0

0
0

文字

分享

0
0
0

從塑膠到罐頭,如何避免食物容器中的雙酚A?

社團法人台灣國際生命科學會_96
・2019/04/24 ・2717字 ・閱讀時間約 5 分鐘 ・SR值 568 ・九年級

  • 作者/
    李俊璋 特聘教授│成功大學工業衛生學科暨環境醫學研究所
    張偉翔 助理研究員│環境微量毒物研究中心

食品包裝容器對我們的生活不可或缺,外食人口的增加、烹煮條件及保存需求等都會影響食品接觸材質的發展,許多一次性或重複性食品容器應勢而生,卻也使民眾對這些食品接觸材質是否會影響健康產生疑慮,其中多數金屬罐頭食品內部塗層所含的雙酚 A (Bisphenol A) 就是時下熱門的例子。

多數金屬罐頭食品內部塗層所含的雙酚A ,到底對人體有沒有危害?圖/pixabay

考量雙酚 A 對人體健康具潛在影響,歐盟於 2018 年 2 月發布命令,加嚴食品接觸材質中雙酚 A 的管制,包括嬰幼兒產品禁用及限制塑膠食品接觸材質的遷移值,並已於2018 年9 月開始實施。

本期 ILSI Taiwan 專欄邀請成功大學工業衛生學科暨環境醫學研究所李俊璋特聘教授與成功大學環境微量毒物研究中心助理研究員張偉翔博士撰文,為讀者解答何謂雙酚 A?它是如何被我們吃下肚?有哪些方法能降低雙酚A的暴露風險?

對發育有害?環境賀爾蒙雙酚A重啟研究評估

世界衛生組織國際癌症研究中心 (IARC) 尚未認定雙酚 A 對人類或動物具有致癌性,但科學證據已將雙酚 A 視為環境荷爾蒙,若過量暴露下,雙酚 A 將會干擾人體內分泌系統,對生殖及生長發育造成危害。在公眾嚴厲訴求下,歐盟食品安全局終於同意了,承諾於 2018 年重啟「雙酚 A 毒性再評估1」,針對雙酚 A以科學程序進行,篩選所有動物及人體研究數據,並參考美國提供的兩年期核心毒理研究及人體研究 (CLARITY-BPA project) 中所發表之數據,以全面性健康影響為基礎,完整進行雙酚 A 暴露之風險評估,並提供歐盟食品安全局重新制訂每日耐受量 (Tolerable Daily Intake, TDI) 之建議值

-----廣告,請繼續往下閱讀-----

吃罐頭不吃罐頭皮,怎麼會吃到雙酚A?

雙酚 A 在食品接觸材質的製造主要用於生產「聚碳酸酯塑料」─製造水瓶和餐具的常見物料。此外,雙酚 A 亦可用於製造食品和飲料金屬罐內層保護層的環氧樹脂(占市場之90%)之有機塗層2,以防止金屬罐直接與食品接觸,使食品和飲料可保存其填充物風味和營養價值長達數年。

然而愈來愈多研究發現,雙酚 A 可以從聚碳酸酯塑料或環氧樹脂內層遷移到食品與飲料中。此外,金屬罐頭的儲存時間、溫度、酸鹼值及脂肪量都會影響雙酚 A 的釋出量,並透過食用、飲用途徑進入人體。

過去嬰兒奶瓶的材料會溶出微量雙酚A,為保護嬰幼兒安全,我國已修法禁止販售使用含雙酚A材料製作的奶瓶。圖/pixabay

罐頭製品都使用,各類濃度卻不同?

在台灣,罐頭食品每年的產值高達 76 億元3。雖然罐頭食品並非普遍大眾的主食,但不少國內外研究皆指出,肉類、海鮮、蔬菜、濃湯、水果等各類罐頭食品中皆有雙酚 A 的檢出。

各國食品包裝用的金屬罐頭內層大多採用環氧樹脂等有機塗料,在製造時皆須符合雙酚 A 遷移限值,不同的食物類別因為內含物、運送、保存、烹調方式等差異皆有不同濃度檢驗值,而脂肪含量較高的罐頭食品,檢測到的雙酚 A 濃度較高則是罐頭食品的共同特性。

-----廣告,請繼續往下閱讀-----
國際間各類罐頭食品中雙酚A的平均濃度。圖/作者提供

即使低劑量,幼兒孕婦仍須注意

衛生福利部食品藥物管理署(以下簡稱食藥署)2016年委託成功大學環境微量毒物研究中心,針對全國 250 件食品樣本進行雙酚 A 含量調查,其中包含 45 件罐頭食品。調查結果與其他國家的調查相似,金屬罐頭食品中雙酚 A 平均濃度及範圍為 14.0 ± 11.4(1.22 – 49.4)μg/kg ww,較生鮮食品高約 2~3 倍,因此未來監測台灣市售罐頭食品中的雙酚 A 濃度相形重要。

依據該計畫風險評估結果顯示,每日每公斤體重從金屬罐頭中攝取雙酚 A 劑量,各年齡層皆約佔其總雙酚 A 暴露劑量 33%。相較於其他年齡層,3-6 及 6-12 歲兒童從金屬罐頭攝入雙酚 A 劑量偏高,但綜合來說,經飲食攝取之雙酚 A 劑量遠小於歐洲食品安全局 2015 年建議的每日每公斤體重耐受量 4 微克:

  • 0-3歲為0.015 微克
  • 3-6歲為0.032微克
  • 6-12歲為0.018微克
  • 12-18歲為0.014微克
  • 19-65歲為0.011 微克
  • 65歲以上為0.005微克

即使對成人而言,雙酚 A 的暴露量都在每日耐受量的範圍內,但孕婦、哺乳期及食用嬰幼兒配方奶粉和副食品的嬰幼兒等族群,皆可能受到環境中低濃度雙酚 A 暴露而導致流產、腦部、生殖、代謝、神經與免疫系統的潛在健康風險,無法排除可能影響,且除了飲食之外,若長期持續暴露於化妝品、感熱紙與灰塵之下,仍可能會超過每日耐受量。

會跑的雙酚A?各國雙酚A遷移限量規範

雙酚 A 常存於聚碳酸酯塑料及罐頭內層環氧樹脂塗料,會經由與食品接觸遷移至食物上,導致消費者暴露於雙酚 A 風險中。因此除了美國及澳洲外,各國皆以限制食品接觸材質中雙酚 A 的遷移值進行管理[註1]。目前以歐盟 2018 年 9 月公告的新管制標準最嚴格,塑膠食品接觸材質中雙酚 A 的遷移限值從 0.6 修正至0.05 ppm,與食品接觸的漆和塗料中雙酚 A 遷移值,也不得超過0.05 ppm。用於嬰幼兒食品接觸材質上的漆和塗料禁用雙酚 A,亦不得用於製造嬰兒用聚碳酸酯奶瓶、嬰幼兒用飲用杯或瓶子。

-----廣告,請繼續往下閱讀-----

在台灣,環保署已於 2009 年公告雙酚 A 為第四類毒性化學物質-疑似毒化物,相關業者在使用時需有政府核可文件。食藥署於食品接觸材質中雙酚 A 的遷移值,則限制為不得超過 0.6 ppm,日本的規範限值最寬鬆,不得超過 2.5 ppm,中國則與台灣相同。

國際間食品接觸物質中雙酚A規範限值。圖/作者提供

生活中隨處可見,如何降低雙酚A 的暴露風險?

雖然罐頭食品並非國人的主食,且台灣罐頭食品中的雙酚 A 濃度均低於國際罐頭食品中雙酚 A 調查結果,各年齡層的平均暴露量亦小於歐盟食品安全局的建議值,但是對於經常食用或大量食用罐頭食品者,仍可能有雙酚 A 暴露過量並對人體造成潛在健康風險。

呼籲民眾採取均衡飲食原則,分散購買的食物來源與種類,避免長期過度食用相同種類的食物,尤其是金屬罐頭食品,以降低雙酚 A 的累積暴露風險。若要加熱食用金屬罐頭食品時,切勿將金屬罐頭直接置於火上加熱、隔水加熱,或用電鍋直接加熱的方式,以避免因高溫烹煮時金屬罐塗層之雙酚 A 遷移至食品中而被吃下肚。食用罐頭食品前應先將罐內的食品取出,改使用玻璃、陶瓷或不鏽鋼等容器盛裝再加熱食用。

備註

參考資料

  1. European Food Safety Authority. BPA plan ready for new EFSA assessment in 2018.
  2. Food Packaging Forum
  3. 陳麗婷、邱盟媚、鄔嫣珊,2015,國內調理食品巿場需求變化與展望,食品研究所。
文章難易度
社團法人台灣國際生命科學會_96
28 篇文章 ・ 8 位粉絲
創會於2013年,這是一個同時能讓產業界、學術界和公領域積極交流合作及凝聚共識的平台。期望基於科學實證,探討營養、食品安全、毒理學、風險評估以及環境的議題,尋求最佳的科學解決方法,以共創全民安心的飲食環境。欲進一步了解,請至:ww.ilsitaiwan.org

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

4

20
2

文字

分享

4
20
2
太甜的鳳梨不能做罐頭?夏威夷披薩幫不了鳳梨農?黃澄澄甜膩膩的鳳梨身世大解密
陳明陽_96
・2021/03/17 ・1925字 ・閱讀時間約 4 分鐘 ・SR值 475 ・五年級

-----廣告,請繼續往下閱讀-----

圖/Pixabay

中國在 2 月 26 日,以驗出介殼蟲為由,自 3 月 1 日起暫停進口台灣鳳梨,為了避免即將來到的鳳梨盛產季生產過剩,造成滯銷,許多政治人物都呼籲國人多吃國產鳳梨,因而掀起一波鳳梨購買熱潮,有人說鳳梨可以拿來打成果汁、做成果乾、炒鳳梨木耳,還有人提出可以多吃夏威夷披薩和鳳梨酥來消耗鳳梨。

此外,前立委候選人林佳新也質疑政府為何台糖的鳳梨罐頭都來自泰國,為何不讓鳳梨罐頭產線重回台灣?對此行政院長蘇貞昌的回應則是台灣的鳳梨太甜,不能做成罐頭。

太甜的鳳梨不能做成罐頭?鳳梨罐頭和我們一般吃的鳳梨有差別嗎?夏威夷披薩和鳳梨酥可以幫助到鳳梨農嗎?在釐清這些鳳梨小知識之前,我們先來讀一段鳳梨的歷史。

鳳梨是台灣戰後經濟的護國神山之一

台灣在戰後的 1950 至 70 年代,是台灣的鳳梨生產的黃金年代,當時的鳳梨以種植加工品種為主,甚至還一度登上全球鳳梨罐頭出口龍頭呢!當時的鳳梨罐頭生產工業與洋菇、蘆筍合稱為「三罐王」,是當時經濟的護國神山,然而後來因為台灣的農業生產成本提高,產業轉向工業轉型邁進,鳳梨罐頭的產業鏈也因競爭力下降,轉往工資較低廉的泰國、菲律賓等東南亞國家。

目前台灣鳳梨罐頭的主要進口國,大多來自全球最大的鳳梨罐頭生產地泰國,自從產業出走之後,台灣的鳳梨生產就轉以栽種鮮食用的品種為主了。

-----廣告,請繼續往下閱讀-----

生產過剩的鳳梨可以拿來做罐頭嗎?

鳳梨按照用途可粗略分成鮮食用和加工用兩種類型,台灣生產的鳳梨中,有超過 9 成栽種的是鮮食鳳梨。目前以 1998 年完成命名,俗稱金鑽鳳梨的台農 17 號為最大宗,另外有部分栽培加工鮮食兩用鳳梨,以俗稱土鳳梨的開英種為主,包括台農 2 號和 3 號鳳梨等,目前開英種的栽培主要為與鳳梨酥業者契作的模式。

開英種果型方正、花腔淺、纖維較粗,適合拿來做成罐頭,也可以做成鳳梨酥內餡,一般來說,加工用的農產品追求產量,產品外觀則為其次,果肉酸一點或不夠甜都沒關係,因為在生產過程中可以加入砂糖改良口感,而粗糙的纖維也會因為高溫烹煮殺菌的過程,與酸性的水溶液共同作用,打斷纖維素的部分氫鍵,使得口感變得更為軟嫩,更易入口。

鮮食品種力求纖維細緻、甜度高,相對種植管理需求和生產成本也比較高,適合直接食用,細緻多汁的口感甚至可能因為加工而變的軟爛,而犧牲原有的品質(想像你打開鳳梨罐頭結果出現鳳梨醬的情景),更何況鮮食種在市場販賣的價格也比罐頭好,因此不是太甜的鳳梨不能拿來加工,而是拿來做成罐頭太可惜了!然而,還是有少數金鑽鳳梨會拿來加工成果乾、果醬、水果酒等等,因為這些加工產品的經濟價值比較高,農產品是否用來加工,主要考量的是經濟效益。

你知道鳳梨酥也有四大門派嗎?分別是純用冬瓜醬做成的古早旺來酥、混合了鳳梨和冬瓜醬製成的傳統鳳梨酥、口味酸一點的土鳳梨酥以及食用鳳梨做出來的金鑽鳳梨酥。圖/Wikipedia

夏威夷披薩和鳳梨酥可不可以幫助到鳳梨農呢?

鮮食用鳳梨具有一定的保存期限,販售壓力大於加工後的鳳梨,賣不掉的鳳梨常常只能倒掉回收,所以鮮食鳳梨較具有銷售壓力。

-----廣告,請繼續往下閱讀-----

大多數的夏威夷披薩都是使用鳳梨罐頭製作,而鳳梨罐頭都是國外進口的,因此吃夏威夷披薩,並不會幫助消耗國產鮮食鳳梨!除非有商店強調使用國產的金鑽鳳梨製作披薩,才會對消費本土鳳梨有幫助。

而傳統鳳梨酥主要使用冬瓜醬製作,後來才有使用全鳳梨醬的鳳梨酥出現,目前市面上常見的鳳梨酥就有:冬瓜醬混土鳳梨醬的混合鳳梨酥、用開英種作成的土鳳梨醬和金鑽鳳梨酥等三種,不管是吃冬瓜醬還是土鳳梨醬的鳳梨酥,都可能對即將盛產的金鑽鳳梨幫助不大喔!

但比起這些加工食品,消耗鳳梨最簡單的方式,就是多吃新鮮鳳梨,畢竟育種家育出鮮食用的鳳梨本來就是要拿來生吃的!

每餐都吃夏威夷披薩,是連吃一百年也幫不到臺灣鳳梨農夫的。圖/Wikipedia

資料來源:

  1. 《穿越時空愛鳳梨》鳳梨罐頭曾是台灣護國神山,照亮台灣經濟
  2. 作物病蟲害與肥培管理技術資料光碟:果樹/常綠果樹/鳳梨
  3. 歷經 86 年努力,培育鳳梨國家隊 18 強!鳳梨專家官青杉,揭開台灣鳳梨好吃秘密
  4. 為什麼以前的鳳梨酥沒有鳳梨,要用冬瓜醬?
所有討論 4

0

0
0

文字

分享

0
0
0
從塑膠到罐頭,如何避免食物容器中的雙酚A?
社團法人台灣國際生命科學會_96
・2019/04/24 ・2717字 ・閱讀時間約 5 分鐘 ・SR值 568 ・九年級

  • 作者/
    李俊璋 特聘教授│成功大學工業衛生學科暨環境醫學研究所
    張偉翔 助理研究員│環境微量毒物研究中心

食品包裝容器對我們的生活不可或缺,外食人口的增加、烹煮條件及保存需求等都會影響食品接觸材質的發展,許多一次性或重複性食品容器應勢而生,卻也使民眾對這些食品接觸材質是否會影響健康產生疑慮,其中多數金屬罐頭食品內部塗層所含的雙酚 A (Bisphenol A) 就是時下熱門的例子。

多數金屬罐頭食品內部塗層所含的雙酚A ,到底對人體有沒有危害?圖/pixabay

考量雙酚 A 對人體健康具潛在影響,歐盟於 2018 年 2 月發布命令,加嚴食品接觸材質中雙酚 A 的管制,包括嬰幼兒產品禁用及限制塑膠食品接觸材質的遷移值,並已於2018 年9 月開始實施。

本期 ILSI Taiwan 專欄邀請成功大學工業衛生學科暨環境醫學研究所李俊璋特聘教授與成功大學環境微量毒物研究中心助理研究員張偉翔博士撰文,為讀者解答何謂雙酚 A?它是如何被我們吃下肚?有哪些方法能降低雙酚A的暴露風險?

-----廣告,請繼續往下閱讀-----

對發育有害?環境賀爾蒙雙酚A重啟研究評估

世界衛生組織國際癌症研究中心 (IARC) 尚未認定雙酚 A 對人類或動物具有致癌性,但科學證據已將雙酚 A 視為環境荷爾蒙,若過量暴露下,雙酚 A 將會干擾人體內分泌系統,對生殖及生長發育造成危害。在公眾嚴厲訴求下,歐盟食品安全局終於同意了,承諾於 2018 年重啟「雙酚 A 毒性再評估1」,針對雙酚 A以科學程序進行,篩選所有動物及人體研究數據,並參考美國提供的兩年期核心毒理研究及人體研究 (CLARITY-BPA project) 中所發表之數據,以全面性健康影響為基礎,完整進行雙酚 A 暴露之風險評估,並提供歐盟食品安全局重新制訂每日耐受量 (Tolerable Daily Intake, TDI) 之建議值

吃罐頭不吃罐頭皮,怎麼會吃到雙酚A?

雙酚 A 在食品接觸材質的製造主要用於生產「聚碳酸酯塑料」─製造水瓶和餐具的常見物料。此外,雙酚 A 亦可用於製造食品和飲料金屬罐內層保護層的環氧樹脂(占市場之90%)之有機塗層2,以防止金屬罐直接與食品接觸,使食品和飲料可保存其填充物風味和營養價值長達數年。

然而愈來愈多研究發現,雙酚 A 可以從聚碳酸酯塑料或環氧樹脂內層遷移到食品與飲料中。此外,金屬罐頭的儲存時間、溫度、酸鹼值及脂肪量都會影響雙酚 A 的釋出量,並透過食用、飲用途徑進入人體。

過去嬰兒奶瓶的材料會溶出微量雙酚A,為保護嬰幼兒安全,我國已修法禁止販售使用含雙酚A材料製作的奶瓶。圖/pixabay

-----廣告,請繼續往下閱讀-----

罐頭製品都使用,各類濃度卻不同?

在台灣,罐頭食品每年的產值高達 76 億元3。雖然罐頭食品並非普遍大眾的主食,但不少國內外研究皆指出,肉類、海鮮、蔬菜、濃湯、水果等各類罐頭食品中皆有雙酚 A 的檢出。

各國食品包裝用的金屬罐頭內層大多採用環氧樹脂等有機塗料,在製造時皆須符合雙酚 A 遷移限值,不同的食物類別因為內含物、運送、保存、烹調方式等差異皆有不同濃度檢驗值,而脂肪含量較高的罐頭食品,檢測到的雙酚 A 濃度較高則是罐頭食品的共同特性。

國際間各類罐頭食品中雙酚A的平均濃度。圖/作者提供

即使低劑量,幼兒孕婦仍須注意

衛生福利部食品藥物管理署(以下簡稱食藥署)2016年委託成功大學環境微量毒物研究中心,針對全國 250 件食品樣本進行雙酚 A 含量調查,其中包含 45 件罐頭食品。調查結果與其他國家的調查相似,金屬罐頭食品中雙酚 A 平均濃度及範圍為 14.0 ± 11.4(1.22 – 49.4)μg/kg ww,較生鮮食品高約 2~3 倍,因此未來監測台灣市售罐頭食品中的雙酚 A 濃度相形重要。

-----廣告,請繼續往下閱讀-----

依據該計畫風險評估結果顯示,每日每公斤體重從金屬罐頭中攝取雙酚 A 劑量,各年齡層皆約佔其總雙酚 A 暴露劑量 33%。相較於其他年齡層,3-6 及 6-12 歲兒童從金屬罐頭攝入雙酚 A 劑量偏高,但綜合來說,經飲食攝取之雙酚 A 劑量遠小於歐洲食品安全局 2015 年建議的每日每公斤體重耐受量 4 微克:

  • 0-3歲為0.015 微克
  • 3-6歲為0.032微克
  • 6-12歲為0.018微克
  • 12-18歲為0.014微克
  • 19-65歲為0.011 微克
  • 65歲以上為0.005微克

即使對成人而言,雙酚 A 的暴露量都在每日耐受量的範圍內,但孕婦、哺乳期及食用嬰幼兒配方奶粉和副食品的嬰幼兒等族群,皆可能受到環境中低濃度雙酚 A 暴露而導致流產、腦部、生殖、代謝、神經與免疫系統的潛在健康風險,無法排除可能影響,且除了飲食之外,若長期持續暴露於化妝品、感熱紙與灰塵之下,仍可能會超過每日耐受量。

會跑的雙酚A?各國雙酚A遷移限量規範

雙酚 A 常存於聚碳酸酯塑料及罐頭內層環氧樹脂塗料,會經由與食品接觸遷移至食物上,導致消費者暴露於雙酚 A 風險中。因此除了美國及澳洲外,各國皆以限制食品接觸材質中雙酚 A 的遷移值進行管理[註1]。目前以歐盟 2018 年 9 月公告的新管制標準最嚴格,塑膠食品接觸材質中雙酚 A 的遷移限值從 0.6 修正至0.05 ppm,與食品接觸的漆和塗料中雙酚 A 遷移值,也不得超過0.05 ppm。用於嬰幼兒食品接觸材質上的漆和塗料禁用雙酚 A,亦不得用於製造嬰兒用聚碳酸酯奶瓶、嬰幼兒用飲用杯或瓶子。

在台灣,環保署已於 2009 年公告雙酚 A 為第四類毒性化學物質-疑似毒化物,相關業者在使用時需有政府核可文件。食藥署於食品接觸材質中雙酚 A 的遷移值,則限制為不得超過 0.6 ppm,日本的規範限值最寬鬆,不得超過 2.5 ppm,中國則與台灣相同。

-----廣告,請繼續往下閱讀-----

國際間食品接觸物質中雙酚A規範限值。圖/作者提供

生活中隨處可見,如何降低雙酚A 的暴露風險?

雖然罐頭食品並非國人的主食,且台灣罐頭食品中的雙酚 A 濃度均低於國際罐頭食品中雙酚 A 調查結果,各年齡層的平均暴露量亦小於歐盟食品安全局的建議值,但是對於經常食用或大量食用罐頭食品者,仍可能有雙酚 A 暴露過量並對人體造成潛在健康風險。

呼籲民眾採取均衡飲食原則,分散購買的食物來源與種類,避免長期過度食用相同種類的食物,尤其是金屬罐頭食品,以降低雙酚 A 的累積暴露風險。若要加熱食用金屬罐頭食品時,切勿將金屬罐頭直接置於火上加熱、隔水加熱,或用電鍋直接加熱的方式,以避免因高溫烹煮時金屬罐塗層之雙酚 A 遷移至食品中而被吃下肚。食用罐頭食品前應先將罐內的食品取出,改使用玻璃、陶瓷或不鏽鋼等容器盛裝再加熱食用。

備註

參考資料

  1. European Food Safety Authority. BPA plan ready for new EFSA assessment in 2018.
  2. Food Packaging Forum
  3. 陳麗婷、邱盟媚、鄔嫣珊,2015,國內調理食品巿場需求變化與展望,食品研究所。
文章難易度
社團法人台灣國際生命科學會_96
28 篇文章 ・ 8 位粉絲
創會於2013年,這是一個同時能讓產業界、學術界和公領域積極交流合作及凝聚共識的平台。期望基於科學實證,探討營養、食品安全、毒理學、風險評估以及環境的議題,尋求最佳的科學解決方法,以共創全民安心的飲食環境。欲進一步了解,請至:ww.ilsitaiwan.org

2

7
6

文字

分享

2
7
6
塑膠瓶泡牛奶,竟讓寶寶吞下數百萬塑膠微粒?恐慌的爸媽們,請先冷靜!
羅夏_96
・2020/11/29 ・2169字 ・閱讀時間約 4 分鐘 ・SR值 532 ・七年級

-----廣告,請繼續往下閱讀-----

寶寶快快喝奶,然後看著孩子健健康康的快樂長大,想必都能帶給父母莫大的喜悅。但發表在 Nature Food 的新研究指出,在用塑膠奶瓶沖泡配方奶的同時,也會產生大量的塑膠微粒,隨著配方奶一同被寶寶喝下肚。

寶寶喝奶的同時,可能也把塑膠微粒喝下肚!圖/Pixabay

雖然有關塑膠微粒對人體影響的研究並不多,但讓寶寶喝下塑膠微粒這種讓人擔憂的情境,或許能增加人們對此的重視與研究。

什麼是塑膠微粒?從哪裡來?

目前科學上對塑膠微粒(Microplastics)沒有有明確的標準定義,但依據各界(如美國國家海洋暨大氣總署,NOAA)的普遍定義,塑膠微粒是直徑或長度少於 5 毫米(5 mm)的塊狀、細絲或球體的塑膠碎片。

其來源可分為三種,第一種是塑膠原料為了特定目的而生產的塑膠顆粒,一開始就製成小尺寸(如:洗面乳的柔珠),其融化後可製成更大的塑膠物、塑膠片;第二種是大塊塑膠經過風吹日曬、高溫等影響導致其脆化和分解後產生的小分子;第三種則是纖維,來自石油提煉產品所生產的布料、人造纖維(如:聚酯纖維、尼龍纖維等)清洗過程中產生的碎屑顆粒。

-----廣告,請繼續往下閱讀-----
隨著時間,大塊的、大片的塑膠也會逐漸變成小小的微粒塑膠。圖/Pixabay

愛爾蘭的三一學院的團隊近期發表了研究報告,他們依照國際衛生組織 (World Health Organization, WHO)建議的消毒方式與嬰兒配方奶沖泡指示測試了十種從 Amazon 買來的嬰兒用奶瓶,發現皆會產生大量的塑膠微粒。

聚丙烯 (polypropylene, PP)是一種常用於食品製造和存放的塑膠,而這些嬰兒用奶瓶不是全都由 PP、就是部分由 PP 而製成。

溫度增加,塑膠微粒也增加

他們發現,在奶瓶消毒的過程中,會產生 130 萬到 1620 萬的塑膠微粒。

尤其用滾燙的水直接沖洗奶瓶來消毒的方式,是讓塑膠微粒大量產生的關鍵。當消毒用水的溫度由 25℃ 上升到 77℃ 後,塑膠微粒的數量也由 60 萬上升到 550 萬。而且對單一奶瓶重複試驗 21 天,其產生的塑膠微粒數量並沒有降低。

該團隊根據這項初步研究,進一步分析世界不同地區對奶瓶種類的使用、每日平均配方奶攝取量、哺乳率等因素,來統計 12 個月大的嬰兒暴露在塑膠微粒的機會有多少。

-----廣告,請繼續往下閱讀-----

他們總結:亞洲和非洲地區的嬰兒暴露的機會最少;北美、歐洲與大洋洲的嬰兒暴露機會最大。

降低微粒釋放,可以怎麼做?

根據研究結果,他們有以下幾點建議來降低塑膠微粒釋放到奶瓶中。

不要讓沸水接觸奶瓶是首要原則。圖/Wikimedia

第一也是最重要的:不要重複用沸水消毒塑膠奶瓶,也不要直接在塑膠奶瓶中用沸水沖泡配方奶,更不要在使用塑膠奶瓶沖泡時使用微波爐!

他們建議應該使用非塑膠容器和至少 70℃ 的水來沖泡配方奶,待配方奶的溫度降到常溫後,再將其移到高品質的嬰兒餵食用塑膠容器中。

至於消毒方面,他們建議沖泡配方奶的容器應用玻璃或不鏽鋼等材質,用沸水沖洗後以常溫滅菌後的水至少再潤洗三次較佳。

-----廣告,請繼續往下閱讀-----

等等,塑膠微粒真的那麼可怕嗎?

在你開始焦慮、恐慌之前,也千萬別忽略以下幾個重點!

首先,關於塑膠微粒對於人體健康的影響,目前並沒有太多研究,同樣地,塑膠微粒在食品中是否有毒性,也沒有足夠和確切的證據與研究。

誒等等!我們確定塑膠微粒真的有害嗎?圖/Giphy

近期 WHO 發出聲明:「沒有證據指出塑膠微粒在飲用水中會造成健康影響」,但也別因此又疏忽大意、每天用熱水重複沖洗奶瓶了,畢竟這項聲明也是從當前有限資料中得出的結論。

另外,這篇研究的團隊也表示,他們並不想提出任何有關嬰兒飲食安全的建議,也沒有想對家長們大聲疾呼這個議題,只是希望這篇研究能拋磚引玉,讓更多研究團隊和組織能重視塑膠微粒對人體和健康的影響,進而加速此領域的研究。

墨爾本皇家理工大學的 Oliver Jones 教授也分享了自己的看法:

-----廣告,請繼續往下閱讀-----

當他第一眼看到這個研究的標題和結論時,感到很驚恐,但細想之後,他才發現我們目前對於塑膠微粒之於人體的影響所知甚少,遑論其毒性。

這篇研究確實成功引起不少學者的注意,包括他自己。「這篇研究是拼圖的一小塊,讓我們意識到或許塑膠微粒的問題比我們想像的更大。這個議題是需要跨領域的研究和整合,而且越快越好!」Oliver Jones 教授如此說道。

參考資料

  1. Li, D., Shi, Y., Yang, L., Xiao, L., Kehoe, D. K., Gun’ko, Y. K., … & Wang, J. J. (2020). Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nature Food, 1-9.
  2. World Health Organization《Microplastics in drinking-water》
  3. EXPERT REACTION: Babies exposed to huge amounts of microplastics from their bottles
所有討論 2
羅夏_96
52 篇文章 ・ 870 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟