Loading [MathJax]/extensions/tex2jax.js

0

0
2

文字

分享

0
0
2

提出科學「典範轉移」:孔恩誕辰 │ 科學史上的今天:07/18

張瑞棋_96
・2015/07/18 ・1192字 ・閱讀時間約 2 分鐘 ・SR值 577 ・九年級

-----廣告,請繼續往下閱讀-----

1947 年,正在哈佛大學攻讀物理博士的孔恩(Thomas S. Kuhn, 1922-1996)意外地獲得在大學部授課的機會。哈佛大學校長柯南特(James B. Conant)深覺科學普及的重要,除了打算親自出馬教科學哲學,還想新開一門科學史的課,於是找上了孔恩。沒想到因此改變了孔恩的人生道路,也催生了一個科學哲學的重要學說。

在準備教材時,孔恩才驚覺難以理解亞里斯多德的《物理學》原典。他原本以為科學的發展是循序漸進地由淺而深、由簡而繁,因此以他一個物理學博士生,理應輕鬆掌握幾千年前的原始科學。但亞里斯多德自成一套的世界觀卻令他不得其門而入,猶如原始部落充滿隱喻的神話令人費解。後來他試著拋下現代物理知識,依循亞里斯多德的世界觀與思想脈絡去思考,才豁然開朗,並且悟出「不可共量性」這個重要概念,開始醞釀將要掀起巨浪的科學哲學經典之作。

1948 年,他開始講授科學史,同時繼續準備博士論文,一年後順利取得博士學位,但他的學術路線已從物理學轉向科學史與科學哲學了。1962 年,就在他到柏克萊哲學系與歷史系任教後的第二年,孔恩出版《科學革命的結構》一書,在學術圈投下震撼彈,震波同時擴及自然科學與社會人文這兩個不大往來的圈子。

孔恩發現科學史上大部分時期都是他所稱的「常態科學」,也就是某種觀點、理論或價值取得科學社群的共同認同,而成為典範之後,科學社群的新舊成員就都會以此典範為中心,遵循相同的方法、使用共同的語言,有效率地探索新的知識。一旦出現與典範不符的異例,被質疑的通常不是典範有誤,而是研究者的方法或工具有問題。直到更多異例出現,成為不得不正視的危機,才為科學革命提供契機,由截然不同的新理論取代舊典範,成為新的典範,再如此不斷循環。

-----廣告,請繼續往下閱讀-----

因此科學的進展並非像積木般慢慢堆疊,逐步累積成高塔。相反地,真正跳躍性的進步往往是打掉重練、另起爐灶;而且用的是與原來積木形狀不同的新型積木。這就是新舊典範之間的不可共量性,兩者的觀點、架構、語言都不相同,所以沒有共同標準可以衡量對錯;從托勒密到哥白尼的行星軌道模型,從牛頓力學到相對論,就都是一個典範取代一個典範的例子。

孔恩的「典範轉移」理論一方面受到社會大眾的熱烈歡迎(包括企業管理等不同領域都拿來套用),一方面卻在學術圈引起正反兩極的評價。支持者讚譽他掌握了科學進展的歷史脈絡,發掘出自然科學較其它社會科學有明顯進步軌跡的原因;批評者則質疑典範模型其實否定了多元化的可能,而且典範取捨只由科學社群決定,代表著獨尊科學的菁英主義。

其實孔恩只是從史實的角度提出科學進展的實然面,至於批評者所提出的科學與科學家的定位等應然面的問題,仍有待科學家與人文社會學家的繼續對話。

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1028 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
【GENE思書軒】死了一個研究生以後,道出了學術倫理
Gene Ng_96
・2019/02/02 ・2716字 ・閱讀時間約 5 分鐘 ・SR值 525 ・七年級

醫學論文造假事件

去年醫學論文造假事件鬧到最鬧烘烘時,很多圈內的朋友也都不約而同做了很多相同的夢,內容非常真實又刺激,曲折離奇到說出夢境都絕對要發表不自殺聲明。

毫不例外的,現實當然也要比很多影視作品還更變態,狗血狂灑到編劇都嚇到吃手手,不信看看從造假後一路走來,台灣高等教育和學術圈在面對愈來愈嚴峻的國際競爭壓力下,各種明爭暗鬥、扯後腿、落井下石,真是令人眼花撩亂,難怪台灣書市的大眾小說幾乎全都變小眾了,因為讀報紙就比大眾小說精彩。

圖/pixabay

醫學論文造假事件後,除了造成有學校沒有校長,很多新同事和助理、學生要去上所謂的學術倫理課,以及信箱不時收到誠信電子報,在制度和體制上幾乎沒有任何改變。相信再來一次,同樣的戲碼又不會不再重演一遍,然後更多無辜的人要逼得寫作文,或小說

-----廣告,請繼續往下閱讀-----

讓科學界莘莘學子重新點燃希望

這是一個很難讓人樂觀的年代,不過在這個現實虛構顛三倒四的惡質現狀下,慶幸的是有部優異的作品橫空出世了!在紛紛擾擾的環境中,這本小說卻很瘋刺的比讀報紙才知道的事情還來得更像是真實的!

在一系列造假事件中,學術圈內異常的安靜,就連我夢中在醫院裡工作的線民,都回報說醫院內所有人上班時都完全不像聽說任何事一樣,在茶餘飯後都完全沒人想要提到這件事,一整個河蟹到可怕,據說膽敢要說八卦的話,都要作夢跑離院外好幾公里外才行,果然比台日版的《白色巨塔》(白い巨塔)還變態,還好是作夢夢到的。學術圈內的大佬也沒人敢出來批評什麼,只有個位數學者敢在媒體上大量投書。

就在那幾位膽敢大量投書媒體的人物中,最突出的就是國立宜蘭大學生物機電工程學系特聘教授 ──《科學月刊》、《科技報導》前總編輯蔡孟利老師,以專業證據、實際訪談為基礎,提出強力的質疑,是極少數的正義之聲。據說他母校已有很多師生及校友感到 ⋯⋯ 因此,台灣就平添了一位優異的小說家!

龍困淺灘,不死也傷!

科學的價值、教育的價值、大學的價值,在純粹的名利追逐下,無形中崩壞!有人還敢說在學者和官員的這些作為下,能帶給社會正面的力量,以及給予莘莘學子追求和現實夢想的勇氣嗎?!難怪人才加速流失。好棒棒,沒有關係,很可以,我們還有小說《死了一個研究生以後》。

-----廣告,請繼續往下閱讀-----

在「死了一個研究生以後」 ……

在細胞培養室裡無預警地開了一氧化碳自殺,然後她就死掉了。讓一個宅男在十幾天中步向人生中,比做實驗追求知識更真實的探索之旅,探索學姐的死因、探索人生中的其他面向、探索愛情。科學研究,原本就是要犧牲一個人很多很多青春和精力的,可是換來的不是高尚的理念,而是成了追名逐利下被吃掉也不痛不癢的小棋子,都不知大人要怎麼教小孩了。

原本以為,《死了一個研究生以後》只是一本人物對白簡單的爆料驚悚小說,可是沒想到這卻是一本文學性頗強的小說,甚至讓人忘了真實世界中的論文造假事件,即使真實的世界的夢境中,真的死了人。

我相信,沒讀過《死了一個研究生以後》的朋友遠超過讀過的,因為讀過的朋友見面時都不約而同問對方讀過了沒,即使不是生科人,也讀得津津有味。很難想像理工宅的處女作,就交織出複雜的劇情、深厚的感情、合理的線索,讓讀者跟著一位宅男抽絲剝繭,並且在宅了很多年的象牙塔脫困後在現實世界中遭遇各種逃避過的衝撞,簡直就是本宅男的異想世界,宅得很精彩!

死了一個研究生以後》中的命案把一自以為投身科學研究的宅男搞得七葷八素,現實中更多阿宅的故事只恐怕更杯具。《死了一個研究生以後》把一個宅男的生活和心理刻畫得入木三分,包括對正妹們的諸多性幻想。我雖然一點也不宅,但看看周遭的宅男們,也感到好親切和熟悉。

-----廣告,請繼續往下閱讀-----

圖/pexels

作為一部傳說中的推理小說,《死了一個研究生以後》是有些不足,就是壞人實在太善良了,果然學界大佬都還是吃素的,讓結尾對照整本小說而言顯然不夠緊張刺激。連邪惡的老闆也只能拿科學哲學大師孔恩 (Thomas S. Kuhn,1922-1996)《科學革命的結構》(The Structure of Scientific Revolutions) 的典範論來打打嘴炮,讓我真想巴他兩下,用力打臉說他怎麼知道他的典範不會被轉移掉,造個屁假啦。然而,瑕不掩瑜,近年台灣已少有這麼優異的小說問世了!

泛科學現在推了個泛科幻獎,徵求短篇和中短篇科幻小說。我已想好兩部科幻推理小說的題目了:《死了一個大學校長以後》,以及其續集《死了一個教育部長以後》,請大家拭目以待,期待都能在夢中讀到這兩部劃時代的巨著!

最後,本人在此特地聲明:

本人樂觀開朗,身體健康,無任何使我困擾之慢性病或心理疾病,故絕不可能做出任何看似自殺之行為。

本人從無睡眠困擾,故不需服用安眠藥。

本人不酗酒亦不吸毒,也絕不會接近下列地點:
1. 開放性水域
2. 無救生員之游泳池
3. 有高壓、危險氣體,或密閉式未經抽氣處理之地下室、蓄水池、水桶等
4. 無安全護欄之任何高處
5. 任何施工地點(拆政府除外),包括製作消波塊之工地
6. 任何以上未提及但為一般人正常不會前往之地點

本人恪遵下列事項:
1. 車輛上路前會檢查煞車部件、油門線等,並會在加油前關閉車輛電源與行動電話。
2. 絕不擅搶黃燈、闖紅燈。
3. 乘坐任何軌道類交通工具一定退到警戒線後一步以上,直到車輛停妥。
4. 騎乘機車必戴安全帽;乘車必繫安全帶。
5. 絕不接近任何會放射對人體有立即危害的輻射之場所(如核電廠)或設備。
6. 颱風天不登山、不觀浪。

本人將盡可能注意電器、瓦斯、火源之使用。

本人居住之房屋均使用符合法規之電路電線,絕無電線走火之可能;也絕未在家中放置過量可燃性氣體或液體。浴室中除該有之照明外,不放置任何電器用品,並在睡覺前關閉除電燈、冰箱、電扇外之所有電器開關。

本人絕不會與隨機的不明人士起衝突,並盡可能保護自我人身安全。

所以若網友在看完此聲明之後,近期或將來發現此帳號不再上線,請幫我討回公道,謝謝。

-----廣告,請繼續往下閱讀-----

本文原刊登於 The Sky of Gene

-----廣告,請繼續往下閱讀-----
Gene Ng_96
295 篇文章 ・ 32 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋

0

0
2

文字

分享

0
0
2
提出科學「典範轉移」:孔恩誕辰 │ 科學史上的今天:07/18
張瑞棋_96
・2015/07/18 ・1192字 ・閱讀時間約 2 分鐘 ・SR值 577 ・九年級

-----廣告,請繼續往下閱讀-----

1947 年,正在哈佛大學攻讀物理博士的孔恩(Thomas S. Kuhn, 1922-1996)意外地獲得在大學部授課的機會。哈佛大學校長柯南特(James B. Conant)深覺科學普及的重要,除了打算親自出馬教科學哲學,還想新開一門科學史的課,於是找上了孔恩。沒想到因此改變了孔恩的人生道路,也催生了一個科學哲學的重要學說。

在準備教材時,孔恩才驚覺難以理解亞里斯多德的《物理學》原典。他原本以為科學的發展是循序漸進地由淺而深、由簡而繁,因此以他一個物理學博士生,理應輕鬆掌握幾千年前的原始科學。但亞里斯多德自成一套的世界觀卻令他不得其門而入,猶如原始部落充滿隱喻的神話令人費解。後來他試著拋下現代物理知識,依循亞里斯多德的世界觀與思想脈絡去思考,才豁然開朗,並且悟出「不可共量性」這個重要概念,開始醞釀將要掀起巨浪的科學哲學經典之作。

1948 年,他開始講授科學史,同時繼續準備博士論文,一年後順利取得博士學位,但他的學術路線已從物理學轉向科學史與科學哲學了。1962 年,就在他到柏克萊哲學系與歷史系任教後的第二年,孔恩出版《科學革命的結構》一書,在學術圈投下震撼彈,震波同時擴及自然科學與社會人文這兩個不大往來的圈子。

孔恩發現科學史上大部分時期都是他所稱的「常態科學」,也就是某種觀點、理論或價值取得科學社群的共同認同,而成為典範之後,科學社群的新舊成員就都會以此典範為中心,遵循相同的方法、使用共同的語言,有效率地探索新的知識。一旦出現與典範不符的異例,被質疑的通常不是典範有誤,而是研究者的方法或工具有問題。直到更多異例出現,成為不得不正視的危機,才為科學革命提供契機,由截然不同的新理論取代舊典範,成為新的典範,再如此不斷循環。

-----廣告,請繼續往下閱讀-----

因此科學的進展並非像積木般慢慢堆疊,逐步累積成高塔。相反地,真正跳躍性的進步往往是打掉重練、另起爐灶;而且用的是與原來積木形狀不同的新型積木。這就是新舊典範之間的不可共量性,兩者的觀點、架構、語言都不相同,所以沒有共同標準可以衡量對錯;從托勒密到哥白尼的行星軌道模型,從牛頓力學到相對論,就都是一個典範取代一個典範的例子。

孔恩的「典範轉移」理論一方面受到社會大眾的熱烈歡迎(包括企業管理等不同領域都拿來套用),一方面卻在學術圈引起正反兩極的評價。支持者讚譽他掌握了科學進展的歷史脈絡,發掘出自然科學較其它社會科學有明顯進步軌跡的原因;批評者則質疑典範模型其實否定了多元化的可能,而且典範取捨只由科學社群決定,代表著獨尊科學的菁英主義。

其實孔恩只是從史實的角度提出科學進展的實然面,至於批評者所提出的科學與科學家的定位等應然面的問題,仍有待科學家與人文社會學家的繼續對話。

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1028 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

1

2
2

文字

分享

1
2
2
希格斯玻色子的發現,與仍待破解的質量謎題──《這世界難捉摸》
天下文化_96
・2018/04/28 ・2894字 ・閱讀時間約 6 分鐘 ・SR值 535 ・七年級

-----廣告,請繼續往下閱讀-----

大家都覺得很重要,但希格斯玻色子到底是什麼?

2012 年粒子物理學家正式宣佈發現希格斯玻色子,這件事馬上變成國際頭條,《紐約時報》寫道「希格斯玻色子的發現,代表科學的進步,能對現代文明提供最好的解決方案。」每個人都像發現大秘寶一樣興奮,不過清楚知道自己在興奮什麼的人應該不多……不信的話我們先來做個小測驗好了!

希格斯小測驗

一、在「希格斯玻色子」這個名字用來命名粒子之前,它最為人所知的是:

  1. 兒童最愛的電視小丑
  2. 中情局最危險的間諜代碼
  3. 在「星際大戰」中,天行者路克的兒時玩伴
  4. 你朋友在「龍與地下城」中的角色

二、對或錯:如果直接吞下去,希格斯玻色子比超火辣口味「奇多」更容易上癮。

三、對或錯:希格斯玻色子是希格斯和玻色這兩位理論家所預測的粒子。

看完文章後在附註中核對你的答案,看看你知道多少:)註1

2012年,希格斯玻色子宣布被發現。上圖為希格斯玻色子通過衰變為強子噴流的質子與電子的碰撞形成這樣的景象。圖/Lucas Taylor / CERN@wikipedia

認真來說,找到希格斯玻色子是科學的一大勝利。它給了我們一個最佳展現,那就是:尋找模式是了解宇宙的良好方針。

-----廣告,請繼續往下閱讀-----

希格斯玻色子可能存在的想法,來自於研究傳遞作用力的粒子模式,以及關於它們質量的問題,這些粒子是光子、W玻色子和 Z玻色子。物理學家問:「為什麼它們其中的光子沒有質量,但是其他粒子(W及Z)的質量非常大?」就一個我們稱為質量的標籤來說,這種有些力場粒子質量是零,但有些不是零的特殊情況,實在是太奇怪、太莫名其妙了。

希格斯和其他幾位粒子物理學家關注了這個問題一段時間,就決定這樣找出答案:把質量做出來吧。

真的,他們就是這樣做的!如果你再添加一個粒子(希格斯玻色子)和它的場(希格斯場)到方程式裡,那麼把質量視為粒子標籤(以及某些粒子為何有更多質量)的想法,就開始有了意義。

大致說來,這個理論可以如此陳述:

-----廣告,請繼續往下閱讀-----

希格斯場可以想像成一個瀰漫整個宇宙的場。它可以做其他場不能做的事:既非吸引力也非排斥力,而是讓粒子寸步難行或是速度減緩。希格斯場能讓粒子達到與擁有慣性質量般的相同效果。

希格斯場與粒子之間的交互作用愈多,粒子看起來擁有的慣性(或是質量)就愈大。這進一步暗示,粒子與希格斯場交互作用所產生的慣性,就是粒子的質量。這就是粒子「擁有質量」的定義。

一些粒子非常強烈的感覺到希格斯場,代表它們需要很大的力量來加速或減速:這些粒子有很大的質量。其他粒子幾乎感覺不到希格斯場,所以它們只需要很小的力量來加速或減速:這些粒子幾乎沒有質量。

讓我們花點時間思考一下。希格斯場的發明,是一個典範轉移的見解,同時也是一個明顯無趣的聲明。

希格斯場是一個典範轉移, 因為它給了你對於「質量是什麼?」這個問題,一個全新的思考方式,這是不得了的成就。但是,希格斯場的論述也是沒什麼大用的,一旦你接受了粒子質量不過是神祕的量子標籤,而不是粒子的內含物。

-----廣告,請繼續往下閱讀-----

事實上, 它沒有解決最重要的問題:「為什麼粒子有不同的質量?」 所有的理論都是把一個問題變成另一個不同的問題:「為什麼所有物質粒子對希格斯場的感覺都不一樣?」

根據希格斯理論,物質粒子的質量大小並沒有特別的理由。質量大小就好像是隨機選擇一樣,也可以有完全不同的數值。即使你改變質量,也不會打破任何理論,現有的物理定律仍然照樣運行。

希格斯理論確實解釋了為什麼作用力粒子(光子、W 和 Z)具有現有的質量,但是不能通盤解釋物質粒子為什麼具有不同質量(為什麼有些與希格斯場交互作用多,而有些卻很少)。質量大小可能有種模式,但是到目前為止,最好的宇宙理論只將物質粒子的質量列為任意數目。

重力質量

我們來到了有關質量奧祕的最後一片拼圖。

-----廣告,請繼續往下閱讀-----

當我們之前思考如何測量某物的質量時,你很可能也想到了一個不同於發泡膠子彈玩具槍的精確方法:何不用磅秤!

磅秤能測量物體的重量,也就是測量地球對物體施加的重力拉力。這與質量密切相關,因為擁有更多的質量,受到地球的拉力愈大。在一個粒子的情況下,你也可以把重力質量看成「重力荷」。當兩個粒子有電荷時,它們彼此感覺到電力,電力與電荷成正比。以同樣的方式,當兩個粒子具有質量時,它們感受到與自身質量成比例的重力吸引力。

奇怪的是,重力只有吸引力。

兩種質量是一樣的嗎?

重力質量與我們前幾頁談論的慣性質量相同嗎?可以說是,也可以說不是。

-----廣告,請繼續往下閱讀-----

說它不是,因為我們所謂的「重力質量」,似乎決定了施加在物體上的重力,而且我們使用不同於慣性質量的技術(磅秤)來測量它註2

說它是,因為我們可以用兩種方式來測量質量,到目前為止,我們從未觀察到物體的重力質量和慣性質量之間的差異。

這多麼令人匪夷所思。沒有真正的直觀原因有說明,兩種質量應該一樣。它們其中一個(慣性質量)是描述如何抵抗運動,另一個(重力質量)是描述有多想被重力拉動。

以我們現在的物理學架構來看,我們不知道為何如此。我們只是假設兩種質量是一樣的,而這個等效性假設,是愛因斯坦廣義相對論的核心。廣義相對論用非常不同的方式看待重力。它不是把重力視為:作用於附著在粒子和能量背後的任意「荷」,而是把重力描繪為質量和能量周圍時空的彎曲或扭曲。

-----廣告,請繼續往下閱讀-----

所以,愛因斯坦的理論讓兩種質量的聯繫更加自然,不過它還是沒有告訴我們「為什麼是這樣」。除了相對論之外,我們的粒子物理學理論把重力質量和慣性質量視為不同的概念,但實驗上我們看到,它們是一樣的。這非常強烈的表明,兩種質量有極深刻的聯結。

  • 註1:如果你真的試圖回答任何一個問題,代表你應該有好好閱讀這一章,但還是一頭霧水,對吧?這就是作者想要表達的感覺XD
  • 註2:這是牛頓的重力觀。往後,我們會學到廣義相對論的版本,在廣義相對論裡,重力不是作用力,把重力視為質量造成的時空扭曲會更加合理。

 

 

本文摘自《這世界難捉摸:霍金也想懂的95%未知宇宙》,遠見天下文化出版。

-----廣告,請繼續往下閱讀-----
所有討論 1
天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。