Loading [MathJax]/extensions/tex2jax.js

2

24
5

文字

分享

2
24
5

我們吃下去的各種「豆腐」到底怎麼來的?——解開豆腐的身世之謎

阿咏_96
・2021/03/11 ・2665字 ・閱讀時間約 5 分鐘 ・SR值 557 ・八年級

豆腐、豆花都是餐桌上常見的食物,雖然它們登場的方式有時不太一樣,豆腐有時在火鍋裡出現,有時也會做成麻婆豆腐、涼拌豆腐、油豆腐⋯⋯(再列下去都餓了XD)。日常中豆腐的種類這麼多,到底豆腐是怎麼被發明的?製作的原理是什麼?各種豆腐的差異又在哪裡?

今天,就一起來揭開豆腐的「身世之謎」吧!

豆腐。圖/Wikipedia

豆腐的歷史

豆腐是怎麼被發明的呢?相傳漢朝年間,淮南王劉安為侍奉病母,每天將黃豆磨成豆漿供母親飲用,劉安在八公山煉丹時,不小心將石膏倒入豆漿,使之凝結成為豆腐,從此中國淮南被稱作豆腐之鄉。然而豆腐的詳細做法直到李時珍的本草綱目6中才被首次記載。

凡黑豆、黃豆及白豆、泥豆、豌豆、綠豆之類,皆可為之。水浸,磑碎。濾去渣,煎成。以鹽滷汁或山礬葉或酸漿醋淀,就釜收之。」——《本草綱目》卷二十五 谷部 豆腐

後來豆腐傳入日本,流傳於亞洲各國,因此豆腐在東亞算是歷史悠久的食品,目前豆腐的產品發展多元化,許多業者仍不斷改良豆腐,以供應市場需求,也因此我們能夠吃到各式各樣的豆腐。

-----廣告,請繼續往下閱讀-----
淮南王劉安不小心將石膏倒入豆漿製成豆腐。圖/Pexels

從豆漿怎麼變出豆腐?

那豆腐是怎麼製成的呢?我們需要先從豆漿開始。將黃豆及水打碎後,濾去殘渣,接著煮沸而成為豆漿,但為什麼需要煮沸呢?

首先,我們人體腸道裡有胰臟分泌的「胰蛋白酶」,而黃豆裡含有「胰蛋白酶抑制劑 (trypsin inhibitor) 」,會抑制胰蛋白酶的作用,影響蛋白質分解,無法吸收,導致消化不良。因此,煮沸便是利用「蛋白質遇熱會變性」的原理,使胰蛋白酶抑制劑受熱變性、失去原本的作用。

有了豆漿之後,下一步驟稱為「點鹵」,也就是加入凝固劑,例如鹽滷或是石膏,將蛋白質凝聚起來。豆漿跟咖啡、牛奶一樣,都屬於「膠體溶液」。

所謂「膠體溶液」,跟其他溶液相比粒子比較大,並帶相同電荷而互相排斥,能夠克服本身的重量,懸浮在溶液中,不產生沈澱。加入電解質後,電性相異的離子將膠體粒子包覆,電性中和失去排斥力的粒子無法懸浮在溶液中,自然沈澱。

鹽滷是製鹽過程中的副產物,成分主要是氯化鎂 MgCl2。豆漿的蛋白質大多帶負電,鹽滷加入溶液後,氯化鎂解離為氯離子和鎂離子,鎂離子的正電中和蛋白質的負電,產生沈澱,將沈澱以外的液體濾出後,壓實晾乾製成的便為豆腐。而使用石膏 CaSO4 作為凝固劑也是相同的原理。

-----廣告,請繼續往下閱讀-----
鎂離子的正電中和蛋白質的負電,產生沉澱後,以重物壓實曬乾製成豆腐。圖/Wikipedia

隨著現代食品工業的發展,含水量高、口感細膩的盒裝豆腐誕生,和傳統製程不同在於,添加葡萄糖酸內酯,利用的是蛋白質在達到等電點時會凝固,原因是隨溶液 pH 值不同,蛋白質帶的電荷會因失去或獲得 H+ 而改變,當電荷平衡時,斥力消失,溶液中的膠體粒子較容易凝集,此時溶液的 pH 值即為等電點10

葡萄糖酸內酯經加熱後水解出葡萄糖酸,降低溶液 pH 值,達到大豆蛋白溶液等電點時,蛋白質分子不互相排斥而凝聚,達到凝固的效果。因製程中不會除去水分,因此較為滑嫩、入口即化。

這些豆腐你認識嗎?

在加工的過程中,使用不同濃度的豆漿或是凝固劑,或調整時間、溫度等,都能夠創造出更多樣的口感及品質,讓我們有在飲食上有更多選擇。譬如鹽滷製成的豆腐質地較脆,反之,以石膏作為凝固劑製成的豆腐,口感會比較細緻4

在點鹵後,去除多餘的溶液,定型後便是我們常吃的點心豆花。傳統豆腐則是在定型前,倒入墊著紗布的木框模,加壓擠出水分後,至冷卻形成,放置時間越久、壓的重量越重,含水量便越低,則口感越扎實,例如「板豆腐」是用石膏點鹵,放置較長時間後製成的,吃起來就比較硬,含鈣量也較高。再來,若將硬豆腐冷凍,使豆腐內部分子結凍,解凍之後水分流失,就變成了充滿孔隙的凍豆腐。

-----廣告,請繼續往下閱讀-----

而嫩豆腐則少了傳統豆腐的加壓過程,因此營養成分都保留在豆腐中,外觀沒有布紋且細緻,又稱營養豆腐或涓豆腐4

另外,之前網路上流傳的一篇文章——「百頁豆腐不是豆腐?!」又是怎麼回事呢?

其實百頁豆腐的製作過程的確與傳統豆腐不同,是由大豆分離蛋白、沙拉油、澱粉、水為成分,以硫酸鈣為凝固劑,再經過蒸煮而成,也因此油脂含量較高。

最後,有趣的是,有些豆腐不一定含有大豆成份,卻也被稱為豆腐。例如芙蓉豆腐,是以雞蛋為主要原料,經過過濾及蒸煮,質地像豆腐一樣軟嫩,因此稱作芙蓉豆腐。還有,魚豆腐主要也是以魚漿做成,並非所有魚豆腐在加工過程中都會添加大豆,但由於外觀及口感跟豆腐相似,所以叫做魚豆腐2

總之,豆腐除了在口感及風味上,帶給我們美食的饗宴外,其中豆類也是很重要的蛋白質來源,了解豆腐的前世今生後,在享受美味的同時,希望大家也能也注意到營養攝取的均衡,在餐桌上選擇最適合的豆腐。

-----廣告,請繼續往下閱讀-----
  1. 百頁豆腐不是豆腐?台大化工博士揭密「成分」
  2. 嫩豆腐、板豆腐、芙蓉豆腐怎麼分?
  3. 【圖解】豆腐種類多,嫩豆腐、魚豆腐…你分得清嗎?
  4. 加工條件對豆漿蛋白質結構與豆腐品質的影響
  5. 百變蛋白質
  6. 【台灣綠食堂】一塊「乾淨」豆腐的想望 平民美食背後的成本學
  7. 食物的科學魔法!如何把豆漿變成豆花呢?
  8. 不直接吃黃豆的理由:關於豆類加工品的二三事
  9. 豆腐 – 維基百科,自由的百科全書
  10. 國家教育研究院雙語詞彙、學術名詞暨辭書資訊網
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
阿咏_96
12 篇文章 ・ 723 位粉絲
You can be the change you want to see in the world.

0

2
0

文字

分享

0
2
0
「別來無恙」不只是招呼
顯微觀點_96
・2025/04/12 ・2349字 ・閱讀時間約 4 分鐘

本文轉載自顯微觀點

圖/照護線上

我最親愛的 你過的怎麼樣  沒我的日子 你別來無恙   -張惠妹《我最親愛的》

常常聽到「別來無恙」的問候,其中的「恙」就是指「恙蟲」。在唐朝顏師古的《匡謬正俗》一書中便提到:「恙,噬人蟲也,善食人心。古者草居,多移此害,故相問勞,曰無恙。」用以關心久未見面的朋友沒有染讓恙蟲病、一切安好。

而清明節一到,衛福部疾管署便會提醒民眾上山掃墓或是趁連假到戶外踏青,要小心「恙蟲病」,就是因為每年恙蟲病的病例數從4、5月,也就是清明假期左右開始上升;到6、7月達最高峰。

Qingming Or Ching Ming Festival, Also Known As Tomb Sweeping Day In English, A Traditional Chinese Festival Vector Illustration.
圖/照護線上

但恙蟲病到底是什麼樣的疾病呢?恙蟲病古時被稱為沙虱,早在晉朝葛洪所著的醫書《肘後方》提及,「初得之,皮上正赤,如小豆黍米粟粒;以手摩赤上,痛如刺。三日之後,令百節強,疼痛寒熱,赤上發瘡。」

-----廣告,請繼續往下閱讀-----

恙蟲病是一種病媒傳播的人畜共通傳染病,致病原為恙蟲病立克次體(Orientia tsutsugamushi或Rickettsia tsutsugamushi),被具傳染性的恙蟎叮咬,經由其唾液使人類感染立克次體。而感染立克次體的恙蟎,會經由卵性遺傳代傳立克次體,並在每個發育期中,包括卵、幼蟲、若蟲、成蟲各階段均保有立克次體,成為永久性感染。

感染恙蟲病可能引起危及生命的發燒感染。常見症狀為猝發且持續性高燒、頭痛、背痛、惡寒、盜汗、淋巴結腫大;恙蟎叮咬處出現無痛性的焦痂、一週後皮膚出現紅色斑狀丘疹,有時會併發肺炎或肝功能異常。 恙蟲病的已知分佈範圍不斷擴大,大多數疾病發生在南亞和東亞以及環太平洋地區的部分地區;台灣則以花東地區、澎湖縣及高雄市為主要流行區。

比細菌還小的立克次體

立克次體算是格蘭氏陰性菌,有細胞壁,無鞭毛,革蘭氏染色呈陰性。但它雖然是細菌,但是嚴格來說,更像是細胞內寄生生命體,生態特徵多和病毒一樣。例如不能在培養基培養、可以藉由陶瓷過濾器過濾、只能在動物細胞內寄生繁殖等。大小介於細菌和病毒之間,呈球狀或接近球形的短小桿狀直徑只有0.3-1μm,小於絕大多數細菌。

最早發現的立克次體感染症的是洛磯山斑疹熱(Rocky mountain spotted fever);由美國病理學家立克次(Howard Taylor Ricketts,1871-1910)所發現。

-----廣告,請繼續往下閱讀-----

1906年立克次到蒙大拿州度假,發現當地正在流行一種叫做洛磯山斑疹熱的傳染病,病患會出現頭痛、肌肉痛、關節疼痛的症狀,之後皮膚會出現出血性斑塊。當時沒有人知道是什麼原因造成這個疾病。

立克次一開始以顯微鏡觀察病患血液,發現一種接近球形的短小桿菌,但卻無法體外培養。而他將帶有「短小桿菌」的血液注射進天竺鼠體內,或是以壁蝨吸食患者血液再咬天竺鼠,發現天竺鼠也會染病。另外,他試驗各種節肢動物來做為媒介,發現只有壁蝨能夠成為傳染窩進行傳播。

立克次釐清了洛磯山斑疹熱的成因與傳染途徑,但因為無法在體外培養基培養這個病原菌,他並未加以命名。

後來其他研究者從斑疹傷寒等其他疾病也發現無法在培養基生長、必須絕對寄生宿主細胞的類似細菌,並為了紀念立克次的貢獻,而命名為「立克次體」。

-----廣告,請繼續往下閱讀-----

而立克次體不只一種,因此引起的疾病也不只有恙蟲病。在台灣列為法定傳染病的還有由普氏立克次體(Rickettsia prowazekii )引起的流行性斑疹傷寒,透過體蝨在人群間傳播;由斑疹傷寒立克次氏體(Rickettsia typhi)造成的地方性斑疹傷寒,由鼠蚤傳播至人體。另外還有由立氏立克次體(Rickettsia rickettsii)所引致的洛磯山斑疹熱等。

立克次體透過傳統革蘭氏染色的效果非常弱;因此常用一種對卵黃囊塗片中立克次體進行染色的方法,以利光學顯微鏡觀察。現在,這項技術常用於監測細胞的感染狀態。

受限於光學顯微鏡的解析度,許多科學家也使用電子顯微鏡來對立克次體與宿主細胞相互作用的精細結構進行分析。例如分別引起流行性斑疹傷寒、洛磯山斑疹熱和恙蟲病的立克次體,外膜組織就能透過電子顯微鏡看到些許的差別,有的外膜較厚,有的則是外膜內葉和外葉倒置。

立克次
卵黃囊塗片立克次體的顯微影像,其尺寸範圍為 0.2μ x 0.5μ 至 0.3μ x 2.0μ。立克次體通常需要使用特殊的染色方法,例如Gimenez染色。圖片來源:CDC Public Health Image Library

做好預防就能別來無「恙」

根據疾管署統計,今(2024)年至 4 月 1 日恙蟲病確定病例已累計至 2 8例,高於去年同期。

-----廣告,請繼續往下閱讀-----

立克次菌無法在一般培養基培養,雖然可用接種天竺鼠或雞胚胎來分離病原確診,但基於實驗室生物安全操作規定,通常以免疫螢光法、間接血球凝集、補體結合等檢查抗體的方式來檢驗。

恙蟲病可用抗生素治療,若不治療死亡率達 60%。但最好的預防方式還是避免暴露於恙蟎孳生的草叢環境,掃墓或是戶外活動最好穿著長袖衣褲、手套、長筒襪及長靴等衣物避免皮膚外露。離開草叢後也要盡速沐浴和更換全部衣物,以防感染。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
30 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
0

文字

分享

0
1
0
任意添加光學元件 為研究打開大門的無限遠光學系統
顯微觀點_96
・2025/01/30 ・1763字 ・閱讀時間約 3 分鐘

本文轉載自顯微觀點

圖 / 顯微觀點

顯微鏡在科學發展中扮演關鍵的角色,讓人們得以突破肉眼的限制,深入微觀的世界探索。而隨著時間推進,顯微技術也日新月異,其中現代顯微鏡設計了所謂的「無限遠光學系統」(Infinity Optical Systems),更是提升了顯微鏡性能和突破過去的觀察瓶頸。因此主要的顯微鏡製造商現在都改為無限遠校正物鏡,成為顯微鏡的技術「標配」。

1930 年代,相位差顯微技術出現,利用光線在穿過透明的樣品時產生的微小的相位差造成對比,使透明樣本需染色就能更容易被觀察。1950 年左右,則出現使用兩個 Nomarski 稜鏡,將光路分割再合併產生 干涉效應的 DIC 顯微技術,讓透明樣本立體呈現、便於觀察。

在傳統「有限遠系統」中,單純的物鏡凸透鏡構造,會直接將光線聚焦到一個固定距離處,再經過目鏡放大成像。也因此過去顯微鏡的物鏡上通常會標示適用的鏡筒長度,通常以毫米數(160、170、210 等)表示。

-----廣告,請繼續往下閱讀-----

而在過渡到無限遠校正光學元件之前,選用的物鏡和鏡筒長度必須匹配才能獲得最佳影像,且大多數物鏡專門設計為與一組稱為補償目鏡的目鏡一起使用,來幫助消除橫向色差。

但是問題來了!當這些光學配件要添加到固定鏡筒長度的顯微鏡光路中,原本已完美校正的光學系統的有效鏡筒長度大於原先設定,顯微鏡製造商必須增加管長,但可能導致放大倍率增加和光線減少。因此廠商以「無限遠」光學系統來解決這樣的困境。

德國顯微鏡製造商 Reichert 在 1930 年代開始嘗試所謂的無限遠校正光學系統,這項技術隨後被徠卡、蔡司等其他顯微鏡公司採用,但直到 1980 年代才變得普遍。

無限遠系統的核心在於其物鏡光路設計。穿透樣本或是樣本反射的光線透過無限遠校正物鏡,從每個方位角以平行射線的方式射出,將影像投射到無限遠。

-----廣告,請繼續往下閱讀-----
有限遠(上)和無限遠(下)光學系統的光路差別
有限遠(上)和無限遠(下)光學系統的光路差別。圖 / 擷自 Optical microscopy

透過這種方法,當使用者將 DIC 稜鏡等光學配件添加到物鏡、目鏡間鏡筒的「無限空間」中,影像的位置和焦點便不會被改變,也就不會改變成像比例和產生像差,而影響影像品質。

但也因為無限遠系統物鏡將光線平行化,因此這些光線必須再經過套筒透鏡在目鏡前聚焦。有些顯微鏡的鏡筒透鏡是固定的,有些則設計為可更換的光學元件,以根據不同實驗需求更換不同焦距或特性的透鏡。

除了可以安插不同的光學元件到光路中而不影響成像品質外,大多數顯微鏡都有物鏡鼻輪,使用者可以根據所需的放大倍率安裝和旋轉更換不同的物鏡。

傳統上一旦更換物鏡,樣本可能就偏離焦點,而須重新對焦。但在無限遠光學系統的設計中,物鏡到套筒透鏡的光路長度固定,也就意味著無論更換哪個物鏡,只要物鏡設計遵循無限遠系統的標準,光路長度和光學路徑的一致性得以保持。

-----廣告,請繼續往下閱讀-----

因此無限遠光學系統也有助於保持齊焦性,減少焦距偏移。這對需要頻繁切換倍率的實驗操作來說,變得更為便利和具有效率。

不過使用上需要注意的是,每個顯微鏡製造商的無限遠概念都有其專利,混合使用不同製造商的無限遠物鏡可能導致不正確的放大倍率和色差。

改良顯微技術,使研究人員能夠看到更精確的目標;以及如何讓更多光學配件進入無限遠光學系統中的可能性仍然在不斷發展中。但無限遠光學系統的出現已為研究人員打開了大門,可以在不犧牲影像品質的情況下輕鬆連接其他光學設備,獲得更精密的顯微影像。

  1. M. W. Davidson and M. Abramowitz, “Optical microscopy”, Encyclopedia Imag. Sci. Technol., vol. 2, no. 1106, pp. 120, 2002.
  2. C. Greb, “Infinity Optical Systems: From infinity optics to the infinity port,” Opt. Photonik 11(1), 34–37 (2016).
  3. Infinity Optical Systems: From infinity optics to the infinity port
  4. Basic Principle of Infinity Optical Systems
  5. Infinity Optical Systems

延伸閱讀選擇適合物鏡 解析鏡頭上的密碼

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
螃蟹有痛感嗎?我們是怎麼知道的?
F 編_96
・2025/01/16 ・1669字 ・閱讀時間約 3 分鐘

F 編按:本文編譯自 Live science

螃蟹一直是海鮮美食中的明星,從油炸軟殼蟹到清蒸螃蟹,餐桌上經常見到牠們的身影。有地方也習慣直接將活螃蟹丟沸水煮熟,認為這能保留最多的鮮味。過去人們認為甲殼類缺乏複雜神經結構,不會感受到痛苦,因此不必過度憂心道德問題。但近年來,越來越多研究開始挑戰此一想法,指出螃蟹與龍蝦等甲殼動物可能具備類似疼痛的神經機制。

以前大家相信甲殼類缺乏複雜神經結構,但近期這一認知逐漸受到質疑。 圖 / unsplash

甲殼類是否能感覺到痛?

人類長期習慣以哺乳類的神經構造作為痛覺判斷依據,由於螃蟹沒有哺乳動物那樣的大腦腦區,便被認為只憑簡單反射行動,談不上真正「痛」。然而,新興科學證據顯示包括螃蟹、龍蝦在內的甲殼類,除了可能存在被稱為「nociceptors」的神經末梢,更在行為上展現自我防禦模式。這些研究結果顯示,螃蟹對強烈刺激不僅是本能抽搐,還有可能進行風險評估或逃避策略,暗示牠們的認知或感受方式比我們想像更精緻。

關鍵證據:nociceptors 與自我保護行為

近期實驗在歐洲岸蟹(Carcinus maenas)中觀察到,當研究人員以刺針或醋等刺激手段測量神經反應,牠們顯示與痛覺反應類似的神經興奮;若只是海水或無害操作,則無此現象。此外,透過行為實驗也可看出,寄居蟹在受到電擊時,會毅然捨棄原本的殼子逃離電源,但若同時存在掠食者味道,牠們會猶豫要不要冒著風險離開殼子。這些結果使科學家認為,螃蟹並非單純反射,而可能有對於痛感的判斷。若只是「低等反射」,牠們不會考慮掠食風險等外在因素。

痛覺與保護:實驗結果引發的道德思考

以上發現已在科學界引發廣泛關注,因為餐飲業與漁業中常見「活煮」或「刺穿」處理螃蟹方式,如今看來很可能讓牠們承受相當程度的不適或疼痛。瑞士、挪威與紐西蘭等國已開始禁止活煮龍蝦或螃蟹,要求先以電擊或機械方法使其失去意識,試圖減少痛苦。英國也曾討論是否將甲殼類納入動物福利法保護範圍,最後暫時擱置,但此爭議仍在延燒。

-----廣告,請繼續往下閱讀-----
英國對於是否將甲殼類列入動物福利法的保護範圍,有所爭議。 圖 / unsplash

部分學者保持保留態度,認為雖然甲殼類展現疑似痛覺的行為與神經反應,但與哺乳類相同的「主觀痛感」仍需更多研究證明。大腦與神經系統結構畢竟存在很大差異,有些反射也可能是進化而來的自衛機制,而非真正意義上的感受。然而,科學家普遍同意,既然相關證據已經累積到一定程度,毋寧先採取更謹慎與人道的處理模式,而非輕易推卸為「牠們不會痛」。

海洋生物福利:未來的規範與影響

如果螃蟹被證實擁有痛覺,將牽動更廣泛的海洋生物福利議題,包括鎖管、章魚或多種貝類也可能具有類似神經機制。人類一直以來習慣將無脊椎動物視為「低等生物」,未必給予與哺乳類相同的法律或倫理關注。但若更多實驗持續指出,牠們同樣對嚴重刺激展開避痛行為,社會或終將呼籲修訂漁業與餐飲相關法規。未來可能要求業者在捕撈與宰殺前使用電擊或麻醉,並限制活煮等方式。這勢必對漁業流程與餐廳文化造成衝擊,也引發經濟與文化折衷的爭議。

龐大的實驗數據雖已暗示螃蟹「會痛」,但確鑿的最終定論仍需更多嚴謹研究支持,包括更深入的大腦活動成像與突觸路徑分析。同時,落實到實際操作也需追問:是否存在更快、更人道的宰殺或料理方式?能否維持食材鮮度同時保障動物福利?這種思維轉變既考驗科學進程,也考驗人類對自然資源的態度。也許未來,既然我們仍會食用海產,就該以最小痛苦的方式對待那些可能感受痛苦的生物,為牠們提供基本尊重。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。