. (26 OCT 2023) ‘This liquid crystal fabric is ‘smart’ enough to adapt to the weather’. Popular Science.
  4. Global Update. (29 OCT 2023) ‘New Liquid Crystal Elastomer Fiber Makes Shape Shifting Fabrics a Reality – FibeRobo’. YouTube.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。