0

0
0

文字

分享

0
0
0

當哥吉拉遺忘你的名字:科幻文學教我們的事──2019泛知識節

泛知識節
・2019/06/15 ・2212字 ・閱讀時間約 4 分鐘 ・SR值 561 ・九年級

-----廣告,請繼續往下閱讀-----

  • 活動紀錄/簡克志

2019 年的泛知識節,我們邀請到陳國偉老師,現任國立中興大學台灣文學與跨國文化研究所副教授,請深耕科幻領域的他一同來與我們分享科幻文學的定義、影響又有哪些?

科幻,一種邁向未來的文類

2019年泛知識節會場,講座「當哥吉拉遺忘你的名字:科幻文學教我們的事」。講者是陳國偉老師,現任國立中興大學台灣文學與跨國文化研究所副教授。

首先,陳國偉介紹了科幻的定義。知名科幻小說家兼科學家艾西莫夫認為:「科幻小說可以被定義為文學的一個分支,它涉及人類如何反應了科學和技術的變遷。」另外一方面,海萊因則認為:「科幻小說乃根據真實世界足夠的知識與對自然和科學方法完整的認知,『寫實地』推測可能發生的事物。」

陳國偉因此認為科幻小說可以說是一種「邁向未來」的文類。

科幻電影《銀翼殺手2049》劇照
科幻電影《銀翼殺手2049》劇照。圖/ IMDb

再來,陳國偉引用葉李華對科幻的定義科幻=科與幻=「科學」+「幻想」。科學是指科幻裡面有關技術層面的描寫,幻想是指科幻裡面虛構的想像。接著國偉老師引用研究科幻小說的蘇恩文,蘇恩文認為科幻小說具有「抽離」與「認知」兩種特質,並且將其運用在具有「新奇(novum)」元素的敘事上。「抽離」是指科技與時空的落差,科幻小說的科技常常是現在無法實現,但未來有可能實現的科技。「認知」則涉及了反省與批判現實,看完科幻小說之後,讀者往往會回過來反思現在。那是因為「新奇」讓讀者對現實產生了一種陌生化效果,得以用新的視角重新省視當下的現實。

科幻被區分為硬科幻軟科幻,硬科幻就是比較專注自然科學邏輯和知識設定的作品,例如:《2001 太空漫遊》或《三體》。而軟科幻是運用比較多社會學、政治學或人類學等元素的科幻作品,比較不會去詳細解釋想像出來的科技或科學現象,例如:《科學怪人》或《星際大戰》。

-----廣告,請繼續往下閱讀-----

陳國偉進一步提到,一般人認為的科幻,通常是未來人類文明的進步景觀,或是涉及未來人類的終極命運。不過,實際上的科幻視角,多為科學樂觀主義的反省或轉向,透過末日題材來反思科學的有限性與科技失控的後果,例如:《明天過後》、《末路浩劫》、《機械公敵》或《我是傳奇》。科幻小說很多時候都是人與世界或人與其他物種關係的反省。

後人類:未來的「人」有哪些可能?

既然科幻作品中人的關係如此重要,那麼未來的「人」有哪些可能?國偉老師繼續進入「後人類」的話題。Hayles 在 1999 年的著作《我們如何成為後人類?》裡面,探討了後人類的可能形式。而林建光《賽伯格與後人類主義》裡面,認為生命的本質不在於身體,而在於資訊模式。也就是肉身可能會消滅,但是意識或記憶則可以透過資訊的形式一直保存下來。

在後人類的概念裡,人與機械的界線是模糊的,因為人是以賽伯格(Cyborg,模控生物體)的形式存在。而科幻作品裡面,通常會去探討人類與後人類之間的互動之中,什麼是「人性」?「人性」如何透過後人類展現?例如:電影《AI 人工智慧》與《攻殼機動隊》。

電影《攻殼機動隊》海報
電影《攻殼機動隊》海報。圖/ IMDb

以科幻作品討論創傷的衝擊與忘卻

最後,陳國偉認為在亞洲(特別是日本),科幻作品其實還乘載著記憶與遺忘的交互辯證,是忘卻與記憶的政治裝置。日本在 2011 年發生 311 災害的傷痛,是三重末日恐懼的創傷,包括核災與戰爭的連結,讓日本人回憶起 WW II 的原子彈爆炸。還有歷年來對地震的恐懼,則呼應小松左京著作的日本科幻小說《日本沉沒》。例如:《新世紀福音戰士》劇場版裡面的第三次衝擊,就像是為了回應日本 311 災害,因為 311 就是日本百年來的第三次大地震,庵野秀明期望在末日的災難裡面找回人與人情感的連結。

-----廣告,請繼續往下閱讀-----

陳國偉又舉了《哥吉拉》和《你的名字》為例。2016 年電影《哥吉拉》為何比《你的名字》更受到學院派和電影專業人士的歡迎?《你的名字》裡面有許多和 311 災難的巧合,例如在祭典裡面做緊急逃難廣播的女生名字和 311 受難者相同。不過在《你的名字》裡面,許多人都沒有關於隕石滅村災難的記憶,國偉老師認為劇情暗示著日本人希望忘記福島災難。但《哥吉拉》卻是對 311 災難記憶的批判。現實對於虛構,就像日本對於哥吉拉,哥吉拉就像是上述三重創傷忘卻的召喚,把創傷召喚回來。

平成系列的哥吉拉經典形象。圖/WIKI

哥吉拉是海底的核廢料所催生的,正對應福島核災。電影裡面美國主張以核彈去摧毀哥吉拉,又要把核彈丟在日本。同時,哥吉拉也批判了日本官僚主義的顢頇,也呼應 311 災難中日本官方的低效率作為。《哥吉拉》作為科幻故事的載體,連結到現實日本社會的當下,不斷地提醒著人們已經忘記或想要忘記的事情。

科幻作品有著銘刻歷史記憶的功能,讓現在的人得以反思過去和勇於面對,也正是科幻文學可以教我們的事。

  • 註 1:其實葉李華在2018年的泛科學院課程〈科幻的實用定義與基本精神〉中,已經修正這種將科幻看成科與幻的定義。葉李華認為科幻難以定義。科幻(Science fiction)必須視為一個整體,不可拆開成科學(Science)加上幻想(fiction)。

只看活動記錄不過癮嗎?當天的現場影像記錄可至泛科學院免費觀賞:【線上影音】2019 泛.知識節-當哥吉拉遺忘你的名字:科幻文學教我們的事

-----廣告,請繼續往下閱讀-----
文章難易度
泛知識節
24 篇文章 ・ 4 位粉絲
從「科學太重要了,所以不能只交給科學家」,到「科學家太重要了,所以不能只懂科學」,再到「知識太重要了,所以不能讓它關在牆裡」,「泛知識節」為泛科知識召集之年度大型活動,承繼 PanSci 泛科學年會的精神與架構,邀請「科學」「科技」「娛樂」「旅行」四個領域的專家與耕耘者,一同談說、分享、攻錯。 這是一個大型的舞台,我們在此治茶拂席,虛位以待,請你上座。

0

3
0

文字

分享

0
3
0
從「衛生紙」開始的環保行動:一起愛地球,從 i 開始
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/03 ・1592字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

你是否也曾在抽衛生紙的瞬間,心頭閃過「這會不會讓更多森林消失」的擔憂?當最後一張衛生紙用完,內心的愧疚感也油然而生……但先別急著責怪自己,事實上,使用木製品和紙張也能很永續!只要我們選對來源、支持永續木材,你的每一個購物決策,都能將對地球的影響降到最低。

二氧化碳是「植物的食物」:碳的循環旅程

樹木的主食是水與二氧化碳,它們從空氣中吸收二氧化碳,並利用這些碳元素形成枝葉與樹幹。最終這些樹木會被砍伐,切成木材或搗成紙漿,用於各種紙張與木製品的製造。

木製品在到達其使用年限後,無論是被燃燒還是自然分解,都會重新釋放出二氧化碳。不過在碳循環中,這些釋出的二氧化碳,來自於原本被樹木「吸收」的那些二氧化碳,因此並不會增加大氣中的碳總量。

只要我們持續種植新樹,碳循環就能不斷延續,二氧化碳在不同型態間流轉,而不會大量增加溫室氣體在大氣中的總量。因為具備循環再生的特性,讓木材成為相對環保的資源。

但,為了木製品而砍伐森林,真的沒問題嗎?當然會有問題!

-----廣告,請繼續往下閱讀-----
從吸碳到固碳的循環

砍對樹,很重要

實際上,有不少木材來自於樹木豐富的熱帶雨林。然而,熱帶雨林是無數動植物的棲息地,它們承載著地球豐富的生物多樣性。當這些森林被非法砍伐,不僅生態系統遭到破壞,還有一個嚴重的問題–黃碳,也就是那些大量儲存在落葉與土壤有機質中的碳,會因為上方森林的消失重新將碳釋放進大氣之中。這些原本是森林的土地,將從固碳變成排碳大戶。

不論是黃碳問題,還是要確保雨林珍貴的生物多樣性不被影響,經營得當的人工永續林,能將對環境的影響降到最低,是紙漿和木材的理想來源。永續林的經營者通常需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。木材反覆在同一片土地上生成,因此不用再砍伐更多的原始林。在這樣的循環經營下,我們才能不必冒著破壞原始林的風險,繼續享用木製品。

人工永續林的經營者需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。

如何確保你手中的紙張來自永續林?

如果你擔心自己無意中購買了對環境不友善的商品,而不敢下手,只要認明FSC(森林管理委員會)認證與 PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。並且從森林到工廠、再到產品,流程都能被追蹤,為你把關每一張紙的生產過程合乎永續。

只要認明 FSC(森林管理委員會)認證與 PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。

家樂福「從 i 開始」:環境友善購物新選擇

不僅是紙張,家樂福自有品牌的產品都已經通過了環保認證,幫助消費者在日常生活中輕鬆實踐環保。選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌,這代表商品在生產過程中已經符合多項國際認證永續發展標準。

-----廣告,請繼續往下閱讀-----

「從 i 開始」涵蓋十大環保行動,從營養飲食、無添加物、有機產品,到生態農業、動物福利、永續漁業、減少塑料與森林保育,讓你每一項購物選擇都能與環境保護密切相關。無論是買菜、買肉,還是日常生活用品,都能透過簡單的選擇,為地球盡一份力。

選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
214 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

5
2

文字

分享

0
5
2
從基隆進港的深海活化石中,意外發現新種具足蟲!——專訪國立臺南大學副教授黃銘志
Heidi_96
・2022/11/29 ・3890字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

新種具足蟲,發現!

2019 年,國立臺南大學生物科技學系副教授 黃銘志 從基隆漁民手中獲得一批具足蟲。為了鑑定這些小傢伙的種類,黃銘志從日本換來兩隻大王具足蟲(B. giganteus),沒想到卻意外發現前所未見的新種——猶加敦具足蟲(B. yucatanensis)!

這到底是怎麼回事呢?別急,在我們看下去前,先告訴你一個具足蟲的小秘密。

具足蟲又稱為深水蝨,是居住在深海的甲殼類活化石。你可能沒聽過這兩個名稱,但如果你看過《風之谷》或是《星際大戰》(Star Wars),肯定對王蟲和黑武士有印象,而他們的原型就是具足蟲!

在宮崎駿動畫《風之谷》中,王蟲是守護腐海的生物。當他們憤怒時,眼睛會由藍轉紅。圖/スタジオジブリ
《星際大戰》系列電影的角色——黑武士的面具原型也是具足蟲!圖/Star Wars

既然不小心撈到了,那就抓來研究吧~

小秘密說完了,讓我們原地跳一下,回到 2019 年看看事情發生的經過。

-----廣告,請繼續往下閱讀-----

當年七月,黃銘志在基隆正濱漁港採集到俗稱「金絲猴」的紅頭龍蝦,登錄為臺灣新記錄種「海神後海螯蝦(Metanephrops neptunus)」。此後,黃銘志就有和當地漁民保持聯繫。

臺灣新記錄種「海神後海螯蝦(Metanephrops neptunus)」。圖/TaiBNET

後來,有船長告訴黃銘志:「我抓到十隻具足蟲,你要不要?」

在基隆,具足蟲的漁獲量並不多,通常是拖網捕蝦附帶的戰利品。雖然東北角有很多販售具足蟲料理的店家,具足蟲吃起來也像龍蝦,但民眾還是喜歡吃真正的蝦子,所以具足蟲銷不出去,黃銘志就整批買了下來。

這時,問題來了!臺灣沒有具足蟲專家,而黃銘志本身也不是分類學家,要怎麼鑑定呢?沒辦法,只好自行摸索。

-----廣告,請繼續往下閱讀-----

於是,黃銘志和日本新江之島水族館交換兩隻大王具足蟲,但這兩隻越看越不對勁,「⋯⋯怎麼其中一隻腰身比較細?難道是牠比較瘦、吃比較少嗎?」

「背景不同的人,就會用不同的視角看事情!」

後來,黃銘志想起赴日深造時,研究魚類基因演化、解析人體基因結構的經驗,就決定分析具足蟲的基因。從黃銘志的專業背景——分子生物學的角度來看,至少要採用兩種分析方法才夠,因為每個基因演化速度都不同,像具足蟲演化得很慢,基因差異不太明顯,就很難區分。

經過細胞色素 c 氧化酶亞基 1(COI)和 16S rRNA 分析後,黃銘志赫然發現很多 DNA 片段都不同。起初還以為是分析出錯,或是樣本破損,但重複試驗多次後的結果都一樣,黃銘志不禁感到困惑:「奇怪了,歐美研究大王具足蟲長達 140 年,有超過 1000 隻樣本,怎麼沒發現裡面可能有基因結構不同的個體?」

細胞色素 c 氧化酶亞基 1(COI)分析結果:第一行是猶加敦具足蟲,第二行是大王具足蟲。圖/Journal of Natural History
 16S rRNA 分析結果:第一行是猶加敦具足蟲,第二行是大王具足蟲。圖/Journal of Natural History

為了進一步梳理這些數據,黃銘志找來兩位分類學家助拳,一位是日本國際螯蝦學會的會長——甲殼類專家川井唯史(Dr. Kawai Tadashi),另一位則是澳洲昆士蘭博物館的無脊椎動物榮譽研究員——具足蟲專家尼爾.布魯斯(Dr. Niel L. Bruce)

-----廣告,請繼續往下閱讀-----

不是這個專業,所以才能做到這件事

在三人正式合作前,黃銘志就大致完成這篇新種具足蟲的論文了,但後來,布魯斯發現了一個天大的錯誤,那就是黃銘志引用了某位印度專家錯誤的研究。

過去,也有中國學者引用這篇印度論文,指出印度洋海域有肯氏具足蟲(B. kensleyi)。黃銘志原先也以為是這樣,畢竟順著前人的研究比較不會有爭議,沒想到卻因此得出錯誤的推論。

第一次研究具足蟲,就要指正其他專家的研究,「老實說,我算哪根蔥?」黃銘志苦笑道。

為了修正錯誤,具足蟲的細部結構就交給布魯斯研究,再讓川井逐一比對、鉅細靡遺地畫下來。具足蟲演化較慢,所以每一種長得都很像,必須仔細觀察才能看出差異,比如鼻子的形狀、尾扇棘刺的數量、身體兩側的彎曲程度等等。

詹姆斯具足蟲(B. jamesi)和猶加敦具足蟲(B.yucatanensis)的身體(a)、頭部(b)、鼻子(c)和頭部側視圖(d)。圖/Journal of Natural History

雖然三人至今都沒有見過彼此,但當初為了辨別出不同的形態,他們互相傳了上千封信討論,才終於達成共識。回想這漫長的過程,黃銘志說:「那些圖都確認過十幾次了,意見不合也是常有的事,比如尾扇棘刺的數量要從哪裡開始數?」

-----廣告,請繼續往下閱讀-----

黃銘志也提到,每種生物都有「種間變異」和「種內變異」。只要有變異,一定有不同的地方,但這些不同的地方可以直接判斷成不同種嗎?假如尾扇棘原本有 13 根,卻因為互相打鬥而斷了一兩根,是不是就要分成不同種?

詹姆斯具足蟲(B. jamesi)和猶加敦具足蟲(B.yucatanensis)的尾扇棘(c)。圖/Journal of Natural History

在這種情況下,由於形態非常接近,按照傳統分類學的做法,其實很容易將一整群可能摻雜不同種的樣本全都混為一類。因此,黃銘志認為最好的做法是從基因著手,用分子生物學的方法鑑定,而不是用個體的外觀差異判斷。

當分類學家多次比對不同樣本的外形,認為這不是大王具足蟲,而基因定序的結果也和資料庫既有的物種都不匹配的時候,就可以確認牠是未經發表的新種。

延伸閱讀:新種形成——秘中之秘

根據論文發表的結果,黃銘志最後將來自新江之島水族館的新種,以發現地墨西哥灣猶加敦半島(Yucatán Peninsula)為依據,命名為猶加敦具足蟲(B.yucatanensis)。

-----廣告,請繼續往下閱讀-----

鑑定深海物種,有助於我們更認識深海

在十八、十九世紀時,科學家非常好奇深海到底有沒有生物,而如今,具足蟲就是活生生的鐵證,因此歐美國家非常重視具足蟲的學術價值。這些深海小傢伙證明了一件事:即使在光線微弱、水壓極高、溫度極低、幾乎沒有食物的環境下,還是有生物存在。

目前,我們對於月球的了解甚至還比深海多。布魯斯表示,陸生生物即使雜交,只要能產生有生殖能力的後代,原則上都可以算是同種,但水生生物並不完全遵循這個原則。

比方說,現在有很多鱘龍魚是雜交種,而且是不同種交配生下的、具有生殖能力的後代,這些不同的後代,都各自稱得上是新物種。按照這個邏輯,海洋時刻都有新物種誕生,是我們探索不完的神秘區域。

本篇論文的第三作者:尼爾.布魯斯。圖/ResearchGate

不過,相對於西方國家多半將具足蟲作為研究用途,東方國家比較在乎的反而是「這可以吃嗎?要怎麼料理才能變得更好吃?」

-----廣告,請繼續往下閱讀-----

在日本,有一種零食就是將具足蟲磨成粉後加進仙貝,讓仙貝吃起來有蝦子的味道。黃銘志笑著說:「這很暢銷!」但也補充道,他在東京大學做研究時,實驗室有個傳統,那就是「當你研究某種生物的時候,你就不吃牠們,代表你對這種生物的敬意。」

關於具足蟲,還有哪些待解之謎?

這份耗時三年的研究,不但指正了前人的研究、改變了具足蟲近百年來的分類,也暗示著既有的「群模式樣本」或許有很大的問題。換句話說,目前已知的具足蟲種類不多,可能是分類錯誤造成的結果,說不定早就有很多種摻雜在其中了!

延伸閱讀:怎麼把牠們當成一樣的物種!物種分類出錯怎麼辦?——分類學家偵探事件簿(三)

在日本,鳥羽水族館有一隻具足蟲長達五年沒進食。目前仍沒有科學家著手細探背後的原因,而牠們的食物來源、繁衍方法,以及牠們如何在極端惡劣的深海環境生存,都是接下來必須進一步探究的課題。

舉例來說,紅色在深海是一種隱性色,而深海的甲殼類生物(比如甜蝦、天使紅蝦)體內通常帶有蝦紅素,使得體表呈現紅色,可以保護牠們不被天敵發現。可是,具足蟲的分布範圍深達數千米,體內卻沒有蝦紅素,煮熟後也不會像蝦子那樣變紅。

-----廣告,請繼續往下閱讀-----

延伸閱讀:煮熟的龍蝦為什麼會變色呢?

此外,透過研究具足蟲,科學家可以更了解全球暖化對深海的影響、陸地上的重金屬和放射性物質沉進深海造成的衝擊,以及這些具足蟲是否可以取代龍蝦,成為新的食物選擇。

最近,南海的船長捕到了 80 幾隻具足蟲,黃銘志買下了形態看起來比較特殊的 10 隻,希望可以篩出更多新種,解開更多有趣的謎底。

延伸閱讀

參考資料

  1. Huang, M. C., Kawai, T., & Bruce, N. L. (2022). A new species of Bathynomus Milne-Edwards, 1879 (Isopoda: Cirolanidae) from the southern Gulf of Mexico with a redescription of Bathynomus jamesi Kou, Chen and Li, 2017 from off Pratas Island, Taiwan. Journal of Natural History, 56(13-16), 885-921.
  2. 交換日本水族館具足蟲 南大發現深水蝨新物種|生活|中央社 CNA
-----廣告,請繼續往下閱讀-----
Heidi_96
7 篇文章 ・ 13 位粉絲
PanSci 編輯部角落生物|外語系畢業,潛心於翻譯與教學,試圖淡化語言與知識的隔閡。

1

5
3

文字

分享

1
5
3
Deepfake 不一定是問題,不知道才是大問題!關於 Deepfake,你需要知道的是⋯⋯?
TingWei
・2022/01/24 ・3489字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

編按:你的理智知道「眼見不為憑」,但你的眼睛還是會背叛你的理智,不自覺得被眼前的影像所吸引,儘管你真的、真的知道他是假的。Youtuber 小玉於2021年底涉嫌利用 Deepfake 技術,偽造多位名人的色情影音內容並販售的事件,既不是第一起、也不是唯一、更不會是最後一個利用「深偽技術」進行科技犯罪的事件。

當科技在走,社會和法律該如何跟上甚至超前部署呢?本次 Deepfake 專題,由泛科學和法律白話文合作,從Deepfake 技術與辨偽技術、到法律如何因應,讓我們一起全方位解析Deepfake!

第一篇,讓我們就 Deepfake 技術做一基礎的介紹,那我們就開始囉!

什麼是 Deepfake?

深偽技術 Deepfake 於 2017 年陸續開始進入大眾的目光中。原文 Deepfake 源自於英文「deep learning」(深度學習)和「fake」(偽造)組合,主要意指應用人工智慧深度學習的技術,合成某個(不一定存在的)人的圖像或影片、甚至聲音。最常見的應用,就是將影片中的人臉替換為另一張臉(常是名人),讓指定的臉在影片中做出自己從未說過或做過的事情。

利用深度學習技術合成或是置換人臉的技術,都是屬於Deepfake。圖 / stephenwolfram

現今談到 Deepfake,大多數人想到的可能是偽造的成人影片,就如前述 Youtuber 小玉的事件,Deepfake 一開始受到關注,主要與名人或明星的臉部影像被合成到成人影片有關,然而,Deepfake 的功能遠不僅於此,相關的技術使用還包括了替換表情、合成一整張臉、合成語音等等。

除了像是讓過去或現在的名人在影片中「栩栩如生」做出使用者想要的表情與動作,之前在社群媒體上曾有好幾款 APP一度風靡,包括上傳一張照片就可以看看「變老」「變性」自己的 FaceApp,甚至於讓自己的臉在經典電影中講上一段台詞的「去演」APP,這類的功能也是應用前述 Deepfake 的技術。

雖然有些線索顯示這類 APP 常有潛在的資安疑慮[註],但好歹技術的成果多屬搏君一燦自娛娛人,尚可視為無傷大雅。

-----廣告,請繼續往下閱讀-----
「栩栩如生」的愛因斯坦

而過往電影的影音產業要仿造人臉需要應用許多複雜、耗時、昂貴的電腦模擬,有了 Deepfake 相關的技術,也使得許多只能抱憾放棄的事情出現了彌補的空間。最有名的應用應是好萊塢電影《玩命關頭7》與《星際大戰》系列。《玩命關頭7》拍攝期間主角保羅・沃克(Paul William Walker IV)意外身亡,剩下的戲份後來由弟弟擔綱演出,劇組再以 Deepfake 的技術讓哥哥弟弟連戲,整部電影才得以殺青上映。

Weta Digital 說明如何讓保羅・沃克的弟弟 Brian O’Conner 能透過 Deefake 的技術,繼續協助 保羅・沃克演完《玩命關頭7》

Deepfake 讓「變臉」變得太容易了?

想想過去的電影如《魔戒》中的咕嚕、或是 2008 年布萊德・彼特主演的《班傑明的奇幻旅程》,將影片或照片中人物「換臉」「變老」的修圖或 CG 技術,在 Deepfake 出世之前就已經存在了。Deepfake 受到關注的核心關鍵在於,應用 AI 的深度學習的演算法,加上越來越強大的電腦與手機運算能力,讓「影片換臉」這件事情變得越來越隨手可得、並且天衣無縫。

利用CG技術把布萊德・彼特「變老」。 圖 / © 2008 – Paramount Pictures

過往電影中採用的 CG 技術要花好幾個月由專業人士進行後製,才能取得難辨真偽的影像效果,而應用了 AI 演算法,只需要一台桌上型電腦甚或是手機,上網就可以取得軟體、有機會獲得差強人意的結果了。

進一步,傳統軟體演算法主要依靠工程師的持續修改調整,而如 Deepfake 這類技術,內部的演算法會經過訓練持續進化。有許多技術被應用於提高 Deepfake 的偽造效果,其中最常見的一個作法被稱為「生成對抗網路(Generative Adversarial Network, GAN)」,這裡面包含了兩組神經網路「生成器(Generator)」和「辨識器(Discriminator)」。

-----廣告,請繼續往下閱讀-----

在投入訓練資料之後,這兩組神經網路會相互學習訓練,有點像是坐在主人頭上的小天使與小惡魔會互相吐槽、口才越來越好、想出更好的點子;在練習的過程中,「生成器」會持續生成偽造的影像,而「辨識器」則負責評分,反覆訓練下來,偽造生成的技術進步,辨識偽造的技術也得以進步。

舉例來說,This Person Does Not Exist 這個網站就充滿了使用 GAN 架構建構的人臉,這個網站中的人臉看上去非常真實,實際上都是 AI 製造出來的「假臉」。

This Person Does Not Exist 裡的「假臉」。

Deepfake 影片不一定是問題,不知道是 Deepfake 才是問題

現今的 Deepfake 技術得以持續進步、騙過人眼是許多人努力的成果,也不見得都是壞事。像是《星際大戰:俠盜一號》片尾,年輕的萊婭公主出面驚鴻一瞥,就帶給許多老粉絲驚喜。這項技術應用癥結在於,相關演算法輕易就能取得,除了讓有心人可以藉以產製色情影片(這類影片佔了Deepfake濫用的半數以上),Deepfake 製造的影片在人們不知情的情況下,很有可能成為虛假訊息的載體、心理戰的武器,甚至於影響選戰與輿情。

因此,Deepfake 弄假似真不是問題,閱聽者因此「不辨真假」才將是最大的問題所在。

-----廣告,請繼續往下閱讀-----
歐巴馬的 Deepfake 影片

相關的研究人員歸納了幾個這類「變臉」影片常見的特徵,可以用來初步辨識眼前的影片是不是偽造的。

首先,由於 AI 尚無法非常細緻的處理一些動作細節,因此其眨眼、視線變化或臉部抽蓄的動作會較不自然。其次,通常在邊緣處,如髮絲、臉的邊緣線、耳環等區域會出現不連貫的狀況。最後,在一些結構細節會出現不合理的陰影瑕疵,像是嘴角的角度位置等。

由於現階段的 Deepfake 通常需要大量的訓練資料(影像或影片)才能達到理想的偽造成果,因此會遭到「換臉」的受害者,主要集中在影像資源豐富的名人,如電影明星、Youtuber、政治人物等。需要注意的是,如果有人意圖使用 Deepfake 技術製造假消息,其所製造的影片不見得需要非常完美,有可能反而降低解析度、非常粗糙,一般人如用手機瀏覽往往難辨真假。

人眼已經難辨真假,那麼以子之矛攻彼之盾,以 AI 技術辨識找出 Deepfake 的成品,有沒有機會呢?隨著 Deepfake 逐漸成為熱門的議題,有許多團隊也開始試圖藉由深度學習技術,辨識偽造影像。2020 年臉書與微軟開始舉辦的「換臉偵測大賽」(Deepfake Detection Challenge)就提供高額獎金,徵求能夠辨識造假影片的技術。然而成果只能說是差強人意,面對從未接觸過的影片,第一名辨識的準確率僅為 65.18%。

-----廣告,請繼續往下閱讀-----
「換臉偵測大賽」(Deepfake Detection Challenge)的辨識素材。圖/MetaAi

對於 Deepfake 可能遭到的濫用,某部分我們可以寄望技術的發展未來終將「道高一尺」,讓社群平台上的影像不致於毫無遮攔、照單全收;然而技術持續「魔高一丈」讓防範的科技追著跑,也是顯而易見的。

社群網路 FB 在 2020 年宣布全面禁止 Deepfake 產生的影片,一旦有確認者立即刪除,twitter 則強制註記影片為造假影片。Deepfake 僅僅是未來面對 AI 浪潮,科技社會所需要應對的其中一項議題,法律、社會規範如何跟上?如何解決箇中的著作權與倫理問題?這些都將是需要經過層層討論與驗證的重要課題。

至少大家應該心知肚明,過往的網路流行語:「有圖有真相」已經過去,接下來即將面臨的,是一個「有影片也難有真相」的網路世界了。

  • 註解:推出 FaceApp 與「去演」的兩家公司其軟體皆要求註冊,且對於上傳資料之後續處理交代不清,被認為有侵犯使用者隱私權之疑慮。

參考資料

-----廣告,請繼續往下閱讀-----
  1. Deepfakes and the New AI-Generated Fake Media Creation-Detection Arms Race – Scientific American
  2. What To Do About Deepfakes | March 2021 | Communications of the ACM
  3. Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., & Ortega-Garcia, J. (2020). Deepfakes and beyond: A survey of face manipulation and fake detection. Information Fusion, 64, 131-148.
  4. Deepfake 深偽技術的技術濫用與道德困境,大眾正要開始面對 | TechNews 科技新報
  5. 台灣團隊研究辨識Deep Fake影片 深偽技術的正邪之戰開打 | 台灣事實查核中心 (tfc-taiwan.org.tw)

-----廣告,請繼續往下閱讀-----
所有討論 1