0

11
4

文字

分享

0
11
4

宇宙文明演化史(上):能量觀點下的先進文明

Castaly Fan (范欽淨)_96
・2023/06/26 ・3182字 ・閱讀時間約 6 分鐘

編按:說到星際文明的發展程度,科幻愛好者必定會提到「卡爾達肖夫指數」,以使用的能源多寡,來區分文明發達程度。然而,除了從能源來評斷文明進程,其實還有其他的評判方式。

「宇宙文明演化史」系列,將在上篇回顧「卡爾達肖夫指數」,下篇介紹較少討論的「資訊量」與「微觀尺度」的評斷觀點。

地球數以萬億計的物種中,人類算得上是最具高等智慧的生物。

但假設——遙遠的某顆行星上也有「智慧生命」的存在,那麼,對方是否有可能比我們先進?他們能透過量子力學的應用而發明電子產品嗎?他們能掌握陽光、電磁等能源嗎?他們是否有完善的醫療、教育、經濟、社會結構?又或者,他們是否已然可以達成人類難以觸及的瞬時旅行?

智慧生命的演進

誠如在這篇文章所提過的,碳基生命自發形成的機率極為渺小,從有機分子組合成蛋白質、基因序列、細胞、再到個體的行程,這個機率相當於「一陣龍捲風掃過垃圾場、從中隨機拼湊出一架波音 747」那樣渺茫,更何況是演化成像人類這樣的「智慧生命」。

我們不僅僅具有生物體的基本特徵,還具有思考能力、邏輯、記憶力、甚至是預測與規劃未來的能力,這些可以說是人類與其他生命體最與眾不同之所在。人類之所以成為「智慧生命」,便是因為擁有了自己的語言、文字,使資訊得以保留並傳承。回溯到百萬年前,從演化論的角度來看,當時人類與其他靈長類動物差異並不大;然而,我們的老祖先發現了「火」,並且懂得如何生成並且控制「火」,使得我們不再像其他動物那樣直接生食獵物;另一方面,我們開始懂得用遮羞布、乃至於之後縫製衣服。

-----廣告,請繼續往下閱讀-----

此外,我們能表達自己的情緒,能輕易地展現喜怒哀樂溝通,進行交際活動——這些都是人類得以成為智慧生命的原理。

順帶一提,根據物理學家加來道雄(Michio Kaku)所提出的「穴居人原理」(caveman principle),我們人類依然存有百萬年前老祖宗們「原始慾望」的影子——換句話說,數十萬年來人類雖然不斷演化,然而我們的人格依然保有原始穴居人的基因本質。舉例而言:即使有先進的電腦把文件處理完善,我們仍習慣把文件影印成紙本,之所以如此,係因原始人類捕獵動物時要求「獵殺證明」,習慣取信於親眼所見的事實。

同理,我們傾向於參與音樂會或去電影院體驗現場氛圍,而非一味觀賞電子螢幕前的動態;我們習慣社交與打扮,因此多數重要聚會並不容易被虛擬會議所取代;而在古代社會,小道消息的流通會幫助某些人們知悉高層的行動,因而扮演著一定程度重要性——而這也呼應了我們周遭充斥著娛樂與八卦的報刊,畢竟這些事物總會激起人性深處的好奇心。另一方面,穴居人法則似乎也意味著藝術、娛樂並不會因為科技發展而消失,因為這些事物能滿足人類的需求與愉悅,而這並非科技所能取而代之的。

根據穴居人原理,我們依然保有原始人類的慾望。圖/Mrs J’s science

回歸根本,可以發現,身為智慧生命,必然要有「視力」的存在、而非像螞蟻那樣透過觸角溝通,包含情緒的表達、語言的交流,這方面可以歸功於「大腦」的演化;再者,人類的「腳趾」的演化也是關鍵,這使得人類得以直立行走、改變對世界的視角與行動;此外,「前肢可握物」也扮演著重要角色,亦即靈活的手指——這使得人類可以精準地操作物件、製造工具。

-----廣告,請繼續往下閱讀-----

先進文明的分級

因此,我們假定這些智慧生命都擁有這些生理構造與功能,他們可以溝通、可以發明器物。那麼,有沒有一個指標能告訴我們一個「文明」究竟能多發達?

1964 年,蘇聯科學家卡爾達肖夫(Nikolai Kardashev)提出了一個度量文明先進程度的指標——「卡爾達肖夫指數」(Kardashev Scale)。經由天文學家卡爾.薩根(Carl Sagan)修正過後,可以歸結為下列公式:

其中 K 代表卡爾達肖夫指數,P 代表文明所消耗的總能量。基本上,我們可以將文明依據「駕馭能量」的量級區分成三大類型:

  1. I 型文明(K=1)
    該文明能駕馭 10¹⁶ W 的能量,相當於掌握所處行星的能量,因此又稱「行星文明」。這類型的文明可以控制天氣、調節海洋、並且到地底深處採礦,徹底運用星球資源;並且,這一類文明將能任意造訪附近行星,並在後期發展出接近光速的太空旅行。
  2. II 型文明(K=2)
    該文明能駕馭 10²⁶ W 的能量,相當於掌握所處恆星系統的能量,因此又稱「恆星文明」或「星際文明」。這類型的文明能夠透過戴森球(參見下文)或相關科技、徹底利用恆星系統的能量;他們可在各個行星、恆星之間任意穿梭,並且相繼朝往其他恆星系統殖民。
  3. III 型文明(K=3)
    該文明能駕馭 10³⁶ W 的能量,相當於掌握所處星系的能量,因此又稱「星系文明」。這類型的文明不再受限於附近的恆星系統,他們將能夠隨心所欲駕馭整個星系、甚至宇宙尺度級別的能量,並可以在星系之間來去自如;他們甚至已熟悉時空物理、得以透過蟲洞或先進技術穿越時空。
卡爾達肖夫指數示意圖,由左而右分別是:行星文明(I 型)、恆星文明(II 型)、星系文明(III 型)。圖/http://www.maximusveritas.com/wp-content/uploads/2016/06/

作為宇宙文明的分級,文明所駕馭的總能量可以視為一個標竿。宇宙中的能量是無所不在、甚至可以說是取之不盡用之不竭的。因此,能妥善利用這些能量到什麼程度,便可以視為文明「先進與否」的標準。當然,還有一些人把這列表往下延伸,諸如宇宙文明(IV 型)、多重宇宙文明(V 型)、神靈文明(VI 型)、未知文明(VII 型)等等——不過這些級別距離目前人類還算是遙不可及,我們甚至無法保證在宇宙 137 億這年齡下是否已有這麼先進的文明誕生。

-----廣告,請繼續往下閱讀-----

就目前而言,顯然,人類縱使歷經工業革命、資訊革命,也開發出原子能、得以進行太空探索——但似乎尚未能被列入其中之一——我們尚未有能力操控天氣、就連地底結構也都是透過震波才得以探知的。那麼,人類目前究竟處在哪一階段?讓我們簡單計算一下:根據世界能源消耗量的統計,截至 2021 年底,人類所消耗的能量約為 176,431 TWh(百萬兆瓦時),相當於 20.14 TW(百萬兆瓦),代入卡爾達肖夫指數公式:

可以直接得出卡爾達肖夫指數 K≈0.73 ——因此,人類目前約是落在「0.73 型文明」,依然位在「第零型文明」的階段。

目前人類的能量來源主要仍是石油、煤炭、天然氣;除此之外還有傳統生質能、水力發電、以及核能。在數十年內,風力發電、太陽能、生質能會慢慢取代化石燃料,而核融合技術很可能帶領人類走向 I 型文明。

當人類開始進行太空殖民、並且能妥善運用母恆星(太陽)所供應的能量後,才會慢慢朝向 II 型文明發展;而在 I 型或者 II 型文明階段,另一個能催動科技進展的很可能就是反物質(antimatter)的製造與普及。加來道雄認為,我們有機會在本世紀末或是兩百年內躍升成為 I 型文明;到達 II 型文明需要數千年;至於到達可以隨心所欲駕馭時空的 III 型文明,可能還需要數十萬至百萬年。

-----廣告,請繼續往下閱讀-----
1800 年代至 2021 年的世界能源消耗總量:目前人類消耗能源仍以化石燃料為多數。圖/our world in data

參考文獻 / 延伸閱讀

  1. Kardashev, N.S. (1964). Transmission of information by extraterrestrial civilizations. articles.adsabs.harvard.edu.
  2. 加來道雄,《穿梭超時空》,台北:商周出版,2013
  3. 加來道雄,《平行宇宙》,台北:商周出版,2015
  4. 卡爾.薩根,《宇宙・宇宙》,台北:遠流出版事業股份有限公司,2010
  5. 史蒂芬.霍金,《胡桃裡的宇宙》,台北:大塊文化,2001
-----廣告,請繼續往下閱讀-----
文章難易度
Castaly Fan (范欽淨)_96
6 篇文章 ・ 4 位粉絲
科學研究者,1999年生於台北,目前於美國佛羅里達大學(University of Florida)攻讀物理學博士,並於費米國家實驗室(Fermilab)從事高能物理相關研究。2022年於美國羅格斯大學(Rutgers University)取得物理學學士學位,當前則致力於學術研究、以及科學知識的傳播發展。 同時也是網路作家、《隨筆天下》網誌創辦人,筆名辰風,業餘發表網誌文章,從事詩詞、小說、以及音樂創作。

0

1
0

文字

分享

0
1
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
205 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

5
3

文字

分享

0
5
3
星光,指引地球的未來——《困惑的心》推薦跋
時報出版_96
・2023/07/17 ・4372字 ・閱讀時間約 9 分鐘

  • 潘康嫻/中研院環境變遷研究中心博士後研究員

人類是天生的科學家。我們生來就想知道為何星星會閃爍,想知道為何太陽會升起。


加來道雄

地球上有一群人總喜歡抬著頭,看著夜空中點亮大地的星燈,這些星光夾藏著宇宙的祕密,穿透無數個光年,抵達藍色的星球。除了欣賞夜色之美,這一群人更試圖從中看出點端倪,這些熠熠星光是怎麼來的?宇宙是什麼樣子?為什麼會有地球?生命從何而來?還有其他如地球般的星球嗎?那裡也有文明嗎?好多個「為什麼」是大自然帶來的啟發,而人類尋找答案的行動,卻是宇宙裡不可思議的精彩。

好多個「為什麼」是大自然帶來的啟發,而人類尋找答案的行動,卻是宇宙裡不可思議的精彩。圖/envatoelements

向遙遠的星系發送信號 尋找未知的外星文明

人類的世界觀從曾經的地球放眼到太陽系,隨著科學與科技的進步,二十世紀的物理學開創宇宙論的發展,至二十一世紀天文觀測的黃金年代,不停歇地向深邃的星空探索,走出新的視野。近二十多年的諾貝爾物理獎,多達三分之一肯定天文學的貢獻,例如 2019 年獲獎的三位學者,一位建構宇宙大霹靂理論模型,另兩位發現一顆繞著另個太陽類型恆星公轉的系外行星。宏觀的宇宙視野,加上相對微觀的行星視角,近代的天文學一再刷新人類對宇宙演化及地球定位的認知。

天文望遠鏡和太空科技的進展,讓現代的天文學家得以挖掘宇宙暗藏的驚奇,透過紅外線觀測,我們看到隱藏在可見光背後恆星誕生的搖籃,也發現了宇宙考古學的線索。2019 年諾貝爾物理學獎得主之一詹姆士・皮博斯(James Peebles)花費大半輩子,帶領我們梳理宇宙 137 億年演化的歷程,如今我們知曉實質物體的總質量佔宇宙的 5%(其餘為 68% 的暗能量,與 27% 的暗物質)。在這 5% 的質量中,粗略估計大大小小星系中的星點,加總起來約略有 1027 顆恆星。假使每顆恆星誕生時也伴隨著行星系統的發展,在如此龐大的總數下,是否也有另一顆適合生命發展的星球?

放眼望去,茫茫星海,僅吾唯一?以地球人的角度思考外星生命的可能性,德雷克公式(Drake equation)將文字的問號轉成可運算的概念,考慮環境因素和發展文明的可能性,估計銀河系中存在著少則一千,多則一億的文明數量。但這些年,沒有人聯絡我們,我們也沒有找到對方,費米悖論提醒了估算與現實的落差。天文學家藉著太空科技的發展得以主動探尋,1972 年的先鋒號和 1977 年的航海家,帶著人類寫給外星人的科學密碼信函,至今持續在星際間航行。除了寫信,還可以像發電報一樣,1974 年的阿雷西波訊息(Arecibo message),對著遠在 25,000 光年外的 M13 球狀星團發送訊號,寄望能在高齡星團中找到找到高智慧文明存在的可能性。然而,這一去一回,收到回音得等上五萬年,已不知道是人類幾代以後的事了。

-----廣告,請繼續往下閱讀-----
1977 年的航海家,帶著人類寫給外星人的科學密碼信函,至今持續在星際間航行。圖/wikipedia

一如 15 至 17 世紀的大航海時代,歐洲船隊面對大海,莫不引頸期盼能在望遠鏡裡看到遠方的陸地。行星猶如當時的目標,由於行星不會自行發光,尋找行星的難度如同在千里之外的明亮燈塔旁邊瞧見一隻蚊子,然而技術的困難並未讓人退卻,科學的精彩就在於想辦法突圍。

更清晰地遙望遠方 用太空望遠鏡在地球上一起遨遊宇宙

1995 年米歇爾・麥耶(Michel Mayor)迪迪爾・奎洛茲(Didier Queloz)藉由分析恆星光譜中的都卜勒效應(目標物遠離觀測者時,其光譜會往長波方向拉長稱作紅移,反之靠近則往短波壓縮稱之藍移),在飛馬座找到繞著太陽類型的恆星公轉的第一顆系外行星飛馬座 51b(51 Pegasi b),為系外行星大發現時代展開序幕,也讓他們在 2019 年共享諾貝爾物理獎的殊榮。至今近 25 年觀測資料的累積,尤其有了克卜勒太空望遠鏡和接續的凌日法系外行星巡天衛星(Transiting Exoplanet Survey Satellite,TESS),系外行星數量自 2014 年開始大幅增加,截至今年 2023 年 6 月統計,約有 5,500 顆系外行星,依據型態將系外行星分成四類:氣體巨行星(又稱熱木星)類海王星超級地球類地行星。天文學家從統計數量和行星形成動力學模型中獲得豐富的訊息,也讓太陽系的形成與演化有了更進一步的認識。以一個系統中的行星質量做序列可以分成四種:由小至大(太陽系即為此類)、由大至小、混合、和大小相似,科學家發現像太陽系八大行星的排序反而非常稀有,像 TRAPPIST-1 系統中七顆行星大小雷同的類型倒是常見,人們才驚覺原來太陽系與其八大行星的組合是如此與眾不同。這個獨特也包含太陽系的氣體行星木星,有顆大質量的木星在外,像吸塵器一樣讓闖入太陽系的天體轉向(例如 1994 年的舒梅克-李維彗星撞擊木星事件),減少外來者體撞擊內太陽系的機會,使得位在適居帶的地球有足夠安全的環境與時間孕育生命。原來要有機會誕生生命,先決條件也要天時地利「星」和。

有沒有一種可能,其實有外星訊號,只是現今的科技還無法察覺和解讀? 二十一世紀的新視野多來自百年前科學家所闢的路,例如愛因斯坦在廣義相對論提出對重力的新見解,物體質量造成的空間扭曲,只是改變的幅度之小不易測量,直至 2015 年天文學家終於在絞盡腦汁精細設計之下,成功打造觀測重力波的天文望遠鏡(Laser Interferometer Gravitational-Wave Observatory,LIGO),2017 年人類首次觀測到雙中子合併事件,解開化學元素週期表上的重金屬形成之謎。在天文學的領域,一個計畫從靈感發想、規劃藍圖、開工建造、出發觀測、收集資料到計畫結束,從開始到最後的時間跨度,往往超過科學家本身的職業生涯。科學家年輕時的構思,常須藉由後生晚輩接棒執行,有生之年不一定看得到科學成果,而這一路上牽起了一代又一代的傳承,一起讓科學的進展跑得更遠,跑向遠在未來的新發現。本篇文章談及的計畫,在筆者的學生時代,早已如火如荼地展開,伴隨著計畫的執行和觀測資料的回傳與分析,是前輩們的堅持與努力,也是帶給新生代天文學家的禮物和邀請:現在的成果來自於我們過去的努力,而未來要由現在的你們來開創。

太空望遠鏡的升空協助天文學家得以更清晰地遙望遠方,讓系外行星的發現轉為低風險的冒險之旅,安全地帶著大家想像另一個世界的雛形,正當書中的主角,天文生物學家拜恩教授,為兒子羅賓說起異星見聞時,好似向星空開啟一扇扇門,父子倆得以一起遨遊宇宙。

-----廣告,請繼續往下閱讀-----

穿越都市的水泥叢林,遠離學校與人群,當我讀到書中拜恩教授帶著羅賓前往國家公園露營,徜徉在大自然的聲音與光影,兩個人在星光下深度傾聽彼此,為人生的焦慮與困惑尋找方向,令我不禁想起,曾經只是為了想看星星,所以去登山的自己,無意間在山林尋回自己的心。臺灣的山勢陡峭地形多變,得要十分專注在腳下的步伐與眼前的山徑,此刻陪伴自己的只有呼吸和心跳。踩著吃力的腳步,一瞬間,世界難得寧靜,只聽得見自己的聲音,「離目標還有些距離,繼續是前進,回頭是放棄。若是堅持,不知還有多少難關?若是放棄,我能接受放棄的自己嗎?難道是走錯路或迷路,所以才這麼難行,那麼路又在何方?」為一睹繁星,在光害日趨嚴重的情況下只得越走越深山,不只用腳感受臺灣地貌的鬼斧神工,還要感官全開地觀察瞬息萬變的天氣,多認識她才能做出適當的應變確保登山安全。白天的路上觀察自然的氣息,與重建內在的自己,晚上終見美麗的星空,走在一條條的山岳路線,整頓人生朝著目標向前行。

書中拜恩教授帶著羅賓前往國家公園露營,徜徉在大自然的聲音與光影,兩個人在星光下深度傾聽彼此,為人生的焦慮與困惑尋找方向。圖/envatoelements

回首看看我們腳下的地球

天文學總是背對著地球往外尋找新的未知,試圖解讀新收到的觀測資料與訊息,然而來自腳下的訊號呢?地球也是行星,是離我們最近的行星,她孕育了這世界的美好,但她的語言,我們真的懂了嗎?羅賓對外界的反應多來自於他所觀察到的地球,作為父親的拜恩教授要怎麼回應孩子呢?

當我們汲汲營營想向外拓展新知識、新世界時,可曾留意腳下正在發燙?若將地球的呼喊換成人類的語言,環境變遷的種種跡象就是地球發燒的訊號。以往科幻災難片當中的賣座奇觀,漸漸成為生活新聞,熱浪、野火、水災旱災、劇烈天氣變化,讓全球不只要解決眼下的困境,也要未雨綢繆地做永續經營的規劃,即刻採取行動已是迫在眉睫。

2021 年,聯合國政府間氣候變遷專門委員會(IPCC)公布第六回的全球氣候變遷評估報告,提及全球暖化現象在冰河面積、海平面上升、全球氣溫,及海洋酸化等等的科學研究報告中,出現許多令人擔憂的新紀錄,並指出二氧化碳與溫室氣體排放量的關聯性,巨變的環境讓各類生物物種面臨生存威脅。因應這場危機,全球達成共識目標於二十一世紀的地球平均氣溫,相比十九世紀最多僅能上升攝氏 1.5 度,並且在 2050 年達成全球淨零碳排放。今日世界各國包含臺灣正積極發展替代能源減少碳排放,同時開發技術增加碳匯,企圖集結眾人的力量把大氣中的碳存回大地。但我們能在有限的時間內力挽狂瀾嗎?假使目標如期達成,是否就高枕無憂了呢?地球和我們的日子就美好了嗎?

二氧化碳與其他溫室氣體排放帶來的環境巨變,讓各類生物物種面臨生存威脅。圖/envatoelements

從人類張開眼睛認識日月星辰,建立了神話、曆法和文明,發展農耕,再到科學與工業革命,一路解析宇宙和地球的起源、歷史、環境、命運。星星帶給人類的啟發,讓人類的足跡已從地球走向太陽系,從更高的視野回頭凝視地球那令人屏息的湛藍,離開地球的探索,讓我們重新看見地球。文化藝術與科技文明的發展一直以來與大自然息息相關,進步固然帶給人類生活和思維的改變,然而過度的開發讓環境失衡,讓現在的我們必須啟動地球生命保衛戰,永續經營之前要先理解,如何理解則引發更多的提問,解答提問的過程中人類將深刻感受地球的脈動,為身為地球人感到驕傲。BE-WILD-ER-MENT 的故事在過去已開始,現在的行動是創造機會、還是命運?未來,讓我們和這顆有心跳的藍色星球一起來回答吧。

-----廣告,請繼續往下閱讀-----

——本文摘自《困惑的心》,2023 年 7 月,時報出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

1

4
2

文字

分享

1
4
2
宇宙文明演化史(下):文明蘊含的資訊量與精細結構的掌握
Castaly Fan (范欽淨)_96
・2023/06/27 ・4854字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

編按:說到星際文明的發展程度,科幻愛好者必定會提到「卡爾達肖夫指數」,以使用的能源多寡,來區分文明發達程度。然而,除了從能源來評斷文明進程,其實還有其他的評判方式。

「宇宙文明演化史」系列,將在上篇回顧「卡爾達肖夫指數」,下篇介紹較少討論的「資訊量」與「微觀尺度」的評斷觀點。

資訊量的掌握層級

卡爾達肖夫指數是以「能量」作為文明分級的依據。同時,薩根(Carl Sagan)也有提出不同的分類法。他將文明所擁有的「資訊含量」作為依據,將文明分出「A — Z 級」。這些資訊量的定義很廣泛,語言、文字、影像都屬於資訊量的一部分。

在薩根的分類法中,「A 級」文明能掌握 106 位元的資訊,但目前人類史上的任何一個文明所掌握的資訊量都比這個數目還多。要超越一個 A 級文明相當簡單,比如:你只需要用「二分法」試探,例如判斷這個文明「是存在還是消亡的」。探問過二十次這樣的問題後,相當於掌握了 220 種可能性,這個數字剛好略大於 106

也就是說,這已然囊括了一個 A 級文明的所有資訊,一旦通過了這個二分法測試,就可以被判定為 B 級文明。以此類推,當人類所擁有的資訊量每增加十倍、便對應到不同的字母分級,因此,在這個分類中最為先進的是「Z 級」文明、相當於能掌握 1031 位元的資訊量。

資訊量的爆炸最早可以追溯至文字發明開始,書面文字使得人類得以記載當下、乃至於過去發生的一切歷史。古希臘時代所有的書面文物加總起來大概對應於 109 位元的資訊量,相當於薩根筆下的 C 級文明。1970、80 年代,薩根從全世界所有藏書館數以千萬計的藏書總量、頁數進行統計,我們人類從歷史上至當代所擁有的文字、語言、圖像等資訊含量總計大約是 10¹⁵ 位元,因此被歸類為「0.7 H」類文明。

-----廣告,請繼續往下閱讀-----

而資訊量的第二次大爆炸莫過於網際網路的誕生。當網路普及後,無論是科學、經濟、政治、醫療、娛樂、藝術等包羅萬象的事物,都裝載在網際網路之中。2016 年,全球網路所涵括的總資訊量大概是 1.3 ZB (zettabytes),大約相當於 1022 位元,對應於 Q 級文明。根據國際資訊公司(IDC)預測,人類所擁有的數據庫資訊總量在 2025 年可以達到 175 ZB,相當於 1024 位元——也就是說,當前人類正在往「S 級文明」邁進。

有趣的是,薩根推測人類初次接觸到的外星文明應當是 1.5 J 到 1.8 K 類的文明,通常他們已然克服恆星際旅行的瓶頸。至於卡爾達肖夫的第 II 型文明,大約對應於 Q 類文明;而得以掌控可觀測宇宙大部分星系的 III 型文明,則可以達到 Z 類文明的水平。畢竟掌握時空旅行需要相當複雜的計算與模擬,需要遠超越當今的人類設備所擁有的一切運算能力。

然而,從目前的角度來看,顯而易見地——我們早已超越了他所預測的第 II 型文明等級。這是因為薩根在當時提出這個分類法時,尚未預測到數十年後的今天資訊量會隨著網路的出現而劇增。即使在薩根指數定義的資訊量必須是「單一而不重複的」(比如 A 網站的圖片是從B網站引用來的、同時 C 網站也使用了該圖片,我們只能將該影像視為一組位元、而非三組),但這些資訊在枝繁葉茂的網路時代已然是幾乎不可能被估算的。

因此,薩根的這個分級法在網際網路出現後便可能無法作為合適的指標,但卡爾達肖夫指數目前依然能適用;換言之,資訊量急速暴增似乎也側面反映了「能量」對於人類而言比「資訊量」更難駕馭的事實。

-----廣告,請繼續往下閱讀-----
2000 年代之後,網際網路的發軔造就了資訊量呈指數成長。圖/Statista

微觀尺度的操作層級

另一個有關文明的分級是由英國宇宙學家約翰.巴羅(John D. Barrow)所提出的,是基於人類對於「微觀尺度」的「操作程度」。他發現,科學史上人類似乎不斷朝著微小尺度的事物進行探索,從生活中隨處可見的宏觀機械裝置、顯微鏡下的分析、到分子原子尺度的研究,某種程度上,「探測尺度」似乎與文明發達程度成正比。他將文明發達程度區分為下列等級:

  1. 負 I 型文明(機械文明)
    該文明能操控與個體同等尺度的一切物件,比如採礦、建築樓房、使用機械裝置等等。
  2. 負 II 型文明(生物工程文明)
    該文明能操控基因序列,或者藉由移植組織、器官來改變生命體的特性。
  3. 負 III 型文明(化學工程文明)
    該文明能操控分子,比如透過改變分子鍵結創造新物質。
  4. 負 IV 型文明(奈米文明)
    該文明得以操控個別原子,實現奈米科技在原子尺度的應用,並可能透過科技創造出複雜的人造生命體。
  5. 負 V 型文明(核子文明)
    該文明得以操控原子核,並能自由改造組成原子核的質子、中子。
  6. 負 VI 型文明(粒子文明)
    該文明將能操控夸克、輕子等組成萬物的基本粒子,並且能隨心所欲聚集粒子、駕馭高能量。
  7. 負 Ω 型文明(時空文明)
    該文明將能操控普朗克尺度(10-35 公尺)下的事物,比如量子泡沫(quantum foam)等微觀時空結構;他們將有能力透過負能量或者奇異物質控制、放大隨機漲落的蟲洞,從而具備實現時空旅行的能力。

顯而易見地,人類距離負 Ω 型文明依然來日方長。目前,人類能夠自由操控與我們相同尺度的機械物件,可以建築、採礦,也可以完成一些簡單的基因工程;在近一個世紀內,我們掌握了相對論、發明了人造衛星與 GPS,同時也因為量子力學的發跡,打造出各式各樣的電子產品。但我們尚未能夠自由改變分子鍵結、發明新物質的能力也是侷限的、更無法隨心所欲操控並改變原子結構,因此目前人類大概落在負 I 型文明與負 II 型文明之間。

尺度的數量級:愈先進的文明可能可以探測到愈微觀的結構。圖/筆者繪製

從物理學的角度來看,「探測尺度」和卡爾達肖夫指數的「能量」其實也是可以呼應的。由於相對論告訴我們宇宙中萬物都有一個速限,也就是光速,這意味著無論是能量、溫度、尺度、甚至時間單位都有一個極限值,也就是「普朗克單位」。在歷史上各種對撞機實驗告訴我們一個事實:當對撞機的能量愈高,人類所能探測的尺度就愈小。

事實上,普朗克能量(約 1.96x10^9 焦耳,相當於一輛車中 16 加侖汽油槽所提供的能量——貌似普通,然而這個值在微觀尺度下是相當大的,「焦耳」這單位在微觀世界大概相當於用「光年」換算人類尺度的距離)對應於一個普朗克質量黑洞的史瓦西半徑(約 10^(-35) 公尺,亦即普朗克尺度);用通俗的語言來說就是:一旦對撞機能量值大於普朗克能量,相當於把對應的質量壓縮到了小於史瓦西半徑的尺度,從而產生「黑洞」——即使是微型黑洞,也意味著我們的探測將被黑洞視界所設限。

-----廣告,請繼續往下閱讀-----

換句話說,普朗克能量相當於我們能探測普朗克尺度的所需能量;一旦超越了這個值,我們的探測將因為黑洞的產生而不再精確。因此,即使是一個無限發達的文明,普朗克長度將會成為探測尺度的最終極限,小於普朗克尺度的事物便不再具有物理意義——要注意的是,這些事實是基於目前「已知的物理理論」,假設未來文明已經掌握了結合量子場論與廣義相對論的萬有理論,這些極限值並不是沒有被推翻的可能性。

對於未來文明的展望

從最基本有機分子、形成碳基生命體、再演化成為人類這樣的智慧生命,這樣的機率可以說是趨近於零,也因為如此,才有「地球殊異假說」、甚至是「創造論」這些爭辯。我們必須剛好躲過演化史上的大滅絕事件,並且在安穩的自然環境下演化為智人。這段過程還要大概經過一、兩百萬年後,才開始有文明的誕生;而縱觀整個人類史,科學正式發跡至今其實也就只有幾百年。

把地球 46 億年的歷史濃縮在一份年曆上,人類進入舊石器時代大概對應於 12 月 31 號晚上 11 點,大概跨年前 25 秒才進入新石器時代,而從文藝復興、大航海時代、科學革命至今,在這年曆的尺度下其實根本還不到一秒鐘。這還僅僅只是地球史的尺度——如果考量到 137 億年的宇宙史尺度,科技文明的興起根本是連一瞬間都還不到的事,可見人類的科技目前還算是相當稚嫩的。

科幻作品中那些搭乘星艦、遨遊星際空間的劇情,大多數便是 II 型文明;至於可以利用曲速引擎穿越時空的,或許是 III 型文明才能實現的。對於 II 型文明而言,他們或許能夠透過「戴森球」(Dyson sphere)控制恆星能量的輸出。當一個文明的工業發達到一個程度,便能夠駕馭恆星能量,搭建一系列能源板或人造衛星,從而環繞著恆星本體、調控能量的輸出,這種大規模的人造結構便稱為「戴森球」。

-----廣告,請繼續往下閱讀-----

要建造這類型的結構,目前所知的方法大概就是藉由太空梭或者人造衛星在行星軌道上搭建一圈能源板,並可能需要碳纖維或者更堅韌且輕便的材料。

最基本的構造大概是建構一圈「戴森環」,再來是更多戴森環組裝成的「戴森雲」,或者可以透過光壓與重力的平衡打造出更完整的「戴森泡」;如果科技更發達,則有機會建造出完整且均勻的球殼包覆著恆星以及周圍的行星,也就是「戴森殼」,這類型結構基本上可以完全駕馭母恆星的能量、並且可以將球殼內層表面改建為太空殖民地——但這以目前人類科技水平、或者資金限制等各層面而言,數百年內是不太可能實現的。

先進文明所建造的「戴森球」想像圖。圖/space.com

2015 年,恆星 KIC 8462852 的光變曲線一度成為天文學界的謎團,因為當時天文學家們觀測到該恆星的光譜有異常,且這一異常用傳統模型(比如周邊小行星帶、彗星雲氣等理論)是無法解釋的,因此,有一部份天文學家猜測該恆星的光度變化可能源於「人造巨型結構」;也就是說,能造成光譜像觀測結果那樣異常變化的原因,唯一合理的可能性就是「戴森球」的環繞與掩蔽。

這項研究吸引了當時不少外星愛好者的興趣,畢竟這顆恆星很可能正被高等外星文明所搭建的一系列巨大人工建築圍繞著!然而,根據 2019 至 2021 年的最新研究,發現了這顆恆星其實有一顆「伴星」在外圍,而系外衛星的殘骸大規模地遮蔽了恆星、致使光度出現異常。因此,目前並沒有證據指出戴森球這種人工結構真實存在。

-----廣告,請繼續往下閱讀-----

綜上所述,人類文明目前還算是新生兒,也或許,宇宙中還沒有更先進的文明出現。但在躍升為第 I 型文明之前,我們恐怕會經歷各種挑戰,而有些已經發生過、有些則或許正在醞釀,例如——宗教戰爭、糧食危機、核武威脅、氣候災難等等。

從目前看來,氣候變遷便是當務之急:人類過度排放溫室氣體,溫室效應導致了海平面上升、全球暖化,間接引發了各地氣候的異常、熱浪、饑荒,並一再落入惡性循環。此外,在二戰期間人類發明並使用了核子武器,其毀滅性更是不容輕忽的。我們尚不需考慮火山、地震這些自然災害,若無法擺脫上述這些境況,人類很有可能會在蛻變為 I 型文明前便自取滅亡。

人類文明雖然已有一定的科技水平,然而在卡爾達肖夫指數中,目前仍處於第 0.7 型文明。在躍升成為I型文明之前,有可能面臨生態危機、核子戰爭而自取滅亡。上圖為正在排放溫室氣體的工業煙囪。圖/Economist Intelligence Unit

因此,在未來數十年內,除了科技的提升以外,人類的當務之急是避免氣候災害與核武戰爭的發生。而人類對於星系文明的好奇與嚮往從未間斷,誠如 1977 年發射至太空的航海家金唱片中、美國總統吉米.卡特所提及的:

「我們正邁步度過我們的年月,好讓我們得以共生於你們的時代。我們期望有朝一日,能夠共同解決彼此所面臨的難題,並且聯合組成一個星系文明共同體。」

-----廣告,請繼續往下閱讀-----

We are attempting to survive our time so we may live into yours. We hope someday, having solved the problems we face, to join a community of galactic civilizations.

參考文獻 / 延伸閱讀

  1. Kardashev, N.S. (1964). Transmission of information by extraterrestrial civilizations. articles.adsabs.harvard.edu.
  2. 加來道雄,《穿梭超時空》,台北:商周出版,2013
  3. 加來道雄,《平行宇宙》,台北:商周出版,2015
  4. 卡爾.薩根,《宇宙・宇宙》,台北:遠流出版事業股份有限公司,2010
  5. 史蒂芬.霍金,《胡桃裡的宇宙》,台北:大塊文化,2001
-----廣告,請繼續往下閱讀-----
所有討論 1
Castaly Fan (范欽淨)_96
6 篇文章 ・ 4 位粉絲
科學研究者,1999年生於台北,目前於美國佛羅里達大學(University of Florida)攻讀物理學博士,並於費米國家實驗室(Fermilab)從事高能物理相關研究。2022年於美國羅格斯大學(Rutgers University)取得物理學學士學位,當前則致力於學術研究、以及科學知識的傳播發展。 同時也是網路作家、《隨筆天下》網誌創辦人,筆名辰風,業餘發表網誌文章,從事詩詞、小說、以及音樂創作。