0

0
2

文字

分享

0
0
2

製造防彈背心必備的纖維「克維拉」,為何能夠強鋼勝鐵?

李赫
・2018/11/22 ・3263字 ・閱讀時間約 6 分鐘 ・SR值 565 ・九年級

輕量、高強度的先進材料,不只是在科幻片中存在,也已被真實的應用於我們的生活中。像是應用於防彈背心的高強度纖維,看似柔軟,強度卻勝過鋼鐵。這樣不太合乎一般人認知的產物,是怎麼發明出來的呢 ?

高強度纖維救了無數人的性命。 圖/CBS Chicago

過往要製造盔甲等護具,能夠選用的材料不外乎金屬有機物,例如最為人熟悉的盔甲原料──鐵。但鐵最大的問題就是材料密度高 ( 7.86 g/cm3),若當成防彈衣材料相當笨重,造成著裝的人行動不便。

原子間的作用力非常強,若可以大面積有序的排列,就有機會提供足夠的強度,應用在防彈衣上。所以,如果選用有機物來製作呢?

有機物中之碳、氮、氧 為分子中常見的元素,就原子量而言,三者皆比鐵的重量還輕。問題在於,如何能夠讓這些「輕」的元素產生足夠的強度,想辦法讓原子排列形成化學鍵甚至排列成更大的分子呢?

材料的基礎:原子與分子間的作用力

討論如何調整的材料以製作盔甲之前,讓我們往回推一點點,認識所有材料的基礎:原子與分子間的作用力

1. 原子間的作用力──鍵結

原子與原子互相排列結合形成分子,原子間會有作用力穩定結構,這股將原子連在一起的力量稱為化學「鍵結」。鍵結可以細分為離子鍵金屬鍵共價鍵離子鍵存於正/負離子之間,金屬鍵存於金屬之間,共價鍵多存於有機物(非金屬)間。

有了鍵結之後,若要增加形成分子後整體結構的強度,則要依靠分子間的作用力

2. 分子間的作用力──凡德瓦爾作用力與氫鍵作用力

分子間的作用力有「凡德瓦爾作用力」與「氫鍵作用力」兩種。

凡德瓦爾作用力的成因是因為分子間各個原子的電子分布不均勻而產生電偶極(electric dipole),電偶極與電偶極之間所產生的吸引力,就是凡德瓦爾力。

另一種氫鍵作用力則是氫原子特有。當氫原子與氮、氧、氟排列(-N-H、-O-H、-F-H)形成共價鍵時,兩者會因為拉引電子的能力差異較大,導致電荷分佈不均勻而形成電偶極,電偶極間的吸引力稱為氫鍵。

氫鍵的強度(鍵能最大約為 200 kJ/mol,一般為 5-30 kJ/mol)大於凡德瓦爾作用力( < 5 kJ/mol),能有效穩定蛋白質結構,所以廣泛存在於自然界生物體之蛋白質中,像是我們人體的 DNA、蛋白質結構,都是靠氫鍵來穩定的。  

水分子因為局部極化造成分子間作用的氫鍵

既然自然界這麼多物質都是依賴氫鍵穩定結構,那麼我們是否可以師法自然,用氫鍵的原理來增加材料的強度,製造防彈衣呢?

這就是高強度纖維誕生的起點啦!

神奇纖維克維拉

克維拉(Kevlar)化學名為「聚對苯二甲酰對苯二胺」,化學式的重複單位是「-[-CO-C6H4-CONH-C6H4-NH-]-」。它是美國杜邦公司於1965年推出的一種芳香聚醯胺類合成纖維,由波蘭裔美國化學家斯蒂芬妮·克沃勒克發明。

發明克維拉的波蘭裔美國化學家斯蒂芬妮·克沃勒克。由 Science History Institute, CC BY-SA 3.0

克維拉有極佳的抗拉性能,抗拉伸強度為同等質量鐵的五倍之多,但密度僅為鋼鐵五分之一左右(克維拉密度為每立方公分 1.44 克;鋼鐵密度為每立方公分 7.86 克),因此 1970 年代初便開始被用於替代賽車輪胎中的部分鋼材,現在更被廣泛用於船體、飛機、自行車輪胎、軍用頭盔防彈背心等。

克維拉到底有什麼特別的?為何一個有機化合物的強度能高過鋼鐵五倍?

首先我們來看看克維拉的合成。它是由對苯二胺(para phenylene diamine )與對苯二甲醯氯(Terephthaloyl chloride)聚合後所形成的「聚對苯二甲酰對苯二胺」聚合物。

對苯二胺(para phenylene diamine )與對苯二甲醯氯( Terephthaloyl chloride)聚合後所形成的「聚對苯二甲酰對苯二胺」聚合物──克維拉(Kevlar)。 [4]
其中「苯環(六角形之環狀結構)」的結構剛性較強,而且是平面結構不能夠轉動,能為分子帶來一定程度的剛硬性。

並且在形成高分子聚合物後,每一個「對苯二甲酰對苯二胺基本單元」會與鄰近的「對苯二甲酰對苯二胺基本單元」形成四組氫鍵(如下圖所示),更大大提升了克維拉(Kevlar)的強度。這與自然界蛋白質結構穩定的原理相同,都是應用氫鍵增加穩定性及結構強度。

對苯二甲酰對苯二胺之基本單元會與鄰近之對苯二甲酰對苯二胺單元形成氫鍵。 [2]

高分子鏈段強度再增加

一個有分子間作用力的高分子若分散於溶液中,會呈現有如凌亂毛線球的展開狀態,所以當我們要將高分子做成纖維來紡織時,會先將高分子材料拉成纖維絲,使高分子部分順向延伸。(如下圖所示[2])

但如果是一個具有高度分子間作用力的高分子,將之分散於溶液中則仍然存在部分有序狀態,經過拉絲後則會使高分子內部有序區塊順向排列延伸。此一結果大幅增加了高分子的強度 > 15倍) [6],此一現象就好像高分子間彼此有作用力將分子與分子束縛住來增加整體受力強度而使物理性質提升。這樣形成的高強度纖維可以用來當成防彈衣的材料。(如下圖所示[2])

由於克維拉是有規則結構的高分子,而且高分子間的氫鍵又可促成特定的有序排列「結晶」[7],因此大大增強往後克維拉(Kevlar)拉成纖維後的物理性強度,也成就了它能抵禦子彈的強大能力。(如下圖所示[2])

(A)無序之高分子  (B)分子間作用力造鏈段有序排列之高分子

許多人類的發明靈感都來自於大自然,克維拉(Kevlar)所應用的原理,不過是高分子結構的特性罷了,卻創造出了這樣特殊且可以多樣化運用的高強度纖維。師法自然不只是回到原點,有時候也會成為新的起點。

蜘蛛網的強韌,也有一部分是因為高分子作用力喔! 圖/TRAPHITHO @Pixabay

參考資料 :

  • 文字編輯/翁郁涵
文章難易度
李赫
9 篇文章 ・ 3 位粉絲
中央大學理學博士。為熱愛傳播知識與吸收知識的 作家/教育/研究學者。 對於居家設計與生活時尚亦有高度興趣 (FB作者專頁)。

0

5
1

文字

分享

0
5
1
液晶溫控纖維:捲窗簾、撐乳房、擁抱狗、掀燈罩
胡中行_96
・2023/11/20 ・2769字 ・閱讀時間約 5 分鐘

「教授」趴在辦公室的地板上,百無聊賴。材料科學家、互動設計師、工匠與工藝研究人員,整日於麻省理工學院媒體實驗室(MIT Media Lab),忙進忙出,沒空搭理。作為論文第一作者Jack Forman的愛犬,身兼創作謬思,「教授」可能從沒想過,自己終將獲邀貢獻學術,並且榮登致謝名單。[1]

第一作者的愛犬「教授」。圖/參考資料1,Figure 15a(CC BY 4.0

FibeRobo

「教授」備受冷落的這段時日,研究團隊一直忙於開發織物纖維:穿戴手套、實驗袍和護目鏡,隔著通風櫃,以液晶元(mesogen)為主要原料,適量加入能感光、增加黏性、降低驅動溫度,以及延長有效期限等的各種化學物質。然後,將調製好的液晶彈性體(liquid crystal elastomer;LCE),灌進精心設計的機器。利用液晶分子在常溫下整齊排列,遇熱就亂了陣腳,導致收縮的特性,生產出來的FibeRobo纖維,長度能為溫度所控制。製作步驟及機器各部位的功能,大致如下:[1]

左二為FibeRobo機器示意圖,最右是實體。圖/參考資料1,Figure 3(CC BY 4.0
  1. 可調控溫度的針筒幫浦,將原料加溫至約莫34°C,降低其黏性後,推擠出來。(圖片:Step 1的上半段。)[1]
  2. 紫外線照射,使纖維稍微硬化,避免蜷曲。(圖片:Step 1的下半段。)機器外圍的黃色壓克力板,能隔絕99%的紫外線,保護使用者。透過調光器,則可依需求適度調整光線強度。避免光線太弱,使纖維斷掉;或者是光線太強,而結塊並堵塞針筒的開口。[1]
  3. 鑷子夾住纖維兩端,把它拉得又直又細,再沾點礦物油,比較容易舒展。(圖片:Step 2。)[1]
  4. 經過滑輪的纖維,於緊拉的張力下,再照一次紫外線,加強硬化。(圖片:Step 3。)滑輪轉動的速度愈快,纖維就愈細。[1]
  5. 纖維被捲到機器最頂端的線軸上。(圖片:Step 4。)[1]
  6. 從線軸上取下纖維,撒點滑石粉,降低摩擦力,方便以後用機器紡織。等布料完成,再以溫熱的肥皂水,洗去滑石粉。[1]

通電與收縮

FibeRobo纖維搭配別種材料,可以創造不同的效果。然而傳統多股對絞的作法,會扭曲FibeRobo,使它收縮的特質變得難以預測。於是,研究團隊改將FibeRobo置於中央,在外面纏繞其他材料。比方說,拿以蠶絲包覆銅芯的利茲線(litz wire)來捆它。銅的電阻低,升溫快,能迅速使FibeRobo遇熱收縮。FibeRobo與利茲線合體後,接上2.5安培、8.5伏特的電,8秒即縮短37%;斷電30秒,則又恢復原狀。不過,這種混合纖維傾向堆成一團,不適用於針織、紡織與刺繡。研究團隊建議,最好分開製作,再搭配使用。[1]

a. & b. 不同材質的線,纏在一起。FibeRobo纖維與利茲線合體:c. 沒通電;d. 通電收縮。圖/參考資料1,Figure 5(CC BY 4.0

另外,他們也嘗試用導電塗料浸染纖維。如同調製LCE原料時,身穿防護衣著,隔著通風櫃,先將FibeRobo泡入含有重量百分濃度7%碳黑(carbon black)的甲苯(toluene)溶液裡。8小時後取出,置於80°C的烤箱中,烘烤1個鐘頭。如此一來,FibeRobo纖維就能通電,其電阻會跟著長度的伸縮變化。拉長變細的時候,電阻較高。[1]

成品展示

研究團隊用FibeRobo纖維跟其他材料,做了些模型和成品,來展示實際用途。以下是其中幾個例子:[1]

  • FibeRoBra運動胸罩:當體溫隨運動逐漸上升,FibeRoBra便開始收縮,給予乳房無鋼圈、零負擔的支持。體溫下降後,布料又回到放鬆的狀態。[1]
圖/參考資料1,Figure 8(Edited;CC BY 4.0
  • FibeRoGlow燈具:開燈後升高的溫度,令燈罩緩緩上捲,彷彿打開花瓣。全程費時,大約5分鐘。[1]
圖/參考資料1,Figure 9(CC BY 4.0
  • ShadeRobo窗簾:窗簾不該因為陽光強烈,氣溫上升,就自動捲起來。因此,驅動此窗簾所需的溫度,被設計得比較高。布料只有在上面的利茲線通電時,才會有反應。4伏特、2.5安培的電,得花2分鐘,才能將這個5 x 5公分的小窗簾捲好。冷卻1分鐘後,又會完全攤平。[1]
圖/參考資料1,Figure 12CC BY 4.0
  • FurbeRobo遙控狗背心:論文的第一作者Jack Forman,為他的愛犬「教授」,織了一件小背心。本文開頭的那張照片,即是牠的定裝照。如果寵物在辦公室悲鳴,於實驗室忙碌的主人,就可以透過藍芽,啟動背心上的控制器。此時,連接12伏特、2.5安培電池利茲線,會通電並發熱,造成驅動溫度不高的布料,輕微收縮。就像給狗溫暖的擁抱,減輕牠的分離焦慮(separation anxiety)。不過,基於動物實驗倫理等因素,後來示範布料收縮的照片,都是穿在布偶上拍攝,「教授」再次被晾在一旁。[1]
圖/參考資料1,Figure 15(CC BY 4.0

成本與環保

2023年麻省理工學院的團隊,在美國計算機協會(Association of Computing Machinery)主辦的使用者介面軟體與技術(User Interface Software and Technology)研討會上,發表了這篇介紹FibeRobo的論文。研究團隊認為,他們的成果具有商業化的潛力。畢竟跟雷同的技術比起來,製作FibeRobo的成本相對低廉:機器的針筒幫浦約美金250元;裝滿5、10、20或30毫升原料的針筒,每個至多4元;而生產直徑0.5mm的纖維,每公尺約0.2元。[1]單人操作單機,一天或一個下午就能產出750公尺的纖維;[1, 2]亦有報導指稱是每日1公里。[3, 4]不過,FibeRobo不可回收,儘管某些新興LCE纖維可生物分解,有時搭配的導電材質,仍是廢料處理的阻礙。因此,在這方面還有改善的空間。[1]

麻省理工學院媒體實驗室的FibeRobo介紹影片。影/參考資料2

  

參考資料

  1. Forman J, Afsar OK, Nicita S, et al. (2023) ‘FibeRobo: Fabricating 4D Fiber Interfaces by Continuous Drawing of Temperature Tunable Liquid Crystal Elastomers’. UIST ’23: Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, 9, pp. 1 – 17.
  2. MIT Media Lab. (27 OCT 2023) ‘FibeRobo: Powerful Body-Temperature Morphing Fibers’. YouTube.
  3. Paul A. (26 OCT 2023) ‘This liquid crystal fabric is ‘smart’ enough to adapt to the weather’. Popular Science.
  4. Global Update. (29 OCT 2023) ‘New Liquid Crystal Elastomer Fiber Makes Shape Shifting Fabrics a Reality – FibeRobo’. YouTube.
胡中行_96
169 篇文章 ・ 60 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

2
3

文字

分享

0
2
3
巴黎時裝週:噴霧製衣,一體成形
胡中行_96
・2022/10/03 ・2083字 ・閱讀時間約 4 分鐘

2022 年 9 月 30 日,[1]在巴黎時裝週 2023 春夏大秀上,近乎全裸的超模 Bella Hadid 緩步走上伸展台。她氣定神閒地,任由與法國時尚品牌 Coperni 合作的科學家們,用噴槍將液態布料覆蓋在她身上。[2, 3]經剪刀裁去布邊,並劃出高衩,一件服貼簡約的雪白平口洋裝,當場完成,驚豔全場。[4]

巴黎時裝週 2023 春夏大秀上,噴霧製衣的現場表演。影/參考資料 4

時裝秀的科技時刻

英國品牌 Alexander McQueen 也曾於 1999 春夏系列時裝秀中,讓超模 Shalom Harlow 在緊湊高亢的音樂襯托下,接受二支機械手臂的顏料洗禮,演繹出時尚史上經典的噴墨洋裝。[5]不過,這兩次乍看雷同的科技嘗試,其實有根本上的差異:Alexander McQueen 的做法,是把洋裝當作畫布,透過機械手臂在上頭忘情揮灑。放蕩不羈的風格,使模特兒的皮膚上沾染不少墨水,帶著一縷淒美的頹喪。[5]然而,這次巴黎時裝週的白色洋裝製作,則是宛如迪士尼動畫《睡美人》的情節。噴槍就是設計師的魔杖,妙手一揮便幻化出成品,整個過程乾淨俐落。做完馬上走秀,都不怕沿路滴水。[4]

這款神奇的噴霧布料,是 Manel Torres 博士研發的 Fabrican。[3]

Alexander McQueen 1999 春夏系列服裝秀中,Shalom Harlow 與機械手臂演繹經典的噴墨洋裝。影/參考資料 5

Fabrican 噴霧的原理

來自西班牙的 Torres 博士,[6] 2003 年於英國倫敦創立 Fabrican 有限公司。他希望用皮膚般貼身的媒材,來製作衣服,並加速生產的流程。[7]一件 Fabrican 服飾的生成,從無到有約莫只要 9 到 15 分鐘,[1, 6]而且材質和顏色都有多元的選擇。[8, 9]無論是棉、毛、亞麻、尼龍或是奈米碳纖維等原料,[6, 9]加入特製的揮發性溶劑後,噴在人體上便會快乾成形。 [6]這種液態布料能做出一年四季的服飾,差別主要在於塗層的厚度。成品噴好後,不僅可以重複穿著和洗滌,也能以溶劑即刻還原再利用,[10]十分環保。

Torres 博士示範用 Fabrican 噴出T恤,女模表示會冷。影/參考資料 10

Fabrican 服飾的量產

Copern i 的二位品牌創辦人 Sébastien Meyer 與 Arnaud Vaillant ,在這次的巴黎時裝週開始前 6 個月,就已經緊鑼密鼓地和 Torres 博士,一起研究如何呈現這件白色洋裝。「我們不會因此賺錢」,回想秀場上的那一刻 Meyer 如是說:「但那是段美麗的時光 ── 一個創造情感的體驗。」[3]

以人工一件一件地噴出衣服,並不符合經濟效益,所以除了上述量身訂做的方法,Torres 教授還開發出適合工業化量產的模式。這個概念有點類似 Alexander McQueen 1999 春夏系列服裝秀的演出,不過要把那位面目驚恐,非常入戲的模特兒,換成冰冷的人體模型。如此一來,裝有噴槍的機械手臂以及負責運算的可程式邏輯控制器(programmable logic controller,簡稱PLC),便能以每秒 9 公尺的速度噴出原料,不眠不休無休地將已經設計好的服飾,精準地製作出來。由於針對不同產品,只要依照個別需求,微調程式或液態布料的成份,Fabrican 官網宣稱,這比起仰賴為數龐大的傳統機器,更適合剛起步的事業和開發程度較低的國家。[11]

Fabrican 的其他用途

此外,同樣的技術也能運用在汽車內裝,[11]以及醫療器材上。比方說,口罩、繃帶、藥物貼片、創傷敷料,[12]還有取代石膏的骨折固定器等。[13]比較出乎意料的是,據說 Fabrican 也有清除海洋汙染,例如:原油外洩等的功能,可惜相關的資訊不多。[14]看到如此萬用的布料科技,只能期望它無論如何都要打入一般市場,造福大眾。別像伸展台上的高級服飾,永遠那麼遙不可及。

Fabrican 可望取代醫療石膏。影/參考資料 13

延伸閱讀

蠶繭電池是綠能的未來?!

參考資料

  1. Testa J. (02 OCT 2022) ‘The Best Moment of Bella Hadid’s Life’. The New York Times.
  2. Yang R, Chen L, Chiang R, Tseng R.(01 OCT 2022)〈巴黎時裝周2023春夏秀場盤點!Coperni現場噴墨製衣、Balmain邀請傳奇巨星Cher壓軸走秀〉Harpers Bazaar.
  3. Maguire L. (01 OCT 2022) ‘A spray-on dress and a solid gold bag: Coperni goes after Gen Z with novelty and fun’. Vogue Business.
  4. iDest. (01 OCT 2022) ‘Bella Hadid Closing Coperni Spring 2023 Collection’. YouTube.
  5. Couture Daily. (13 JAN 2013) ‘Alexander McQueen spring/summer 1999’. YouTube.
  6. Sample I. (17 SEP 2010) ‘Spray-on clothing becomes a reality’. The Guardian.
  7. Fabrican History’. Fabrican Spray-on fabric. (Accessed on 02 OCT 2022)
  8. FannVideo Best. ‘New Spray-on Clothing Future Technology’. (28 MAY 2013) YouTube.
  9. Fabrican Technology’. Fabrican Spray-on fabric. (Accessed on 02 OCT 2022.)
  10. New Scientist. ‘Spray-on clothing could be the future of fashion’. (17 SEP 2010) YouTube.
  11. Industrial – Industrial Application’. Fabrican Spray-on fabric. (Accessed on 02 OCT 2022.)
  12. Healthcare – Innovation, choice and flexibility in healthcare’. Fabrican Spray-on fabric. (Accessed on 02 OCT 2022.)
  13. fabricanltd. (15 MAY 2012) ‘Spray-on arm cast. Fabrican Ltd’. YouTube.
  14. Environmental – Protecting our environment from seaborne spills’. Fabrican Spray-on fabric. (Accessed on 02 OCT 2022.)
胡中行_96
169 篇文章 ・ 60 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

5
1

文字

分享

0
5
1
揭露蜘蛛結網的「五大 SOP」——它們是隱身牆角的紡織專家!
阿咏_96
・2021/12/21 ・2625字 ・閱讀時間約 5 分鐘

一提到蜘蛛,許多人腦海中浮現的畫面,或許是在學校裡不起眼的角落,搭在陰暗牆角的蛛網。在許多影視作品裡,蜘蛛網總給人一種陰森、詭譎的氛圍。然而,讓人不可否認的是,蜘蛛網的結構是如此複雜且精美。

關於蜘蛛結網,在古希臘有一則傳說。大家所熟知的女神雅典娜,曾向遠古人類傳授紡織技藝,被稱為「紡織女神」;而當時有一位染匠的女兒名為阿剌克涅(Arachne),十分擅長紡織,沒有人能比得上她,也因此她也十分驕傲得意,某次她向雅典娜提出挑戰,希望能一決高下。後來,雙方的作品都十分精美、技藝精湛。然而,阿剌克涅所織出的掛毯內容卻是褻瀆、嘲笑宙斯與他的眾多妻子的,雅典娜一氣之下將阿剌克涅變成了一隻蜘蛛,永遠用她自己的身體織網,而現在我們所見的蜘蛛被認為是阿剌克涅的後代。

阿剌克涅(Arachne)十分擅長紡織,後來被雅典娜變成一隻蜘蛛。圖/Wikimedia Commons

雖然蜘蛛網幾乎隨處可見,然而背後的秘密就和它的外觀一樣錯綜複雜,吸引著人們去揭開它的神秘面紗。令許多科學家好奇的是,體型及大腦都比人類小這麼多的蜘蛛,到底是如何織出這些精密又優雅的幾何結構的?如此複雜又連續的行為是如何調控及建構的呢?

其實一直以來都有許多探討影響蜘蛛結網因子的研究,例如有科學家將蜘蛛放到外太空,觀察在無重力環境下,蜘蛛結的網有何不同,通常在有重力的情況下,會結出不對稱的網,然而在無重力下便是對稱的。此外,大多靠觸覺織網的蜘蛛,於無重力環境下的織網行為,卻仍受光線影響。由這些結果可以得知,不同環境因素對結網行為的影響[4]

但若想要了解行為背後的機制,必須先區分出不同階段的行為模式。先前有些研究試圖分析,但因研究者無法在蜘蛛結網期間進行全天候的觀察,因此許多行為模式的細節仍未被發現。後來也逐漸發展出其他方法去觀察蜘蛛,例如在實驗室裡創造可控的環境,利用攝影機記錄行為[1]

幫蜘蛛結網的「每一步」做紀錄!

今年十一月,一項刊登在當代生物學《Current Biology》的研究[2],利用紅外線夜視攝影機,在夜晚觀察蜘蛛,並用軟體追蹤牠們快速的腿部動作,將結網行為分成不同階段。

蜘蛛網的種類眾多,但這項研究觀察的是圓網(orb web),原因是在織網的過程中,比較容易透過追蹤蜘蛛軌跡和網的幾何形狀,來定義不同的階段。因此他們選擇織圓網的金蛛科(Uloboridae)裡的 Uloborus diversus 作為研究物種。這是一種原產於美國西部的蜘蛛,他們的體型很小,小到能夠放在指尖上;由於大多數織圓網的其他類群只在春、夏活動,而這個物種是全年都有,符合長期活動以及耐受性好等實驗所需條件。

雖然這種蜘蛛可以在任何形狀的空間裡結網,但他們更偏好在完全黑暗的環境建造水平圓網。因此,研究團隊設計了一個「舞台」,並設置紅外線攝影機及紅外燈。透過這個裝置,每天晚上監視並追蹤蜘蛛織網的過程,被追蹤的六個個體皆為成年雌性。(只使用雌蛛的原因是,雄性很少結圓網)。

在這個實驗中,研究人員利用動態捕捉軟體,追蹤蜘蛛每條腿的基部、股骨、脛骨,以及前胸的最前和最後,共二十六個點,來分析數百萬件的腿部動作,藉由追蹤腿部運動能夠區分出每個階段的典型及非典型行為,將織網的不同階段作更細部的分析。

圖/參考資料2

蜘蛛網的秘密:動態分析「織網五階段」

織圓網的過程可被區分為五個階段:首先,蜘蛛會花時間探索一下所在空間,同時築出一個雜亂無章的網,稱為「原形網」(proto-web),通常沒有明顯的規律。這個階段蜘蛛會評估周遭環境,並為最終要織的網定位。在探索結束後,蜘蛛會有一個長時間的停頓。

接著,便要開始向外建造網的半徑(radii)。牠會先移除大部分的原型網,並調整一些原型網的線條作為半徑,同時建構框架(frame)。在第三階段之前,蜘蛛會短暫停歇,接著開始向外盤旋,織造螺旋狀的「輔助螺旋」(auxiliary spiral)補強網面的整體結構。這個階段只會持續幾分鐘,因為輔助螺旋是暫時的結構,它是為穩定下個階段的施工而建,也就是「捕獲螺旋」(capture spiral)。當蜘蛛從外圍向內建造捕獲螺旋時,會同時移除輔助螺旋,這是第四個階段。

Uloborus diversus 蜘蛛織圓網隊主要四個階段。圖/BioRxiv

最後,在某些情況下,蜘蛛會再加上一個稱為「隱帶」(stabilimentum)的構造。有趣的是,這個構造並非所有蜘蛛都有,它的功能也仍未知。目前已有許多假設[3]被提出,例如可以幫助蜘蛛隱匿、避免其他生物(例如鳥類)撞上蛛網,或讓蜘蛛在其他捕食者的眼中看起來更大,也有假說認為此構造可以吸引獵物。

本次實驗中,蜘蛛在各節網階段的移動及耗時紀錄。圖/BioRxiv

蜘蛛腦如何進行複雜的結網工程?仍待解答

在分析出蜘蛛結網的五階段後,研究人員發現,蜘蛛結網的行為非常相似,以至於研究人員能夠僅通過觀察蜘蛛腿部的位置,來預測蜘蛛正在為蜘蛛網的哪個部分施工。

研究人員指出,即使蜘蛛網最終的結構略有不同,但蜘蛛結網的步驟及規則卻是相同的,這證實了結網的規則是在蜘蛛的大腦中編碼的。因此未來研究團隊想進一步了解的是,這一連串動作背後的神經系統是如何運作的,在後續的研究中,能夠找出蜘蛛調控結網的大腦迴路,一步步揭開美麗蜘蛛網背後的秘密。

資料來源/YouTube

參考資料

  1. Benjamin, S. P., & Zschokke, S. (2000). A computerized method to observe spider web-building behavior in a semi-natural light environment. European arachnology, 117-122.
  2. Corver, A., Wilkerson, N., Miller, J., & Gordus, A. G. (2021). Distinct movement patterns generate stages of spider web-building. bioRxiv.
  3. Mena, P. The Function of Stabilimenta in Spider Webs. The Writing Anthology, 36.
  4. Spiders in space—orb-web-related behaviour in zero gravity
阿咏_96
12 篇文章 ・ 578 位粉絲
You can be the change you want to see in the world.