0

0
0

文字

分享

0
0
0

《黃昏之時,三葉的名字——由數學來守護》——2018數感盃 / 高中組專題報導類第三名

PanSci_96
・2018/04/13 ・3515字 ・閱讀時間約 7 分鐘 ・SR值 541 ・八年級

-----廣告,請繼續往下閱讀-----

數感盃青少年寫作競賽」提供國中、高中職學生在培養數學素養後,一個絕佳的發揮舞台。本競賽鼓勵學生跨領域學習,運用數學知識,培養及展現邏輯思考與文字撰寫的能力,盼提升臺灣青少年科普寫作的風氣以及對數學的興趣。

本文為 2018數感盃青少年寫作競賽 / 高中組專題報導類佳作 之作品,為盡量完整呈現學生之作品樣貌,本文除首圖及標點符號、錯字之外並未進行其他大幅度編修。

圖/imdb
  • 作者:楊子毅、吳冠宏/高雄市新莊高中

一、 研究緣起

「瀧、瀧」
聲音彷彿快要哭出來般急切,宛若遠處閃爍的星星般寂寞而顫抖。
──《你的名字》,小說,第 12 頁

從夢境中醒來,幽闃裡彷彿迴盪著一個孱弱的女聲,一次次呼喊著「瀧」,隨著簾後的暮光漸次逸散。今天下午第八次重看新海誠導演 2016 年所推出的動畫電影《你的名字》,簡直以為自己也和其中角色靈魂互換了……「黃昏之時啊,分身之時」。

難以忘懷那一幕:宮水三葉手持油性筆,正欲在立花瀧手心寫下名字時,夜晚降臨,「喀噠」一聲,筆掉落在地,三葉消失了;瀧腦海中關於三葉的記憶亦被不知名的力量一把抹去。 神秘的黃昏之時,在影片中不到短短的三分鐘,不禁令我們陷入長考:黃昏之時究竟有多長呢?能否以數學運算出其時間長短,讓相差三年時空的瀧和三葉,得以把握每一分秒,敘舊、 談心、想未來?如果可以再多個一分鐘,讓三葉寫完名字……

「……本來想告訴妳……」
「不論妳在世界上的哪一個角落,我一定會再去見妳。」
──《你的名字》,小說,第 202 頁

-----廣告,請繼續往下閱讀-----

二、 文本回顧

於本章節,筆者先說明電影中的相關設定,諸如宮水一家的巫女體質、組扭編織、口嚼酒等,期以彰顯「黃昏之時」的重要性。

(一)宮水一家的巫女體質

在糸守小鎮的宮水一家,其巫女血統讓她們得以和另一個時空的人互換靈魂。此事來得突然,居住在東京的男高中生─瀧,一日驚醒,赫然發現自己變成名為三葉的女高中生!乍看又是一則時空穿越的窠臼,新海誠卻能賦予深意於這段奇異歷程:糸守小鎮即將被彗星摧毀,三葉和瀧必須及時通知居民避難,方能保全大家性命。

(二)組扭編織、口嚼酒

過去的一場大火導致古代文書付之一炬,故糸守的傳統文化組扭編織、口嚼酒等,均徒具形式,後人並不知悉其中真義。所謂「組扭編織」是把多種繽紛的細線纏繞成一條繩子, 完成後呈現各種圖案。而此條費時費工編織成的「組扭」,三葉先以其為髮帶,爾後轉贈瀧,瀧則將其綁於手腕作為幸運繩;此繩可謂兩人相遇相知的憑證與羈絆。外婆如此說道,把線連結在一起是「結」,把人連在一起也是「結」,時間的流動亦同,此為神明的名字和力量; 組扭編織亦是神明的技術,展現出時間的流動。此不僅深化組扭的意涵,亦優美詮釋出抽象的時間觀念。

而口嚼酒是三葉與瀧得以相見的關鍵之一。何也?外婆說道:「不論水、米或酒,只要是把食物放入身體的行為,也叫做『結』。因為進入身體的食物會和靈魂連在一起。」(p.88)瀧亦被告知此口嚼酒為三葉之「半身」,意即靈魂的一部份;因此,儘管三葉已死亡三年,當瀧飲下三葉的口嚼酒,即能與三葉再次進行暌違已久的靈魂互換。

-----廣告,請繼續往下閱讀-----

(三)黃昏之時

文本中提及「黃昏之時」又稱「分身之時」,言簡意賅地埋下絕佳伏筆。日語中「彼何人(tasokare)」為「黃昏(tasogare)時分」的語源;由於傍晚非屬晝夜,兼以人的輪廓變得模糊、無從辨識,於此時可能遇到妖魔或死者,故亦可稱「逢魔時刻」。此外,文本中亦說明,於糸守小鎮,當提及「傍晚」,「分身之時」是最常聽聞的說法。由此可以推測,新海誠意圖結合「逢魔時刻」和「分身之時」二說,讓三葉與瀧終得相會於黃昏之時。

三、探究分析

根據民用黃昏的定義(註一),黃昏時間由太陽落到地平線以下(太陽仰角0°)開始計算,結束於太陽位在地平線下方 6°(即太陽仰角 -6°)。然而,當人們位於地球表面不同位置 時,太陽的仰角要如何計算呢?

由於地球自轉之緣故,人在地球表面觀測太陽,可得太陽沿著赤道或緯圈面做相對運動, 亦即,假設以地球為中心(圖一中深藍小球),以人的視角看太陽每日的運動軌跡,可視為 太陽每日環繞地球一圈,以圖一中大球上的橘色圓圈為太陽某日期環繞地球的軌道,太陽在一年內的不同季節(日期)直射地球的不同緯度,最北為夏至時太陽直射北回歸線,最南則為冬至時直射南回歸線,如圖一。

假設太陽環繞地球的軌道為圓形(不考慮遠日點和近日點之影響),日地距離為 1AU, θ1為太陽一年內某日期直射之緯度(本文定義北緯緯度為正角,南緯緯度為負角),太陽軌道位於平面 z=sinθ1上,軌道半徑為 cosθ1,因此太陽軌道方程式為

-----廣告,請繼續往下閱讀-----

\(\left\{\begin{matrix}
x^2+y^2=cos^2\theta_{1}\\z=sin\theta_{1}
\end{matrix}\right.\)

再假設單日內太陽與軌道圓心連線掃過的角度為太陽的方位角θ2(如圖二)

而方位角 360° 對應 24 小時,亦即方位角每轉動 15°,意味著時間經過一小時。由以下條件可得太陽的位置為

(cosθ1cosθ2,cosθ1sinθ2,sinθ1)

-----廣告,請繼續往下閱讀-----

考慮觀測者所在之地平面,如圖三

假設觀測者所在緯度為θ3,無論觀測者所在之經度為何,其同日太陽軌道皆相同,為方便討論,不妨假設觀測者 x 座標為 0,則觀測者位置坐標為

(0,Rcosθ3,Rsinθ3)

因此地平面之法向量可為

-----廣告,請繼續往下閱讀-----

(0,cosθ3,sinθ3)

而地平面方程式為

(cosθ3)y+(sinθ3)z = R(地球半徑)

利用地平面法向量與太陽的位置向量求得太陽仰角之餘角(註二),即可得仰角,如圖四所示:

-----廣告,請繼續往下閱讀-----

電影場景中,兩人見面日期為 10 月 4 日,當日太陽直射緯度 θ3= -5.3°,見面地點是日本岐阜縣飛驒市,所在緯度θ3,約為 36.23°,令方程式(1)中 α=y,θ2=x,繪製函數圖形如圖五

 

觀察太陽仰角與時間的關係,取出圖五中代表太陽仰角0°為的方位角θ2= 176.103,代表太陽仰角為-6° 的方位角θ2=183.564°,因此太陽在軌道平面上轉動方位角

(183.564-176.103)° = 7.461°

轉換成時間就是 \(7.461^{\circ}\times\frac{24 hr}{360^{\circ}}=0.479(hr)\doteqdot 29 (min)\)

-----廣告,請繼續往下閱讀-----

在當日當時當地,黃昏之時只有短短的 29 分鐘,以致於三葉無法及時寫完名字,令人喟然,可不可以再延長一分鐘呢?

在文本中,三葉曾經抱怨糸守當地日照時間短,那麼,如果能移動到其他日照時間長之處,黃昏之時是否就能增加?運用相同方法計算同日期(10 月 4 日)各緯度黃昏時長,得表一如下。

觀察表一,我們發現日照短的高緯度地區,黃昏之時反而較久!為什麼呢?

由圖六圖七可知,高緯度地區黃昏起迄點的割線斜率絕對值 |m|較低緯度小

\begin{equation}\left| m \right |=\left|\frac{y_2-y_1}{x_2-x_1} \right|=\left|\frac{**}{\Delta \theta_2} \right|\end{equation}

**為仰角變化量

由於仰角變化量相同,所以|m| 與方位角變化量 Δθ2 成反比,因高緯度之|m|較低緯度小,故高緯度的 Δθ較低緯度大,以致黃昏時距較長,所以瀧跟三葉如欲增加一分鐘的見面時間, 必須移至北緯 39 度之處(如岩手縣),然而兩地相距 268 公里,即使搭乘時速 200 公里的民用直升機也需費時 78 分鐘!真是令人遺憾,「多一分鐘」礙於現實而無法達成。

四、結論與建議

「黃昏之時」有 29 分鐘,應足夠讓兩人寫完名字;但接下來會出現一個問題:瀧寫的不是名字,而是「我喜歡妳」。那麼,即使黃昏之時再久,三葉依舊無法得知瀧的名字。為什麼瀧要這麼做呢?

這是因為,三葉不知道自己比瀧的時空早了三年,當她特地前往東京尋找瀧時,瀧冷淡的反應讓她心碎不已。爾後,瀧透過三葉的身體記憶,明白其心路歷程,因此他決定,這一次,換他不論天涯海角地尋覓三葉;就算她忘記他也無妨,只要她活下來、記得他的心意即可。所以,瀧想單方面獲得三葉的名字,這是一種守護的心情;其中關鍵,在於一定要算好 「黃昏之時」的長短,太早寫,情境不對味且有被發現之虞。對瀧而言,最完美的設想是,三葉寫完名字之後剛好消失;所以算出這 29 分鐘,著實意義非凡。瀧要拯救的不只是系守, 他真正最想做的是守護三葉,包含生命和心。

因此我們建議,瀧可以用前 26 分鐘,敘舊、談心、想未來,留 3 分鐘提議寫名字:1 分鐘偷寫告白,1 分鐘讓三葉寫名字,1 分鐘當作緩衝;如果沒事做,就執起三葉之手、淚眼相對(她不要偷看手心即可),以上。

———————————————————————————————————————-

註一 本文採用民用黃昏定義(civil twilight)
http://aa.usno.navy.mil/faq/docs/RST_defs.php

註二 由內積的定義,\(\vec{a}\cdot\vec{b}=\left|\vec{a}\right|\left|\vec{b}\right|\cos(X)\) (X為兩項量的夾角)
移項之後可得 \(\cos(X)=\frac{\vec{a}\cdot\vec{b}}{\left|\vec{a}\right|\left|\vec{b}\right|}\)

更多2018數感盃青少年寫作競賽內容,歡迎參考 2018數感盃特輯、數感實驗室官網粉絲頁喔。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1259 篇文章 ・ 2386 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
0

文字

分享

0
3
0
從「衛生紙」開始的環保行動:一起愛地球,從 i 開始
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/03 ・1592字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

你是否也曾在抽衛生紙的瞬間,心頭閃過「這會不會讓更多森林消失」的擔憂?當最後一張衛生紙用完,內心的愧疚感也油然而生……但先別急著責怪自己,事實上,使用木製品和紙張也能很永續!只要我們選對來源、支持永續木材,你的每一個購物決策,都能將對地球的影響降到最低。

二氧化碳是「植物的食物」:碳的循環旅程

樹木的主食是水與二氧化碳,它們從空氣中吸收二氧化碳,並利用這些碳元素形成枝葉與樹幹。最終這些樹木會被砍伐,切成木材或搗成紙漿,用於各種紙張與木製品的製造。

木製品在到達其使用年限後,無論是被燃燒還是自然分解,都會重新釋放出二氧化碳。不過在碳循環中,這些釋出的二氧化碳,來自於原本被樹木「吸收」的那些二氧化碳,因此並不會增加大氣中的碳總量。

只要我們持續種植新樹,碳循環就能不斷延續,二氧化碳在不同型態間流轉,而不會大量增加溫室氣體在大氣中的總量。因為具備循環再生的特性,讓木材成為相對環保的資源。

但,為了木製品而砍伐森林,真的沒問題嗎?當然會有問題!

-----廣告,請繼續往下閱讀-----
從吸碳到固碳的循環

砍對樹,很重要

實際上,有不少木材來自於樹木豐富的熱帶雨林。然而,熱帶雨林是無數動植物的棲息地,它們承載著地球豐富的生物多樣性。當這些森林被非法砍伐,不僅生態系統遭到破壞,還有一個嚴重的問題–黃碳,也就是那些大量儲存在落葉與土壤有機質中的碳,會因為上方森林的消失重新將碳釋放進大氣之中。這些原本是森林的土地,將從固碳變成排碳大戶。

不論是黃碳問題,還是要確保雨林珍貴的生物多樣性不被影響,經營得當的人工永續林,能將對環境的影響降到最低,是紙漿和木材的理想來源。永續林的經營者通常需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。木材反覆在同一片土地上生成,因此不用再砍伐更多的原始林。在這樣的循環經營下,我們才能不必冒著破壞原始林的風險,繼續享用木製品。

人工永續林的經營者需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。

如何確保你手中的紙張來自永續林?

如果你擔心自己無意中購買了對環境不友善的商品,而不敢下手,只要認明FSC(森林管理委員會)認證與 PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。並且從森林到工廠、再到產品,流程都能被追蹤,為你把關每一張紙的生產過程合乎永續。

只要認明 FSC(森林管理委員會)認證與 PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。

家樂福「從 i 開始」:環境友善購物新選擇

不僅是紙張,家樂福自有品牌的產品都已經通過了環保認證,幫助消費者在日常生活中輕鬆實踐環保。選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌,這代表商品在生產過程中已經符合多項國際認證永續發展標準。

-----廣告,請繼續往下閱讀-----

「從 i 開始」涵蓋十大環保行動,從營養飲食、無添加物、有機產品,到生態農業、動物福利、永續漁業、減少塑料與森林保育,讓你每一項購物選擇都能與環境保護密切相關。無論是買菜、買肉,還是日常生活用品,都能透過簡單的選擇,為地球盡一份力。

選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
214 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
當哥吉拉遺忘你的名字:科幻文學教我們的事──2019泛知識節
泛知識節
・2019/06/15 ・2212字 ・閱讀時間約 4 分鐘 ・SR值 561 ・九年級

-----廣告,請繼續往下閱讀-----

  • 活動紀錄/簡克志

2019 年的泛知識節,我們邀請到陳國偉老師,現任國立中興大學台灣文學與跨國文化研究所副教授,請深耕科幻領域的他一同來與我們分享科幻文學的定義、影響又有哪些?

科幻,一種邁向未來的文類

2019年泛知識節會場,講座「當哥吉拉遺忘你的名字:科幻文學教我們的事」。講者是陳國偉老師,現任國立中興大學台灣文學與跨國文化研究所副教授。

首先,陳國偉介紹了科幻的定義。知名科幻小說家兼科學家艾西莫夫認為:「科幻小說可以被定義為文學的一個分支,它涉及人類如何反應了科學和技術的變遷。」另外一方面,海萊因則認為:「科幻小說乃根據真實世界足夠的知識與對自然和科學方法完整的認知,『寫實地』推測可能發生的事物。」

陳國偉因此認為科幻小說可以說是一種「邁向未來」的文類。

科幻電影《銀翼殺手2049》劇照
科幻電影《銀翼殺手2049》劇照。圖/ IMDb

-----廣告,請繼續往下閱讀-----

再來,陳國偉引用葉李華對科幻的定義科幻=科與幻=「科學」+「幻想」。科學是指科幻裡面有關技術層面的描寫,幻想是指科幻裡面虛構的想像。接著國偉老師引用研究科幻小說的蘇恩文,蘇恩文認為科幻小說具有「抽離」與「認知」兩種特質,並且將其運用在具有「新奇(novum)」元素的敘事上。「抽離」是指科技與時空的落差,科幻小說的科技常常是現在無法實現,但未來有可能實現的科技。「認知」則涉及了反省與批判現實,看完科幻小說之後,讀者往往會回過來反思現在。那是因為「新奇」讓讀者對現實產生了一種陌生化效果,得以用新的視角重新省視當下的現實。

科幻被區分為硬科幻軟科幻,硬科幻就是比較專注自然科學邏輯和知識設定的作品,例如:《2001 太空漫遊》或《三體》。而軟科幻是運用比較多社會學、政治學或人類學等元素的科幻作品,比較不會去詳細解釋想像出來的科技或科學現象,例如:《科學怪人》或《星際大戰》。

陳國偉進一步提到,一般人認為的科幻,通常是未來人類文明的進步景觀,或是涉及未來人類的終極命運。不過,實際上的科幻視角,多為科學樂觀主義的反省或轉向,透過末日題材來反思科學的有限性與科技失控的後果,例如:《明天過後》、《末路浩劫》、《機械公敵》或《我是傳奇》。科幻小說很多時候都是人與世界或人與其他物種關係的反省。

後人類:未來的「人」有哪些可能?

既然科幻作品中人的關係如此重要,那麼未來的「人」有哪些可能?國偉老師繼續進入「後人類」的話題。Hayles 在 1999 年的著作《我們如何成為後人類?》裡面,探討了後人類的可能形式。而林建光《賽伯格與後人類主義》裡面,認為生命的本質不在於身體,而在於資訊模式。也就是肉身可能會消滅,但是意識或記憶則可以透過資訊的形式一直保存下來。

-----廣告,請繼續往下閱讀-----

在後人類的概念裡,人與機械的界線是模糊的,因為人是以賽伯格(Cyborg,模控生物體)的形式存在。而科幻作品裡面,通常會去探討人類與後人類之間的互動之中,什麼是「人性」?「人性」如何透過後人類展現?例如:電影《AI 人工智慧》與《攻殼機動隊》。

電影《攻殼機動隊》海報
電影《攻殼機動隊》海報。圖/ IMDb

以科幻作品討論創傷的衝擊與忘卻

最後,陳國偉認為在亞洲(特別是日本),科幻作品其實還乘載著記憶與遺忘的交互辯證,是忘卻與記憶的政治裝置。日本在 2011 年發生 311 災害的傷痛,是三重末日恐懼的創傷,包括核災與戰爭的連結,讓日本人回憶起 WW II 的原子彈爆炸。還有歷年來對地震的恐懼,則呼應小松左京著作的日本科幻小說《日本沉沒》。例如:《新世紀福音戰士》劇場版裡面的第三次衝擊,就像是為了回應日本 311 災害,因為 311 就是日本百年來的第三次大地震,庵野秀明期望在末日的災難裡面找回人與人情感的連結。

陳國偉又舉了《哥吉拉》和《你的名字》為例。2016 年電影《哥吉拉》為何比《你的名字》更受到學院派和電影專業人士的歡迎?《你的名字》裡面有許多和 311 災難的巧合,例如在祭典裡面做緊急逃難廣播的女生名字和 311 受難者相同。不過在《你的名字》裡面,許多人都沒有關於隕石滅村災難的記憶,國偉老師認為劇情暗示著日本人希望忘記福島災難。但《哥吉拉》卻是對 311 災難記憶的批判。現實對於虛構,就像日本對於哥吉拉,哥吉拉就像是上述三重創傷忘卻的召喚,把創傷召喚回來。

-----廣告,請繼續往下閱讀-----

平成系列的哥吉拉經典形象。圖/WIKI

哥吉拉是海底的核廢料所催生的,正對應福島核災。電影裡面美國主張以核彈去摧毀哥吉拉,又要把核彈丟在日本。同時,哥吉拉也批判了日本官僚主義的顢頇,也呼應 311 災難中日本官方的低效率作為。《哥吉拉》作為科幻故事的載體,連結到現實日本社會的當下,不斷地提醒著人們已經忘記或想要忘記的事情。

科幻作品有著銘刻歷史記憶的功能,讓現在的人得以反思過去和勇於面對,也正是科幻文學可以教我們的事。

  • 註 1:其實葉李華在2018年的泛科學院課程〈科幻的實用定義與基本精神〉中,已經修正這種將科幻看成科與幻的定義。葉李華認為科幻難以定義。科幻(Science fiction)必須視為一個整體,不可拆開成科學(Science)加上幻想(fiction)。

只看活動記錄不過癮嗎?當天的現場影像記錄可至泛科學院免費觀賞:【線上影音】2019 泛.知識節-當哥吉拉遺忘你的名字:科幻文學教我們的事

-----廣告,請繼續往下閱讀-----
泛知識節
24 篇文章 ・ 4 位粉絲
從「科學太重要了,所以不能只交給科學家」,到「科學家太重要了,所以不能只懂科學」,再到「知識太重要了,所以不能讓它關在牆裡」,「泛知識節」為泛科知識召集之年度大型活動,承繼 PanSci 泛科學年會的精神與架構,邀請「科學」「科技」「娛樂」「旅行」四個領域的專家與耕耘者,一同談說、分享、攻錯。 這是一個大型的舞台,我們在此治茶拂席,虛位以待,請你上座。

0

3
0

文字

分享

0
3
0
《突破重「圍」一場警察與逃犯的棋盤追逐》——2018數感盃 / 高中組專題報導類第一名
PanSci_96
・2018/04/13 ・2837字 ・閱讀時間約 5 分鐘 ・SR值 541 ・八年級

-----廣告,請繼續往下閱讀-----

數感盃青少年寫作競賽」提供國中、高中職學生在培養數學素養後,一個絕佳的發揮舞台。本競賽鼓勵學生跨領域學習,運用數學知識,培養及展現邏輯思考與文字撰寫的能力,盼提升臺灣青少年科普寫作的風氣以及對數學的興趣。

本文為 2018數感盃青少年寫作競賽 / 高中組專題報導類佳作 之作品,為盡量完整呈現學生之作品樣貌,本文除首圖及標點符號、錯字之外並未進行其他大幅度編修。

圖/imdb

  • 作者:陳冠伊、柯喻朦、陳品彤/北一女中

2010 年上映的電影《關鍵救援 72 小時》,由羅素克洛(Russell Crowe)飾演的男主角 John,為了拯救被無辜關入大牢中的愛妻,從一位文質彬彬、溫和善良的大學教授,想出了劫獄的計畫,只因為他始終相信自己心愛的妻子是被冤枉的!原本有點懦弱的 John,開始著手準備計畫逃亡路線,籌措資金,觀察監獄地形。一開始他將自己上網看影片學做來打開監獄大鎖的陽春鑰匙,因為緊張到發抖而折彎,他跟黑幫混混們打交道,卻被打得渾身是傷,但後來他漸漸的轉變,他誤殺了幾個人,搶了錢,但他知道這些都是為了自由與愛。看著 John 的轉變,以及善良與使命的矛盾內心戲,更是將電影一次又一次的推到高潮!其中重要的一個片段,就是 John 第一次開始著手準備劫獄計畫,向由連恩尼遜飾演的有名逃獄專家請教逃獄時該注意的事項了!

這個片段迷人的不只是連恩尼遜帥氣的低沉嗓音,更是讓我們對封鎖域大開眼界。電影中敘述只要 15 分鐘警方即可封鎖匹茲堡市中心,35 分鐘內所有洲際收費站都會有警察站崗,二級公路還會開始進行管制!John 在地圖上以市中心為圓心畫了一圓,此即為警方可封鎖的範圍,在這個封鎖域的範圍下,誰都難逃警方的法網,只能乖乖束手就擒!

於是這引起我們的好奇,匹茲堡這麼大,警察們到底手腳要多快,才能避免飆車中的 John 在圍好封鎖域前就逃出呢?

-----廣告,請繼續往下閱讀-----

首先我們得知道匹茲堡到底有多大,經過查詢資料,匹茲堡所在的都會區約為 10000 平方公里,以此為圓面積所做出來的圓,半徑為 56.42 公里。(在此取56以方便計算)而封鎖域的總長度,也就是圓周長,則是 351.85 公里。假設以 John 出發的點為圓心,做一個半徑為 56 公里的圓,這就是警方的封鎖域。John從圓心到達封鎖域的邊界,最短距離為 56 公里。他必須在警方封鎖之前的 35 分鐘內逃出去遠走高飛,才不會被警察一槍斃命!因此 John 在不碰到任何建築物及阻礙物還有剛好天助般的都是綠燈,並且有條剛好就是半徑的馬路可以讓他在市區內盡情飆車的情況下,他的最大速率為 56 × (35/60)=96 公里/小時。

接著我們搜尋了匹茲堡的警力狀況,查詢匹茲堡警察局網站顯示目前約有 900 位警力,以 9 人為一小組,共有 100 組,而他們要在 35 分鐘內就將自己的轄區圍得天衣無縫!如此一來,一分鐘內總共得圍好 351.85÷35=10.05 公里,每一組則須完成 10公里÷100組=0.1 公里,也就是100公尺,一個人一分鐘則須圍好 11.1 公尺。若是像臺灣的凱達格蘭大道一樣,每次有重大事件總是用拒馬圍得密不透風,一分鐘把這麼重的拒馬和鐵欄擺好 11.1 公尺,實在是有點困難啊!

以 John 有最大速度 96 公里/小時,並且不外調人員,總共只有 900 位警力負責封鎖的狀況下,要能及時圍住整個封鎖域的範圍是極具挑戰性的。因此,我們開始思考是否有什麼策略,能提供警方一個在最短時間內,一定能圍住 John 的方法呢?

查詢了許多資料以後,我們找到了一篇提供我們策略構想的數學論文:The Angel Problem (引注資料[1]),由 John H.Conway(沒錯也是 John,但此 John 非彼男主角的 John)於 1996 年發表。這篇論文主要在研究天使問題,這是一個雙人遊戲,而遊戲規則是:

-----廣告,請繼續往下閱讀-----

在一個無限大的棋盤上,有一個惡魔跟一個天使,棋盤一開始是空的。開始遊戲後,天使在每一輪都可以移動最多 K 步(遊戲開始前先設定好的,稱之為天使的力量),在這 K 步中,橫的直的斜的都算一步,而且天使可以飛越過惡魔設置的路障,但是最後必須停留在沒有路障的格子內,而惡魔每一輪只可以選一個格子設置路障,但不能設在天使停留的那個格子。最後,如果天使無法再移動時,就代表惡魔贏了,相反的,如果天使可以無限的移動的話,則代表天使贏了。

康威在他的論文中,所假設的情境是:每次只能移動一格的惡魔,是否有機會可以困住天使的力量為 1000 的天使呢?這看起來是不可行的,但是康威提出了在一些假設的條件下,惡魔能夠以區區的一步,困住能飛 1000 步的天使!有趣的是,康威甚至在論文的最後,提出懸賞 1000 美金,給能夠找到證明惡魔可以困住力量為任意數(但不能為無限大)的天使的人!

我們運用了康威假設的其中一個情境的方法來發想,是否一樣能應用在警察和逃亡中的 John 這個情境中呢?

康威假設有個 Fool Angel,他只能不斷的往上飛,增加他的 y 座標,此時惡魔將會有必勝的方法圍住天使。天使的起始點為 P,由於不浪費步數,因此他的飛行範圍介於通過 P 點,兩條斜率為 ±1/1000 的邊界內。則惡魔的必勝策略為:圍住一條與起始點足夠大距離(H=1000×2N) 的邊 AB ,並在開始時每 M格放一路障,在天使達到距 AB邊 1/2H 距離的點Q 時,惡魔已經完成在 AB 以 M 為間隔的路障擺設。當天使在點 Q 時, CD邊正好是 AB邊的一半,而同樣的惡魔也在 CD 邊上,每 M 格放一路障,當天使抵達了距離 AB 邊 1/4H 距離的點R 時,惡魔已完成 CD 線段。如此一來,當天使飛到了距離 AB 邊 H’=2-MH 距離的點時,惡魔已經在AB 線段上的每一格放滿了路障。若 H為 1000×2N,1000 為天使和惡魔的速度比值,且 N>1000M,則在天使跨越距離 AB線段 1000單位距離時,惡魔早已在這條水平線和 AB 線段間的任何天使有可能到達的格子內,放滿了路障!

-----廣告,請繼續往下閱讀-----

有了康威的天使遊戲做為參考,在我們所設定的情境裡,H 為警方封鎖域的半徑 56 公里。我們可以將天使的力量想像為 John 的最大速率 96公里/小時,惡魔可以走的步數則是警察每分鐘的封路速度 0.1公里/小時。代入康威所提供的算式 H=1000×2N 中,我們姑且將 56 公里取為 2 的整數次方倍 64 公里較方便計算,John 和警察的速率比為 960 公里/小時,相當於 16 公里/分鐘,因此計算結果為:

64=16×2N

N=2且N>16M,經過計算可知,M為 1/8 公里,相當於 125 公尺。

也就是說,若匹茲堡的警察們,比照康威所提供的方法,每 125 公尺就設置一個路障,待 John 到下一點時,再從對應到的水平線距離兩端繼續往內圍,如此一來,John 勢必將被團團圍住在封鎖域中,無法逃之夭夭!

-----廣告,請繼續往下閱讀-----

雖然電影的最後,John 當然是突破重圍歷經難關,帶著妻兒離開了美國展開新生活,但是若有下一位逃犯,我們想匹茲堡的警察一定能將我們所提供的封鎖域策略派上用場的。

當 John 向連恩尼遜請教逃獄方法時,連恩尼遜最後問 John,在著手準備逃獄前,比所有方法都還更重要的是,你真的覺得自己做得到嗎?

看似不可能圍住天使的惡魔,原來也能圍住比自己擁有還要強大許多力量的天使;看似不可能在短短時間內就將 10000 平方公里大的都會區圍得密不透風,經過我們的推理計算,原來也有絕佳的保證策略能夠達成目標;看似不可能做出瘋狂逃獄計畫的溫和大學教授,為了愛為了自由,甚至為了正義,在 John 的轉變中,我們看著他一步步,將不可能轉化為可能。

只要我們相信,我們做得到。

-----廣告,請繼續往下閱讀-----

引注資料[1]: John H. Conway (1996). The Angel Problem.

更多2018數感盃青少年寫作競賽內容,歡迎參考 2018數感盃特輯、數感實驗室官網粉絲頁喔。

-----廣告,請繼續往下閱讀-----
PanSci_96
1259 篇文章 ・ 2386 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
《黃昏之時,三葉的名字——由數學來守護》——2018數感盃 / 高中組專題報導類第三名
PanSci_96
・2018/04/13 ・3515字 ・閱讀時間約 7 分鐘 ・SR值 541 ・八年級

-----廣告,請繼續往下閱讀-----

數感盃青少年寫作競賽」提供國中、高中職學生在培養數學素養後,一個絕佳的發揮舞台。本競賽鼓勵學生跨領域學習,運用數學知識,培養及展現邏輯思考與文字撰寫的能力,盼提升臺灣青少年科普寫作的風氣以及對數學的興趣。

本文為 2018數感盃青少年寫作競賽 / 高中組專題報導類佳作 之作品,為盡量完整呈現學生之作品樣貌,本文除首圖及標點符號、錯字之外並未進行其他大幅度編修。

圖/imdb

  • 作者:楊子毅、吳冠宏/高雄市新莊高中

一、 研究緣起

「瀧、瀧」
聲音彷彿快要哭出來般急切,宛若遠處閃爍的星星般寂寞而顫抖。
──《你的名字》,小說,第 12 頁

從夢境中醒來,幽闃裡彷彿迴盪著一個孱弱的女聲,一次次呼喊著「瀧」,隨著簾後的暮光漸次逸散。今天下午第八次重看新海誠導演 2016 年所推出的動畫電影《你的名字》,簡直以為自己也和其中角色靈魂互換了……「黃昏之時啊,分身之時」。

難以忘懷那一幕:宮水三葉手持油性筆,正欲在立花瀧手心寫下名字時,夜晚降臨,「喀噠」一聲,筆掉落在地,三葉消失了;瀧腦海中關於三葉的記憶亦被不知名的力量一把抹去。 神秘的黃昏之時,在影片中不到短短的三分鐘,不禁令我們陷入長考:黃昏之時究竟有多長呢?能否以數學運算出其時間長短,讓相差三年時空的瀧和三葉,得以把握每一分秒,敘舊、 談心、想未來?如果可以再多個一分鐘,讓三葉寫完名字……

-----廣告,請繼續往下閱讀-----

「……本來想告訴妳……」
「不論妳在世界上的哪一個角落,我一定會再去見妳。」
──《你的名字》,小說,第 202 頁

二、 文本回顧

於本章節,筆者先說明電影中的相關設定,諸如宮水一家的巫女體質、組扭編織、口嚼酒等,期以彰顯「黃昏之時」的重要性。

(一)宮水一家的巫女體質

在糸守小鎮的宮水一家,其巫女血統讓她們得以和另一個時空的人互換靈魂。此事來得突然,居住在東京的男高中生─瀧,一日驚醒,赫然發現自己變成名為三葉的女高中生!乍看又是一則時空穿越的窠臼,新海誠卻能賦予深意於這段奇異歷程:糸守小鎮即將被彗星摧毀,三葉和瀧必須及時通知居民避難,方能保全大家性命。

(二)組扭編織、口嚼酒

過去的一場大火導致古代文書付之一炬,故糸守的傳統文化組扭編織、口嚼酒等,均徒具形式,後人並不知悉其中真義。所謂「組扭編織」是把多種繽紛的細線纏繞成一條繩子, 完成後呈現各種圖案。而此條費時費工編織成的「組扭」,三葉先以其為髮帶,爾後轉贈瀧,瀧則將其綁於手腕作為幸運繩;此繩可謂兩人相遇相知的憑證與羈絆。外婆如此說道,把線連結在一起是「結」,把人連在一起也是「結」,時間的流動亦同,此為神明的名字和力量; 組扭編織亦是神明的技術,展現出時間的流動。此不僅深化組扭的意涵,亦優美詮釋出抽象的時間觀念。

-----廣告,請繼續往下閱讀-----

而口嚼酒是三葉與瀧得以相見的關鍵之一。何也?外婆說道:「不論水、米或酒,只要是把食物放入身體的行為,也叫做『結』。因為進入身體的食物會和靈魂連在一起。」(p.88)瀧亦被告知此口嚼酒為三葉之「半身」,意即靈魂的一部份;因此,儘管三葉已死亡三年,當瀧飲下三葉的口嚼酒,即能與三葉再次進行暌違已久的靈魂互換。

(三)黃昏之時

文本中提及「黃昏之時」又稱「分身之時」,言簡意賅地埋下絕佳伏筆。日語中「彼何人(tasokare)」為「黃昏(tasogare)時分」的語源;由於傍晚非屬晝夜,兼以人的輪廓變得模糊、無從辨識,於此時可能遇到妖魔或死者,故亦可稱「逢魔時刻」。此外,文本中亦說明,於糸守小鎮,當提及「傍晚」,「分身之時」是最常聽聞的說法。由此可以推測,新海誠意圖結合「逢魔時刻」和「分身之時」二說,讓三葉與瀧終得相會於黃昏之時。

三、探究分析

根據民用黃昏的定義(註一),黃昏時間由太陽落到地平線以下(太陽仰角0°)開始計算,結束於太陽位在地平線下方 6°(即太陽仰角 -6°)。然而,當人們位於地球表面不同位置 時,太陽的仰角要如何計算呢?

由於地球自轉之緣故,人在地球表面觀測太陽,可得太陽沿著赤道或緯圈面做相對運動, 亦即,假設以地球為中心(圖一中深藍小球),以人的視角看太陽每日的運動軌跡,可視為 太陽每日環繞地球一圈,以圖一中大球上的橘色圓圈為太陽某日期環繞地球的軌道,太陽在一年內的不同季節(日期)直射地球的不同緯度,最北為夏至時太陽直射北回歸線,最南則為冬至時直射南回歸線,如圖一。

-----廣告,請繼續往下閱讀-----

假設太陽環繞地球的軌道為圓形(不考慮遠日點和近日點之影響),日地距離為 1AU, θ1為太陽一年內某日期直射之緯度(本文定義北緯緯度為正角,南緯緯度為負角),太陽軌道位於平面 z=sinθ1上,軌道半徑為 cosθ1,因此太陽軌道方程式為

\(\left\{\begin{matrix}
x^2+y^2=cos^2\theta_{1}\\z=sin\theta_{1}
\end{matrix}\right.\)

再假設單日內太陽與軌道圓心連線掃過的角度為太陽的方位角θ2(如圖二)

而方位角 360° 對應 24 小時,亦即方位角每轉動 15°,意味著時間經過一小時。由以下條件可得太陽的位置為

-----廣告,請繼續往下閱讀-----

(cosθ1cosθ2,cosθ1sinθ2,sinθ1)

考慮觀測者所在之地平面,如圖三

假設觀測者所在緯度為θ3,無論觀測者所在之經度為何,其同日太陽軌道皆相同,為方便討論,不妨假設觀測者 x 座標為 0,則觀測者位置坐標為

(0,Rcosθ3,Rsinθ3)

-----廣告,請繼續往下閱讀-----

因此地平面之法向量可為

(0,cosθ3,sinθ3)

而地平面方程式為

(cosθ3)y+(sinθ3)z = R(地球半徑)

-----廣告,請繼續往下閱讀-----

利用地平面法向量與太陽的位置向量求得太陽仰角之餘角(註二),即可得仰角,如圖四所示:

電影場景中,兩人見面日期為 10 月 4 日,當日太陽直射緯度 θ3= -5.3°,見面地點是日本岐阜縣飛驒市,所在緯度θ3,約為 36.23°,令方程式(1)中 α=y,θ2=x,繪製函數圖形如圖五

 

觀察太陽仰角與時間的關係,取出圖五中代表太陽仰角0°為的方位角θ2= 176.103,代表太陽仰角為-6° 的方位角θ2=183.564°,因此太陽在軌道平面上轉動方位角

(183.564-176.103)° = 7.461°

-----廣告,請繼續往下閱讀-----

轉換成時間就是 \(7.461^{\circ}\times\frac{24 hr}{360^{\circ}}=0.479(hr)\doteqdot 29 (min)\)

在當日當時當地,黃昏之時只有短短的 29 分鐘,以致於三葉無法及時寫完名字,令人喟然,可不可以再延長一分鐘呢?

在文本中,三葉曾經抱怨糸守當地日照時間短,那麼,如果能移動到其他日照時間長之處,黃昏之時是否就能增加?運用相同方法計算同日期(10 月 4 日)各緯度黃昏時長,得表一如下。

觀察表一,我們發現日照短的高緯度地區,黃昏之時反而較久!為什麼呢?

由圖六圖七可知,高緯度地區黃昏起迄點的割線斜率絕對值 |m|較低緯度小

\begin{equation}\left| m \right |=\left|\frac{y_2-y_1}{x_2-x_1} \right|=\left|\frac{**}{\Delta \theta_2} \right|\end{equation}

**為仰角變化量

由於仰角變化量相同,所以|m| 與方位角變化量 Δθ2 成反比,因高緯度之|m|較低緯度小,故高緯度的 Δθ較低緯度大,以致黃昏時距較長,所以瀧跟三葉如欲增加一分鐘的見面時間, 必須移至北緯 39 度之處(如岩手縣),然而兩地相距 268 公里,即使搭乘時速 200 公里的民用直升機也需費時 78 分鐘!真是令人遺憾,「多一分鐘」礙於現實而無法達成。

四、結論與建議

「黃昏之時」有 29 分鐘,應足夠讓兩人寫完名字;但接下來會出現一個問題:瀧寫的不是名字,而是「我喜歡妳」。那麼,即使黃昏之時再久,三葉依舊無法得知瀧的名字。為什麼瀧要這麼做呢?

這是因為,三葉不知道自己比瀧的時空早了三年,當她特地前往東京尋找瀧時,瀧冷淡的反應讓她心碎不已。爾後,瀧透過三葉的身體記憶,明白其心路歷程,因此他決定,這一次,換他不論天涯海角地尋覓三葉;就算她忘記他也無妨,只要她活下來、記得他的心意即可。所以,瀧想單方面獲得三葉的名字,這是一種守護的心情;其中關鍵,在於一定要算好 「黃昏之時」的長短,太早寫,情境不對味且有被發現之虞。對瀧而言,最完美的設想是,三葉寫完名字之後剛好消失;所以算出這 29 分鐘,著實意義非凡。瀧要拯救的不只是系守, 他真正最想做的是守護三葉,包含生命和心。

因此我們建議,瀧可以用前 26 分鐘,敘舊、談心、想未來,留 3 分鐘提議寫名字:1 分鐘偷寫告白,1 分鐘讓三葉寫名字,1 分鐘當作緩衝;如果沒事做,就執起三葉之手、淚眼相對(她不要偷看手心即可),以上。

———————————————————————————————————————-

註一 本文採用民用黃昏定義(civil twilight)
http://aa.usno.navy.mil/faq/docs/RST_defs.php

註二 由內積的定義,\(\vec{a}\cdot\vec{b}=\left|\vec{a}\right|\left|\vec{b}\right|\cos(X)\) (X為兩項量的夾角)
移項之後可得 \(\cos(X)=\frac{\vec{a}\cdot\vec{b}}{\left|\vec{a}\right|\left|\vec{b}\right|}\)

更多2018數感盃青少年寫作競賽內容,歡迎參考 2018數感盃特輯、數感實驗室官網粉絲頁喔。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1259 篇文章 ・ 2386 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。