0

0
0

文字

分享

0
0
0

絛蟲能告訴我們的事:人類是何時開始吃肉的?——《與達爾文共進晚餐》

天下文化_96
・2019/03/11 ・2966字 ・閱讀時間約 6 分鐘 ・SR值 485 ・五年級

吃肉有益健康!連老祖先露西的親戚都知道

吃肉,這項行為影響了我們的演化。我們從人族聚會中,知道了人類的祖先是怎麼開始吃肉,成為雜食動物。三百三十萬年前,在我們老祖先露西的家鄉衣索比亞,有個人類親戚使用石器,把動物的肉從骨頭上切下來。

圖/pxhere

這個人類親戚可能和露西一樣,屬於阿法南猿。有人認為,阿法南猿這種人族動物是人屬的直屬祖先。顯然她和我們一樣,是雜食動物,吃肉也吃植物。

人類食物中,蛋白質最豐富的就是肉類和魚類,能夠提供人類必需的胺基酸,人類的身體組織無法自行製造這些胺基酸。

蛋白質最豐富肉類和魚類,能提供人類所無法自行合成的胺基酸。圖/pixabay

肉類同時也提供其他重要的營養成分,讓我們的飲食均衡,這些成分光靠植物很難攝取到適當的分量,包括維生素 B12,以及多元不飽和脂肪酸,這類脂肪酸對於腦部和其他組織的發育非常重要。

-----廣告,請繼續往下閱讀-----

經由仔細挑選食物組成的素食飲食,當然也能夠維持人體健康,但是完全沒有肉類成分的素食飲食需要費心調整,才能夠含有人類需要的全部營養,這顯示了人類本來就是雜食動物。

素食飲食需要費心調整,才能夠含有人類需要的全部營養。圖/publicdomainpictures

人類畜養來取得肉類的動物,包括現在關在圍欄、房舍、籠子中大規模飼養的牲畜家禽的祖先,牠們在馴化之前,都是人類得在野外獵捕的動物。該是時候來談談牠們的演化故事,以及人類對牠們造成的重大影響。

從獵捕發展畜牧的過程中,石器不是唯一的證據。還有來自人類身體內部的實證:絛蟲。

有絛蟲從生肉來:寄生蟲是人類開始吃肉的證據

成年的絛蟲生活在動物的腸子中,日子過得非常輕鬆,食物會自動送到家門口,每天不是閒晃,便是產卵。但是對於所有的寄生生物來說,重要的是,讓產下的卵能夠找到新的宿主加以感染。絛蟲採用的方法是:

-----廣告,請繼續往下閱讀-----

切入宿主的食物鏈中,感染宿主所吃的動物。

有三種絛蟲會感染人類,分別是來自牛的無鉤絛蟲(Taenia saginata),以及來自豬的亞洲絛蟲(T. asiatica)與無鉤絛蟲(T.solium)。絛蟲幼蟲會鑽入牛或豬的肌肉中,我們如果吃了有絛蟲幼蟲的肉,便會受到感染。只有吃肉的動物才會感染到絛蟲,絛蟲幼蟲要被吃肉的動物吃下肚,才能夠完成生活史。

絛蟲幼蟲會鑽入牛或豬的肌肉中,我們如果吃了有絛蟲幼蟲的肉,便會受到感染。圖/wikipedia

牛和豬都是經過馴化的動物,我們往往會認為從牛、豬那裡感染到絛蟲,是在一萬二千到一萬年前才開始的,因為那個時候人類才開始有農業。不過演化分析發現,人類和這些寄生蟲在幾百萬年前就有關連了,而不是一萬年前。

無鉤絛蟲和亞洲絛蟲的共同祖先源於非洲,會感染羚羊和獅子,在兩者之間循環。這意味著,感染人類的這兩種絛蟲的祖先,在人類祖先吃獅子的獵物時,便移居到人類身上了。原本在獅子和羚羊之間完成生活史的絛蟲,大約在二百五十萬到二百萬年前,可以在人類與羚羊之間完成生活史,這指出人類祖先在那之前已經常吃肉了。

絛蟲的頭部。圖/wikipedia

人類祖先受到絛蟲感染一段時間後,可能是在一百七十萬年前,這種絛蟲分成了兩個物種:無鉤絛蟲和亞洲絛蟲。我們並不清楚這樣的分開(稱為「種化」)是怎樣發生的,不過這兩種絛蟲的另一個宿主不一樣了,可能是因為在生活史走不同的路徑,一種進入牛,另一種進入豬,讓絛蟲能夠適應在不同宿主感染並生存的需求。

-----廣告,請繼續往下閱讀-----

針對人類絛蟲的種化過程進行演化分析,能夠讓我們知道當時人類飲食的一些事情。例如這個種化事件如果發生在直立人中,那麼當時他們除了吃羚羊之外,是否開始拓展當成食物的物種,也吃野豬了?或是吃不同動物的不同直立人族群,後來彼此交互傳染了?

可能是在一百七十萬年前,絛蟲分成了兩個物種:無鉤絛蟲和亞洲絛蟲,一種進入牛,另一種進入豬。圖/pixabay

第三種絛蟲是無鉤絛蟲,這種絛蟲和另一種在鬣狗體內的絛蟲有共同祖先。人類最初受到這種絛蟲感染的模式,和受到其他絛蟲感染的模式很類似,就是在非洲莽原上的遠古祖先,開始吃鬣狗的獵物。人類現在因為吃豬肉而會感染到的另一種腸道寄生蟲:旋毛蟲(Trichinella spiralis),也在從前以相同的模式演化成開始感染人族物種。

第三種絛蟲是無鉤絛蟲,這種絛蟲和另一種在鬣狗體內的絛蟲有共同祖先。圖/pxhere

人類祖先最早嘗到的肉,可能來自於鬣狗和獅子殺死的獵物,然後人族祖先揮舞著石頭製成的武器,甚至是火把,趕走鬣狗和獅子,把獵物偷走。不論人族是怎樣開始吃肉的,吃肉使得人類和被吃的獵物之間的關係愈來愈近,最後人類圈養了牛和豬,並且馴化牠們。

人類和三種感染人類的絛蟲有非常久遠的演化關係,因此是人類讓馴養的牛和豬受到這些寄生蟲的感染,而非牛和豬讓人類受到感染。

-----廣告,請繼續往下閱讀-----
對抗絛蟲感染:第一是保持衛生,不讓豬或牛接觸到含有絛蟲卵的人類糞便,打斷絛蟲的生活史。第二是烹煮,能夠破壞肉裡面有感染能力的幼蟲。圖/pixabay

避免絛蟲危機,我們可以怎麼做?

對抗絛蟲有兩個方式:

保持衛生

不讓豬或牛接觸到含有絛蟲卵的人類糞便,這樣可以打斷絛蟲的生活史。

烹煮,能夠破壞肉裡面有感染能力的幼蟲。

如果你喜歡吃接近生的肉,那麼就要依賴食物供應過程中確保衛生,以及屠宰場要檢查肉類,才能避免受到絛蟲和旋毛蟲的感染。

無鉤絛蟲和人類的長久關係,在牠們身上留下了遺傳記號,這個記號似乎讓寄生蟲演化出耐煮的特性。包括人類在內,細胞中擁有熱休克蛋白,這種蛋白質能夠保護細胞免於溫度突然上升所造成的傷害。無鉤絛蟲的基因組中,負責製造熱休克蛋白的基因多到異常,可能是為了在面對熱衝擊時有堅強的保護,感染野生動物的絛蟲就沒有那麼多熱休克蛋白基因。

-----廣告,請繼續往下閱讀-----
熱休克蛋白,能夠保護細胞免於溫度突然上升所造成的傷害。圖/pixabay

人類很有可能是在一百五十萬年前開始烹煮食物,如果是這樣,絛蟲增加熱休克蛋白的演化趨勢,可以想成是為了讓肉中有感染能力的個體,有更多機會熬過烹煮、傳遞下去,完成生活史。

本文摘錄自《與達爾文共進晚餐》,2018 年 10 月,天下文化出版

文章難易度
天下文化_96
132 篇文章 ・ 618 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

3
0

文字

分享

0
3
0
澳洲婦人腦內的蟒蛇寄生蟲
胡中行_96
・2023/09/07 ・3695字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

「她是那麼勇敢而美好。」[1]美國疾病管制與預防中心(Centers for Disease Control and Prevention)2023 年 9 月號的《新興傳染病》(Emerging Infectious Diseases)期刊,登載一則來自澳大利亞的個案。[1, 2]論文的通訊作者對媒體表示:「你不會想成為全世界第一個被蟒蛇蠕蟲感染的病患,我們向她脫帽致敬。」[1]

嗜酸性白血球肺炎

這名現年 64 歲,出生於英國的婦人,20 至 30 年前曾到南非、亞洲和歐洲等地遊歷;目前定居澳洲新南威爾斯州東南部。她患有糖尿病、甲狀腺機能低下和憂鬱症;服用過抗生素 doxycycline 對抗社區型肺炎,但未曾完全康復。2021 年 1 月的時候,因為連續 3 週腹痛且拉肚子,又乾咳、夜間盜汗,而住進當地的醫院,並做了驗血等一系列的檢查。其異常的結果,如下:[2]

  • 血紅素(又譯「血紅蛋白」;hemoglobin):血紅素是紅血球裡面的蛋白質,[3]正常範圍是 115 – 165 g/L,[2]過低會影響氧氣的輸送。[3]這名婦人只有 99 g/L。[2]
  • 血小板(platelets):正常值為 150 – 400 × 109/L;她的卻高達 617 × 109/L。[2]會造成血小板過量的原因很多,諸如造血幹細胞異常、急性感染、慢性發炎、缺乏鐵質,或是某些癌症等,都有可能。[4]
  • C 反應蛋白(C-reactive protein;CRP):CRP 由肝臟製造,釋放到血液裡,[5]濃度通常 <5 mg/L;婦人的是102 mg/L,[2]表示感染或發炎。[5]
  • 嗜酸性白血球(eosinophil):血液中嗜酸性白血球的濃度,正常應該 < 0.5 × 109/L;婦人的數值為 9.8 × 109/L。[2]嗜酸性白血球數量增加的肇因繁多,以過敏和被寄生蟲感染,較為常見。[6]
  • 支氣管肺泡灌洗(bronchoalveolar lavage;BAL):婦人支氣管肺泡灌洗液的細胞中,嗜酸性白血球佔 30%。[2]血液的嗜酸性白血球過多,BAL 液體中又超過 25%,就有可能是肺部發炎。[7]
  • 電腦斷層掃描(computed tomography;CT):影像呈現肺臟被毛玻璃樣混濁圍繞的多處不透明陰影;以及肝臟與脾臟的病灶。[2]

婦人還做了血清學檢查,排除桿線蟲(Strongyloides)感染;而自體免疫疾病篩檢亦呈陰性。醫師綜合以上檢驗結果,判斷她得到原因不明的嗜酸性白血球肺炎(eosinophilic pneumonia),[2]並投以能消炎及抑制免疫功能的類固醇藥物 prednisolone,[2, 8]改善了部份症狀。[2]

嗜酸性白血球增多症候群

3 個禮拜後,仍在服藥的婦人,咳嗽、發燒不斷。這回坎培拉一家第三級的大醫院,幫她重新檢查,部份結果如下:驗血顯示下降的嗜酸性白血球(3.4 × 109/L)和 C 反應蛋白(68.2 mg/L),濃度依然超標;從電腦斷層掃描,可見肺部病灶移動,但肝臟與脾臟的維持原狀;肺部切片再次確定診斷為嗜酸性白血球肺炎;而微生物檢驗排除細菌、真菌和寄生蟲等各種感染。[2]

-----廣告,請繼續往下閱讀-----
肺臟的不透明陰影和毛玻璃樣混濁,跟上次住院的位置不完全相同。圖/參考資料 2,Figure 1A(Public Domain

另外,醫師發現婦人有單株 T 細胞受體基因重組(monoclonal T-cell receptor gene rearrangement)的問題:[2]本來多元的 T 細胞可以對付各種感染;現在特定的T細胞卻不斷自我複製,使變異貧乏單調。[9]它們過度製造白血球介素 –5(interleukin-5),促使嗜酸性白血球在骨隨中大量形成,[10]導致嗜酸性白血球增多症候群(hypereosinophilic syndrome;HES)。[2]

醫師提高類固醇藥物 prednisolone 的劑量,加上免疫抑制劑 mycophenolate,還有驅蟲藥 ivermectin。最後一項是考量婦人豐富的旅遊史;可能呈現偽陰性的桿線蟲血清學檢測;以及抑制免疫系統時的感染風險。[2]

2021 年中,從追蹤檢查的電腦斷層掃描,得知肺和肝的病灶都有好轉,但脾臟的不變。2021 年 9 月,嗜酸性白血球在血液中的濃度降至 0.76 × 109/L。2022 年 1 月,醫師想調降類固醇,又擔心壓不住婦人呼吸道的症狀,於是加開白血球介素 –5 單株抗體 mepolizumab,[2]減少嗜酸性白血球的數量。[10, 11]等到後者的數值正常,便開始降低類固醇的劑量。[2]

2022 年繼續服用類固醇 prednisolone、免疫抑制劑 mycophenolate 和白血球介素 –5 單株抗體 mepolizumab 的婦人,有長達 3 個月的時間,不僅健忘,憂鬱症還惡化。此時,她的嗜酸性白血球濃度正常;但 C 反應蛋白為 6.4 mg/L,意味著發炎;而核磁共振影像上,腦部的右額葉有個 13 × 10 mm 的病灶。於是,婦人在同年 6 月接受切片手術。[2]

-----廣告,請繼續往下閱讀-----
婦人的腦部核磁共振影像。圖/參考資料 2,Figure 2A(Public Domain

腦中的蠕蟲

這刀往腦袋劃下去不得了──長 80 mm,直徑 1 mm,活生生的蠕蟲!神經外科醫師將牠拖出來後,隨即進行硬腦膜切開術(durotomy)跟皮質骨切開術(corticotomy),巡周邊一輪,確定僅此 1 條,沒有共犯。稍後硬腦膜切片檢體送驗,得到的結果為良性。[2]可是那條蟲怎麼辦?

「噢,我的天啊!」神經外科醫師亢奮地說道:「你絕對不會相信,我剛才在那位女士的腦子裡,發現了什麼──牠活著,還會蠕動。」接到她電話的同事們組成團隊,一起來辨識物種。根據感染科醫師,也就是後來論文通訊作者的回憶:「我們翻遍了教科書,查詢各種會侵入神經,惹出疾病的蠕蟲。」然而怎麼也找不到答案,只好把還活著的小生命,捧去聯邦科學與工業研究組織(CSIRO),請教寄生蟲專家。對方看了一眼,驚叫:「天哪,是 Ophidascaris robertsi!」[1]

從婦人腦中拖出來的 Ophidascaris robertsi。圖/參考資料 2,Figure 2 B & C(Public Domain

這隻蛻變到三齡階段,外表朱紅的幼蟲,有 3 片典型的蛔蟲科唇瓣和盲腸,但缺乏發育完全的生殖系統。牠的頭尾被剁下來,由 CSIRO 的澳洲國家野生收藏館(Australian National Wildlife Collection)保存;其他屍塊分別交給雪梨大學(University of Sydney)以及墨爾本大學(University of Melbourne)鑑定基因。果然該寄生蟲專家所言不假,真的是 Ophidascaris robertsi。[2]

蛔蟲科唇瓣示意圖。圖/Civáňová Křížová K, Seifertová M, Baruš V, et al. (2023) ‘First Study of Ascaris lumbricoides from the Semiwild Population of the Sumatran Orangutan Pongo abelii in the Context of Morphological Description and Molecular Phylogeny’. Life, 13(4):1016.(CC BY 4.0)

Ophidascaris robertsi 生活史

Ophidascaris robertsi 這種澳洲原生的蠕蟲,採行所謂的間接生活史(indirect life cycle),一輩子寄生多個宿主:成蟲住在最終宿主(definitive hosts)地毯莫瑞蟒(Morelia spilota)的食道和胃裡,牠們的卵則會點綴於蛇糞之中。身為中間宿主(intermediate hosts)的小型哺乳類,特別是澳洲特產的有袋動物,糊里糊塗吃了卵,幼蟲便竄入牠們胸腔和腹腔內臟,活上很長的一段時間。直到有天,地毯莫瑞蟒獵捕小動物果腹,故事就再從頭來過,生生不息。[2]

-----廣告,請繼續往下閱讀-----
地毯莫瑞蟒。圖/Amos T Fairchild on Wikimedia Commons(GFDL-1.2)

通常這齣沒完沒了的連續劇,不該有我們的戲份,所以這位澳洲婦人是目前所知,第一個意外參與演出的人類。她家附近的湖畔為地毯莫瑞蟒的棲地,醫師推測婦人採集野生番杏(Tetragonia tetragonioides)回來做菜,因而吃到蟲卵。當幼蟲開始在她的體內亂竄,引發内臓移行性幼蟲症候群(visceral larva migrans syndrome),免疫系統理應防止外侮進入中樞神經。偏偏此時婦人正在治療致命性的嗜酸性白血球增多症候群,多種藥物令她的免疫系統龍困淺灘。O. robertsi 的幼蟲就通行無阻,順勢直搗腦部。[2]

番杏。圖/Mason Brock on Wikimedia Commons(Public Domain)

術後恢復

移除蠕蟲後,醫師停止所有抑制免疫系統的藥物,另外開了兩種驅蟲藥,包括:以前用過的 ivermectin,跟對中樞神經系統穿透力更好的 albendazole;以及劑量漸減,具有消炎作用的類固醇 dexamethasone。此時婦人的肺臟和肝臟病灶早已恢復;但電腦斷層掃描影像上,脾臟的毛病依舊存在。針對這個現象,醫師在論文裡幫那隻蠕蟲講了句公道話,認為後者不是牠的錯,並以早前的正子斷層造影為證:肺、肝兩處病灶對放射性示蹤劑的反應,與脾臟迥異。術後 6 個月,婦人的嗜酸性白血球濃度維持正常,神經精神方面也有進步。[2]目前整體狀況穩定,仍定期回診追蹤。[1]

  

參考資料

  1. Davey M. (28 AUG 2023) ‘‘Oh my god’: live worm found in Australian woman’s brain in world-first discovery’. The Guardian, Australia.
  2. Hossain ME, Kennedy KJ, Wilson HL, et al. (2023) ‘Human Neural Larva Migrans Caused by Ophidascaris robertsi Ascarid’. Emerging Infectious Diseases, 29(9):1900-1903.
  3. Low Hemoglobin’. (04 MAY 2022) Cleveland Clinic, U.S.
  4. Kuter DJ. (SEP 2022) ‘Overview of Platelet Disorders’. MSD Manual – Professional Version.
  5. C-reactive protein (CRP) blood test’. (OCT 2022) Healthdirect Australia.
  6. Liesveld J. (SEP 2022) ‘Eosinophilia’. MSD Manual – Professional Version.
  7. Salahuddin M, Anjum F, Cherian SV. (22 MAY 2023) ‘Pulmonary Eosinophilia’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
  8. Prednisolone’. (APR 2023) Healthdirect Australia.
  9. T-Cell Receptor Gene Rearrangement’. (22 SEP 2020) Testing.com, U.S.
  10. Roufosse F. (2018) ‘Targeting the Interleukin-5 Pathway for Treatment of Eosinophilic Conditions Other than Asthma’. Frontiers in Medicine, 5:49.
  11. Agumadu VC, Ramphul K, Mejias SG, et al. (2018) ‘A Review of Three New Anti-interleukin-5 Monoclonal Antibody Therapies for Severe Asthma’. Cureus, 10(8):e3216.
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

1
1

文字

分享

0
1
1
陸地上的首批動物是什麼?又是如何上岸的呢?——《直立猿與牠的奇葩家人》
大塊文化_96
・2023/08/19 ・3911字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

從志留紀末期到泥盆紀這段時間,地球的大陸成了首批陸生動物的家園。
狀似馬陸的呼氣蟲是最早的節肢動物先驅。
同時,蜘蛛與蠍子的早期親屬,也利用已在地球表面建立起來的植物與真菌生態系。
牠們在陸地上進食、繁殖與死亡,為陸地食物網增添了新的複雜性,也為後來從水邊冒險登陸的其他動物提供了獎勵。

動物隨著地球的演化踏上岸

隨著地球表面被植物染綠,動物跟隨植物的腳步上岸只是時間問題。

隨著地球表面被植物染綠,動物跟隨植物的腳步上岸只是時間問題。圖/envato

第一批維管束植物在地球大陸的年輕土壤中安家後不久,節肢動物踏進了這些矮樹叢。這些無畏探險家留下的最古老證據之一,是在蘇格蘭亞伯丁附近出土的一塊化石,名為呼氣蟲(Pneumodesmus)。

牠是一種多足類,與馬陸和蜈蚣屬於同一個群體。雖然原本將牠的年代界定在四億兩千三百萬年前的志留紀,但是近期研究顯示牠可能更年輕,生活在最早期的泥盆紀。

無論如何,到了泥盆紀,動物已經在陸地上站穩腳跟,而呼氣蟲更是最早在地球上行走的動物之一。

-----廣告,請繼續往下閱讀-----

發現目前唯一的呼氣蟲化石

目前出土的呼氣蟲化石只有一件,而且只是一塊一公分(○.四英寸)的身體碎片。

然而在這一小塊化石中,可以清楚看到很多隻腳,從一隻可識別的馬陸狀動物的六個體節長出來。

呼氣蟲的外觀可能和這種現代的馬陸很像。圖/大塊文化

更重要的是,呼吸結構的細節清楚可見:外骨骼角質層上有稱作氣門的孔。這些氣門讓氧氣與其他氣體進入並離開身體,這塊化石也是根據這項特徵而命名為呼氣蟲(Pneumodesmus 的「pneumo」來自希臘文的「呼吸」或「空氣」)。

這塊化石提供了第一個呼吸空氣的決定性證據,這是一種全新的演化適應,為數百萬微小的節肢動物探索者,以及追隨牠們的捕食者,開放了大陸的表面。

-----廣告,請繼續往下閱讀-----

最古老的多足類演化過程

在泥盆紀,呼氣蟲並非獨自生活在植被中。還有許多多足類和牠一起生活,最古老的多足類化石出現在志留紀與泥盆紀的岩層。

儘管不屬於任何現代的馬陸或蜈蚣群體,牠們是現存馬陸與蜈蚣的早期親戚,外表與馬陸和蜈蚣非常相似,具有分節的長條狀身體許多腳―馬陸每個體節的兩側各有兩隻腳,蜈蚣則只有一隻。

目前已知有最多腳的馬陸是全足顛峰馬陸(Illacme plenipes),擁有七百五十隻腳。現存的大多數馬陸都是食碎屑動物,以腐爛的植物為食。這些動物的化石紀錄很少,因此每一件化石對於我們瞭解生命從水裡浮現的過程都特別珍貴。

一隻有著 618 條腿的雌性 Illacme plenipes。圖/wikipedia

最早的多足類,可能是受到早期植物產生的新食物來源所吸引,才來到陸地上。

-----廣告,請繼續往下閱讀-----

最早的蛛形綱動物也充分利用了頭頂上的廣闊天地。蛛形綱動物包括蟎、蠍子、蜘蛛與盲蛛。牠們有八隻腳(不同於昆蟲的六隻腳),大多數仍生活在陸地上,儘管少數(如水蛛〔Argyroneta〕)又回到水中生活。

奧陶紀與志留紀的化石顯示,蛛形綱動物和其他節肢動物可能在更早的時候就偶爾會出現在陸地上,但是到了泥盆紀,有些已經完全過渡到能夠呼吸空氣的狀態。最早的蛛形綱動物是角怖蛛,這是一個已經滅絕的群體,看起來像是蜘蛛與蟎的雜交體。

蟎與擬蠍也很多,後來還有類似蜘蛛、具有吐絲管能製造絲的始蛛(Attercopus)。就像今天一樣,這些早期的蛛形綱動物大多是捕食者,可能以其他從水邊冒出來的節肢動物為食。

到泥盆紀末期,出現了第一批昆蟲,據估計,昆蟲構成今日地球上所有動物生命的 90%。最後,一些脊椎動物也過渡到陸地上,這或許是受到尋找新的食物來源所驅動。

-----廣告,請繼續往下閱讀-----

我們所知的陸地生命基礎終於到位了。自此之後,演化在這些群體中繼續發揮作用,創造出我們今日所見的驚人多樣與多量。

節肢動物牠們有什麼用處呢?

節肢動物通常被看作是害蟲,昆蟲尤其如此。

然而,牠們在整個地球的運行中扮演十分重要的角色。現在有超過一萬六千個多足類物種、六萬種蛛形綱動物,以及大約一千萬種的昆蟲。

牠們不僅在地球最早期生態系中舉足輕重,至今對自然界及人類的世界仍然非常重要。

-----廣告,請繼續往下閱讀-----

多足類處理森林中的落葉,成為營養循環中的一個重要齒輪。蜈蚣通常是捕食者,最大的蜈蚣甚至能吃小型哺乳動物與爬蟲類。

蛛形綱動物大多也是捕食性的,因此在調節獵物的族群數量方面,發揮重要的作用。這裡所指的包括昆蟲害蟲在內,這些害蟲數量不受控制,就會損害植物的族群數量。因此,不起眼的蜘蛛對人農業非常重要。

蟎與蜱可以寄生並傳染疾病,對人類及其他動物構成威脅,其他昆蟲也會造成類似的危險。然而,昆蟲的角色變化多端,其價值確實無法估量,包括生產蜂蜜,甚至以其勤奮的活動精明操控整個生態系,例如蜜蜂、螞蟻與白蟻。

許多節肢動物都有毒,有些對人類甚至具有致命性。然而,讓獵物喪失能力和死亡的毒液也可發揮其他用處;蜘蛛毒液已被用作替代的殺蟲劑,科學家也正在研究其醫藥用途,以及在新材料上的應用。

-----廣告,請繼續往下閱讀-----
蜘蛛毒液已被用作替代的殺蟲劑,科學家也正在研究其醫藥用途,以及在新材料上的應用。圖/envato

此外,節肢動物可以為包括彼此在內的無數動物提供食物來源。許多節肢動物是人類的食物,包括狼蛛、蠍子、蚱蜢、白蟻與象鼻蟲等。

目前,世界各地有多達二千零八十六種節肢動物被當成食物,而且至少從舊石器時代開始,牠們已經成為食物的來源。

有人認為,隨著人類人口不斷增加,昆蟲尤其可能在未來提供重要的蛋白質來源―這是資源密集型肉類養殖的替代方案。

我們很難想像一個沒有節肢動物的地球;事實上,這樣的地球可能無法存在。早在泥盆紀,世界就是節肢動物的天下。

-----廣告,請繼續往下閱讀-----

但牠們冒險去到的地方,捕食者也在不遠處。節肢動物的存在,為另一個從水中出現的動物群體提供了食物,而這個動物群體在人類的演化史上特別重要:這裡講的是四足動物。

——本文摘自《直立猿與牠的奇葩家人:47種影響地球生命史的關鍵生物》,2023 年 7 月,大塊文化,未經同意請勿轉載。

大塊文化_96
11 篇文章 ・ 13 位粉絲
由郝明義先生創辦於1996年,旗下擁有大辣出版、網路與書、image3 等品牌。出版領域除了涵括文學(fiction)與非文學(non-fiction)多重領域,尤其在圖像語言的領域長期耕耘不同類別出版品,不但出版幾米、蔡志忠、鄭問、李瑾倫、小莊、張妙如、徐玫怡等作品豐富的作品,得到讀者熱切的回應,更把這些作家的出版品推廣到國際市場,以及銷售影視版權、周邊產品的能力與經驗。

0

3
1

文字

分享

0
3
1
黔金絲猴物種起源,竟是近親雜交形成?
寒波_96
・2023/08/11 ・3267字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

新物種如何誕生,是演化最重要的主題之一,正如達爾文代表作的書名《物種起源》(The Origin of Species,也常譯作《物種源始》)。隨著基因體學帶來愈來愈多新知識,人們對物種的想法也不斷演變。

2023 年發表的一項研究調查多種金絲猴的基因組,意外發現有一種金絲猴,竟然直接由不同物種合體形成。這是靈長類的第一個案例,動物中也相當少見。

黔金絲猴。圖/Current status and conservation of the gray snub-nosed monkey Rhinopithecus brelichi (Colobinae) in Guizhou, China

五種金絲猴的親戚關係

金絲猴(snub-nosed monkey,學名 Rhinopithecus,也稱為仰鼻猴)主要住在中國西南部和東南亞,目前有五個物種。牠們的中文名字依照地名,英文名字則多半根據顏色。

古時候金絲猴的分布範圍更廣,像是台灣也曾經存在過,如今卻只剩下化石。現今五個物種分別為:

-----廣告,請繼續往下閱讀-----

*(雲南)滇金絲猴(black-white 黑白,學名 Rhinopithecus bieti

* 緬甸金絲猴(black 黑,學名 Rhinopithecus strykeri

*(四川)川金絲猴(golden 金,學名 Rhinopithecus roxellana

*(貴州)黔金絲猴(gray 灰,學名 Rhinopithecus brelichi

-----廣告,請繼續往下閱讀-----

* 越南金絲猴(Tonkin 越南東京,學名 Rhinopithecus avunculus

五種金絲猴。圖/參考資料1

比對五款吱吱的 DNA 差異,可知滇、緬甸金絲猴的親戚關係最近,川金絲猴則和黔金絲猴較近,但是黔金絲猴明顯介於兩者之間。黔金絲猴在自己獨特的變異之外,僅管基因組整體更接近川金絲猴,也有不少部分和滇、緬甸金絲猴相似。

見到不同物種之間共享血緣,最直覺的想法是,兩者的祖先發生過遺傳交流。但是詳細比對後,研究猿認為還有機率更高的可能性。

最滑順的劇本是,大約 197 萬年前,滇、緬甸金絲猴的共同祖先,和川金絲猴分家;又經過十幾萬年,約莫 187 萬年前,兩群金絲猴再度合體,形成一個全新的支系,也就是黔金絲猴的祖先;後來滇、緬甸金絲猴再衍生出兩個物種。

-----廣告,請繼續往下閱讀-----

這形成如今我們見到的狀態:黔金絲猴大約 75% 血緣來自川金絲猴,25% 源於滇、緬甸金絲猴的共同祖先。

四種金絲猴的親戚關係,與遺傳交流。圖/參考資料1

靈長類首見,雜交直接形成新物種

或許有人會疑惑,看起來都是共享 DNA 變異,上述說法和「不同物種之間,發生過遺傳交流」有何差別?

差別在於,所謂「不同物種之間」,指的是新物種已經誕生一段時間以後,彼此間又發生 DNA 交流,這個一點都不稀奇。例如 A、B 物種間發生關係,變成 A 的遺傳背景下,又有一點 B 血緣的物種。

但是黔金絲猴的狀況是,新物種之所以誕生,就是不同物種直接合體所致。例如 A、B 物種發生關係,衍生出差異更大,不是 A 也不是 B,足以認定為新物種的 C。

-----廣告,請繼續往下閱讀-----

假如重建的劇本為真,這就是首度在靈長類中觀察到,不同物種直接合體形成新物種的「hybrid speciation」。可以翻譯為「雜交種化」,不過「合體種化」似乎更直觀。

哥倫比亞猛獁,想像畫面。圖/wiki

經由兩個物種雜交,直接產生新物種的方式,植物較為常見,哺乳類動物極少。此前古代 DNA 研究認為,已經滅絕的美洲大象「哥倫比亞猛獁」(Columbian mammoth,學名 Mammuthus columbi)是不同猛獁象合體產生的新物種,但是證據沒那麼充分。

或許沒有那麼罕見?

直接雜交產生新物種,會很難想像嗎?仔細想想,金絲猴的案例可能沒那麼驚悚,或許還有某種程度的普遍性。

回到當初的情境,所謂「兩個物種」在當時其實只分家十萬年而已,差異應該仍很有限。是又累積 180 萬年的分歧到今日,才顯得親戚之間明顯有別。

-----廣告,請繼續往下閱讀-----

這邊 197 萬、187 萬、十萬年都是根據 DNA 變異的估計,實際數字未必如此。不過順序大概差不太多,就是首先分出兩群,很短的時間後又合體產生第三群,再經歷好幾倍的時間直到現在。

假如川金絲猴不幸滅團,缺乏樣本可供比較,那麼黔金絲猴與另外兩種近親,看起來就單純是 187 萬年前分家。

值得注意的是,我們能判斷演化樹上的不同分枝曾經合流,來自對樹形的比對。假如川金絲猴不幸滅團,這棵演化樹中我們只剩下三個物種的樣本,便會判斷黔金絲猴是跟另外兩種親戚分家而成,卻完全不會察覺有過合體種化。

這麼想來,雜交誕生新物種的現象,或許沒那麼罕見,只是時光抹去了許多痕跡。

血緣融合,猴毛也是奇美拉

另一有趣的發現是毛色演化。金絲猴現今四個物種,外表的毛色為一大差異。毛色與深色素有關,深色素愈多,毛色會顯得愈黑,相對則是愈淡,會呈現白毛、黃毛、金毛。

-----廣告,請繼續往下閱讀-----

身為不同演化支系合體的產物,黔金絲猴的毛色也混合兩邊的風格。頭和肩膀的淺色,類似川金絲猴;手腳的深色,則類似滇、緬甸金絲猴。

基因組合體以後,兼具兩群影響毛色的基因,形成混合的毛色搭配。圖/參考資料1

金絲猴毛的顏色深淺,取決於不同色素的相對比例。棕黑色素(pheomelanin)愈高,毛色愈淡;真黑素(eumelanin)愈高,毛色愈深。例如猴毛中含有大量棕黑色素、少量真黑素,便會呈現金毛。

很多基因有機會影響色素與毛色。分析得知金絲猴們有 5 個基因和毛色關係密切,黔金絲猴的基因組來自兩個支系,比對發現,三個基因 SLC45A2MYO7AELOVL4 繼承自川金絲猴,兩個基因 PAHAPC 則源於滇、緬甸金絲猴。

這些基因如何影響毛色,仍有許多不明朗之處。最明確知道的是,SLC45A2 基因表現降低,會使得棕黑色素產量上升,令顏色變淡。PAH 基因表現增加,可以讓顏色加深。

-----廣告,請繼續往下閱讀-----

同一隻金絲猴不同部位的細胞,同一批基因經由不同調控,就能控制毛色深淺。

這篇文章介紹的演化基因體學分析手法,對許多人大概不算容易,但是這些研究帶來的趣味,倒是不難體會。

延伸閱讀

參考資料

  1. Wu, H., Wang, Z., Zhang, Y., Frantz, L., Roos, C., Irwin, D. M., … & Yu, L. (2023). Hybrid origin of a primate, the gray snub-nosed monkey. Science, 380(6648), eabl4997.
  2. The Primate Genome Project unlocks hidden secrets of primate evolution
  3. Biggest ever study of primate genomes has surprises for humanity
  4. Hundreds of new primate genomes offer window into human health—and our past
  5. van der Valk, T., Pečnerová, P., Díez-del-Molino, D., Bergström, A., Oppenheimer, J., Hartmann, S., … & Dalén, L. (2021). Million-year-old DNA sheds light on the genomic history of mammoths. Nature, 591(7849), 265-269.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
193 篇文章 ・ 1018 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。