1

11
5

文字

分享

1
11
5

希格斯玻色子發現十週年

PanSci_96
・2023/03/27 ・7603字 ・閱讀時間約 15 分鐘

-----廣告,請繼續往下閱讀-----

作者︱黎偉健

2012 年 7 月 4 日,位於歐洲核子研究中心(CERN)的大型強子對撞機(Large Hadron  Collider(LHC))的 ATLAS 和 CMS 實驗團隊宣佈了希格斯玻色子的發現,轟動了整個物理學界。提出希格斯玻色子的希格斯(P. Higgs)、恩格勒(F. Englert)和布勞特(R. Brout)迅速在翌年獲頒諾貝爾物理學獎。

在粒子物理的標準模型裡,希格斯玻色子關係到基本粒子質量的來源,具有重大意義。此外,由於希格斯玻色子很可能與一些未知的物理有關,以後對該粒子的進一步研究很可能有助解開現今物理學的一些謎團。藉著希格斯玻色子發現十週年,讓我們回顧一下希格斯玻色子的研究在過去十年的進展,並前瞻未來對它的更深入探測與其蘊含的意義。

粒子物理標準模型

現代物理學的一項輝煌成就,是認識到物質皆由基本粒子(elementary particle)組成,而一切已知的物理現象可歸結為基本粒子之間基本交互作用(fundamental interaction)的結果。例如水,它由水分子組成,而水分子由氫原子和氧原子組成;原子則由電子和原子核組成,而原子核由質子和中子組成;質子和中子則由夸克組成。

從此可見,電子和夸克組成了我們日常接觸到的所有物質。它們是「基本」粒子,因為至今物理學家並未發現到它們有內在結構。基於夸克之間存在強交互作用,夸克能組成質子和中子,質子和中子能組成原子核;基於電子和夸克之間存在電磁交互作用,電子和原子核能組成原子,原子能組成分子。

-----廣告,請繼續往下閱讀-----

基本交互作用有四種:重力交互作用(gravitational interaction)、電磁交互作用(electromagnetic  interaction)、強交互作用(strong interaction)和弱交互作用(weak interaction)。重力交互作用即萬有引力,它主宰著如星體的形成及運行等天文尺度的物理現象,由廣義相對論描述【註 1】;電磁交互作用、強交互作用和弱交互作用主宰著微觀世界的物理現象,由粒子物理的標準模型(Standard Model)描述。

圖一:標準模型中的基本粒子。

圖一列出了標準模型中的基本粒子,它們分為三類:費米子(fermion)、規範玻色子(gauge boson)和希格斯玻色子(Higgs boson)。費米子分為兩種:夸克(quark)和輕子(lepton),有三個世代(圖一中左邊的首三列)。第一世代的費米子為最常見,上夸克、下夸克和電子組成了原子,從而組成了我們日常接觸到的物質。規範玻色子是傳遞基本交互作用的粒子,其中光子傳遞電磁交互作用,W Z 玻色子傳遞弱交互作用,膠子傳遞強交互作用。希格斯玻色子是希格斯場(Higgs field)的激發。希格斯場與其他粒子的交互作用使得這些粒子具有質量,而希格斯玻色子會與帶有質量的基本粒子發生直接交互作用。

圖二:基本粒子的交互作用。

圖二顯示了標準模型中基本粒子的直接交互作用情況,其中藍線兩端的粒子會發生直接交互作用。例如光子(γ)和電子(e),它們之間有一藍線連接,即具有直接交互作用。粒子之間的交互作用可以形像地用費曼圖(Feynman diagram)表示。例如電子和電子之間的靜電排斥現象,可看作散射過程 eeee,其費曼圖如圖三,其中縱向代表空間,横向代表時間,時間流逝方向從左到右,左端為初態,右端為終態,實綫代表電子,波浪綫代表光子,而綫的交點(稱為頂點(vertex),圖中有兩個)代表電子和光子之間的直接交互作用。直接交互作用顯示為一頂點,即交互作用發生在某時空點上。

圖三:以費曼圖表示電子之間的靜電排斥現象。

根據圖三的圖像,我們可以把電子和電子之間的遙距靜電排斥現象理解為一顆電子釋放出一顆光子,然後該顆光子被另一顆電子吸收,從中光子把能量和動量從一顆電子攜帶到另一顆電子,因此我們說光子傳遞電磁交互作用;這好比兩個籃球員在傳球,籃球員是電子,籃球是光子,而籃球員在拋球和接球時之所以感受到對籃球施了力,正是因為籃球傳遞了動量。

-----廣告,請繼續往下閱讀-----

從這角度看,世上並沒有遙距的力,一切基本交互作用都發生在某時空點上,即費曼圖中的頂點。這種交互作用的局域性(locality)是現代粒子物理學的特點,它是狹義相對論和量子力學結合——量子場論——的結果。類似地,圖二中的每條藍線都有對應的費曼圖頂點。

希格斯場與希格斯玻色子

根據量子場論,粒子是場的激發。這就是為什麼每顆電子都相同,因為它們都是同一個場——電子場——的激發。在量子場論中,真空被定義為能量最低的態。對於一般的場,它的值在真空中為零。例如,由於電磁場由光子組成,帶正能量,因此電磁場非零的態能量必定比電磁場為零的態高,所以真空中電磁場必為零。希格斯場則不同,它在真空中的值由一個勢能函數取極小值決定,該勢能函數對希格斯場 ϕ 的依賴形式如圖四中的紅線。

圖四:勢能函數 V(ϕ)對希格斯場 ϕ 的依賴形式,黑色粗體的區段是我們目前能觀測到的,紅線為標準模型的預言,藍線是某個其他模型的預言。(本圖出自參考文獻1)

從圖四可見,勢能在希格斯場為一非零值時取最小值,即希格斯場的真空期望值(vacuum expectation value(vev))為非零【註 2】。也就是說,真空中充滿著希格斯場,而任何粒子在任何地方任何時間原則上都有可能與其發生交互作用。

在標準模型裡,只有特定幾種粒子能與希格斯場發生交互作用。這些粒子包括夸克、帶電輕子(e, μ,τ)以及 W Z 玻色子。這些粒子因為與真空中的希格斯場發生交互作用,從而獲得質量。對於這些粒子,它們與希格斯場的耦合強度與它們自身的質量成正比。所謂的希格斯玻色子,其實就是希格斯場在其真空值背景上的激發。

-----廣告,請繼續往下閱讀-----

因此,只有帶質量的粒子才能與希格斯玻色子發生直接交互作用(如圖二中與希格斯玻色子有藍線連結的粒子),而這些粒子與希格斯玻色子的耦合強度也正比於他們自身的質量【註 3】。值得注意的是,希格斯玻色子能與自身發生直接交互作用(見圖二)。

基本粒子的質量直接影響著宇宙中物質存在的形式。例如,我們知道,上夸克比下夸克輕,而質子由兩顆上夸克和一顆下夸克組成,中子則由一顆上夸克和兩顆下夸克組成【註 4】,因此質子比中子輕,從而質子是穩定粒子,這使得氫原子的組成變成可能。如果下夸克比上夸克輕,那麼質子會衰變成中子,即氫原子不穩定,宇宙便不可以如已知的含大量氫。又例如,原子的大小與電子的質量成反比,而原子的能階與電子的質量成正比,因此電子的質量直接影響著物質的化學特性。再例如,太陽中心核反應的其中一環取決於弱交互作用,其發生的機率正比於 1/mw4,其中 mwW 玻色子的質量。可見,希格斯場作為基本粒子質量之源,對物質的存在形式扮演著決定性角色。 

希格斯玻色子於 2012 年在位於歐洲核子研究中心(CERN)的大型強子對撞機(LHC)中被發現,是標準模型中最後一顆被發現的基本粒子。

對希格斯玻色子的最新認識

我們對希格斯玻色子的認識源自大型強子對撞機(LHC)的實驗數據。在 LHC 中,兩束質子互相對撞,質子裡的夸克或膠子會發生散射,有可能從中產生希格斯玻色子。由於希格斯坡色子的壽命很短,只有约 10  -22 s 秒,被產生的希格斯玻色子在到達粒子探測器前已衰變成較穩定的粒子。

-----廣告,請繼續往下閱讀-----
圖五 a:LHC 中產生希格斯玻色子的典型過程費曼圖 (本圖出自參考文獻1)

圖五 a 顯示了一個 LHC 中產生希格斯玻色子的典型過程的費曼圖。該過程的初態是兩顆來自質子的膠子(gluon),這兩顆膠子互相碰撞,產生了一對正反頂夸克,而由於頂夸克質量很大,從而與希格斯玻色子的耦合也很大,因而很有可能產生一顆希格斯玻色子,而該顆希格斯玻色子稍後衰變成兩顆 Z 玻色子,而這兩顆 Z 玻色子又各自衰變成一對正反帶電輕子(e+eμ+μ),粒子探測器會探測到終態的四顆帶電輕子。

圖五 b:實驗中探測到的四顆帶電輕子的質心系總能量 m4l 分佈。(本圖出自參考文獻1)

圖五 b 顯示了實驗中探測到的四顆帶電輕子的質心系總能量 m4l 分佈。藍色的部分顯示了非希格斯玻色子產生過程的供獻,而紅色部分即為產生希格斯玻色子所致,其峰位於希格斯玻色子的質量(125 GeV)。 

當然,在 LHC 中,希格斯玻色子的產生和衰變不是只有如圖五 a 的過程,所有可能的產生和衰變過程的費曼圖如圖六。

圖六:希格斯玻色子在LHC實驗中的產生和衰變過程。 (本圖出自參考文獻 3)

在圖六中,(a)至(f)是產生一顆希格斯玻色子的過程,(g)至(j)是希格斯玻色子的衰變模式,(k)至 (o)是產生兩顆希格斯玻色子的過程。在這些圖中,粒子的記號如圖一,而 q 代表夸克,V 代表 W 或 Z,f 則代表質量非零的費米子,粒子 X 與希格斯玻色子的歸一化耦合強度記為 κX【註 5】(標準模型對應 κ=1)。值得注意的是,希格斯玻色子可以透過因量子漲落而產生的粒子迴圈與質量為零的膠子和光子發生間接交互作用(見圖六(a)、(i)和 (j))。產生過程(a)至(d)以及衰變過程(g)至(j)都已被實驗證實。我們可以從這些眾多的過程所獲得的數據推斷出粒子與希格斯玻色子的歸一化耦合強度 κ

-----廣告,請繼續往下閱讀-----
圖七 a:從實驗數據中得到的 κ 值,紅色直線代表標準模型的預測值。(本圖出自參考文獻2)

圖七 a 中的點顯示了從實驗數據中抽取出來的 κ 的值,紅色直線則表示了標準模型的預測。從圖可見,對於 W 玻色子、Z 玻色子、頂夸克(t)、底夸克 (b)和濤子(τ),它們與希格斯玻色子的耦合強度已被精確量度,並且其值與標準模型預測一致。 

圖七 b:κf和 κV的量度精確度,中間黃色菱形為標準模型的預測值,越靠近黃色菱形表示實驗數據越符合理論值。(本圖出自參考文獻3)

圖七 b 顯示了 κfκV 的量度精確度在過去十年內的改善。紅色的圈表示 2012 年剛發現希格斯玻色子時的數據,藍色表示至 2015 年的數據,而黑色表示至 2018 年的數據。從圖可見,耦合強度的精確度在過往十年被大幅改善,並且其值與標準模型預測(κ=1)一致。 

未來對希格斯玻色子的探測 

圖八:基本粒子與希格斯玻色子的耦合强度量度進度及未來展望。(本圖出自參考文獻1)

圖八總結了至今對不同基本粒子與希格斯玻色子的耦合強度的量度進度以及未來展望。正如以上所述,我們已確定 WZ 玻色子,以及第三世代費米子與希格斯玻色子的耦合強度與標準模型一致。對於第二世代費米子,由於它們比第三世代費米子輕很多,因此與希格斯玻色子的耦合強度也小很多,所需的數據也多很多。

對於緲子,我們預計在未來五至十年間能確定它與希格斯玻色子的耦合強度是否與標準模型一致。在將來 15 至 20 年間,在升級後的高亮度 LHC(HL-LHC)中,圖六中未被觀察到的過程都會被觀察到,如同時兩顆希格斯玻色子的產生。可是,這都不足以測量出希格斯玻色子的自耦合強度。要量度魅夸克與希格斯玻色子的耦合強度,或希格斯玻色子的自耦合強度,我們需要 LHC 以外的新一代對撞機。

-----廣告,請繼續往下閱讀-----

對於奇夸克和第一世代夸克,由於它們非常輕,現時並沒有確切方法探測它們與希格斯玻色子的耦合強度。未來的正反電子對撞機或有機會探測到電子和奇夸克與希格斯玻色子的耦合強度。對於上夸克和下夸克,我們可能需要對撞機以外的方法,如對原子物理的精確量度,但這都只處於討論階段。 

有助解開的物理學謎團

我們對希格斯玻色子的進一步認識很可能有助解開一些現今粒子物理學和宇宙學的謎團,這些未解問題可大概歸為以下五個主要問題:

1. 層級問題

在標準模型裡,弱交互作用比重力交互作用強 1032 倍。為何重力這麼弱?這問題稱為層級問題(hierarchy  problem)【註 6】。基於重力如此弱的事實,可以在理論上證明,如果在弱電尺度(~200 GeV)附近沒有標準模型以外的新物理的話,在未知的終極理論裡的基本參數須被準確微調至 32 個小數位。很多物理學家把這種基本參數的精確微調視為不自然,從而推斷在弱電尺度附近必定有新物理。

因此,林林總總的新物理理論被提出,如一派理論提出希格斯玻色子並非基本粒子,而是由更基本的粒子組成的複合粒子;另一派理論提出在高能量尺度下存在超對稱【註 7】;還有一派理論提出宇宙存在額外維度。希格斯玻色子的發現以及至今對它特性的量度,排除了很大部分這些新物理理論。現今的理論家提出新理論時需要更謹慎,使得新理論與有關於希格斯玻色子的實驗數據吻合。

-----廣告,請繼續往下閱讀-----

2. 正反物質不對稱

在我們身處的宇宙中,物質都由正物質組成。可是,根據量子場論,一切粒子皆有其對應的反粒子【註 8】,而反粒子可組成反物質。那麼,為什麼宇宙中的物質只有正物質,沒有反物質呢?從理論推斷所知,在宇宙初期的高溫情況下,正反物質數量大致相同。現在我們所見到的正物質,是在宇宙因膨脹而冷卻後,正反物質互相湮滅後剩餘的。也就是說,宇宙很早期的時候正反物質數量存在些微不對稱,導致現今宇宙中只有正物質。

正反物質不對稱的大小依賴於宇宙早期弱電相變的細節。相變現象在日常隨處可見,如水蒸氣遇冷時凝結成液態水,或天然磁鐵遇熱時喪失磁性。在宇宙初期,溫度極高,希格斯場得到連續激烈的激發,因而其值不會停留在勢能(圖四)的最低點,而是作大幅度擺動,導致其平均值(即統計期望值)為零。隨著宇宙膨脹,溫度下降,希格斯場的擺動減小,直到某臨界溫度以下時,希格斯場的期望值取勢能的最小值處。希格斯場的期望值從零變為非零,這是一個相變過程,稱為弱電相變(electroweak phase transition)。

在標準模型裡,希格斯勢能導致的弱電相變為一連續相變(即所謂的二階相變),其結果是所造成的正反物質數量不對稱太小,不足以解釋所觀察到的不對稱值。因此,物理學家提出了一些新理論,這些理論涉及到新粒子的引入,而這些新引入的粒子會與希格斯場發生交互作用,從而改變希格斯場的勢能形式(如圖四中的藍線),使弱電相變變得不連續(一階相變),這也順帶的改變了希格斯玻色子的自耦合強度。所以,未來實驗對希格斯玻色子的自耦合強度的量度將有助解開正反物質不對稱之謎。

3. 暗物質

我們從天文觀察中得知,宇宙中存在著大量暗物質,其總質量約為普通物質的五倍。可以肯定,暗物質並非由標準模型粒子組成。因此,很多新的粒子理論被提出,當中引入了新的粒子。一個很自然的問題是,既然希格斯場負責給予標準模型粒子質量,它會不會也負責給予暗物質粒子質量呢?如果真的是這樣,那麼這些新的粒子會以量子迴圈的方式改變希格斯玻色子的壽命和自耦合強度,或者希格斯玻色子會衰變成這些新粒子,而這些都有機會在未來被測量到。

4. 費米子質量問題

在標準模型裡,費米子分為三個世代,三個世代的質量截然不同:第二世代比第一世代重,而第三世代比第二世代重(見圖一)。標準模型並不能對此作解釋。為此,物理學家提出一些新理論,而在這些新理論中希格斯玻色子具有一些標準模型不允許的衰變模式,如 Hμ+τ。如果這些新的希格斯玻色子衰變模式存在的話,有可能在未來被實驗探測到。

此外,在標準模型裡,微中子沒有質量。可是,我們從近年的微中子振蕩實驗中得知,微中子具有微小質量。希格斯場有可能在賦予微中子質量上扮演重要各式。

5. 宇宙暴脹之源

我知道,希格斯場的真空期望值取決於它的勢能形式,這是希格斯場與其他場截然不同的特點。有趣的是,根據現時所知的希格斯玻色子質量,我們可以推斷現今的希格斯場真空期望值只是勢能的局部最小值(又稱為錯真空(false vacuum)),而不是全局最小值(即真真空(true vacuum))。也就是說,我們所處於的真空並非最低能量態,而且不穩定,有機會衰變成更低能的最低能量態。

可是,這個錯真空衰變的機率極小,導致錯真空的壽命遠長於宇宙年齡,即我們所在的真空處於一種亞穩定狀態。我們知道,在宇宙的極早期曾經發生過暴脹,即宇宙以指數式急速膨脹,而這導致了現今宇宙在大尺度下的平均性。我們很自然會問,是甚麼導致暴脹呢?理論上,類似於希格斯場的錯真空衰變現象很可能就是暴脹的原因。究竟希格斯場與宇宙早期的暴脹有關嗎?物理學家對此仍未有答案。

結語

希格斯玻色子的發現為粒子物理學研究展開了新一頁。在希格斯玻色子被發現後的十年裡,透過在對撞機實驗中對它的深入探測,我們對希格斯場和希格斯玻色子有了更豐富的認識。至今,一切有關希格斯玻色子的量度均與標準模型預測一致。我們可以肯定的說,正如標準模型所述,希格斯場的確賦予質量給W、Z玻色子以及第三世代費米子。這證明宇宙中存在第五種基本交互作用——希格斯交互作用。在未來的實驗裡,對希格斯玻色子的進一步探測將有助解開一些未解決的物理學謎團。

註釋

  1. 對於基本粒子,電磁交互作用的強度約為重力交互作用的 1030 至 1043 倍。因此,在粒子物理裡,重力交互作用可以完全被忽略。
  2. 希格斯場能具有非零真空期望值,關鍵在於它的自旋為零,從而非零真空期望值不會與勞侖茲不變性抵觸。希格斯場取非零真空期望值,是一種自發規範對稱破缺,這使得 W Z 既是傳遞交互作用的粒子,又帶有質量。這種賦予規範玻色子質量的機制稱為希格斯機制(Higgs mechanism),是弱電理論能成為一自恰理論的關鍵。
  3. 事實上,我們可以把希格斯玻色子與其他粒子的直接交互作用視為第五種基本交互作用,稱為希格斯交互作用,或湯川交互作用(Yukawa interaction)。
  4. 注意,質子和中子內除了夸克還有大量膠子,而質子和中子的質量絕大部分源於這些膠子的交互作用能,但這部分的貢獻在質子和中子裡是幾乎相等的。
  5. 歸一化耦合強度 κ 定義為耦合強度除以標準模型的耦合強度。因此,對於標準模型,歸一化耦合強度為 1。
  6. 關於層級問題是否一個合理的物理學問題,學術界仍存在爭論。
  7. 超對稱是一種理論上可能存在的時空對稱和內在對稱的混合,至今未被實驗發現。
  8. 反粒子與其對應的正粒子有相同質量和自旋,但帶相反的荷,如電荷。

參考文獻

  1. G. P. Salam, L. T. Wang, and G. Zanderighi, Nature 607 (2022) 7917, 41-47
  2. ATLAS Collaboration, Nature 607 (2022) 7917, 52-59 
  3. CMS Collaboration, Nature 607 (2022) 7917, 60-68
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
PanSci_96
1261 篇文章 ・ 2388 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
喝鮮奶真的能長高?拆解營養素與身高的關鍵連結!
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/17 ・3185字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 食力foodNEXT 合作,泛科學企劃執行。

日本的兒童與青少年在 1960 年代開始,身高像是坐上了成長的直升機!有人說,關鍵就在於1964年推動的學童乳政策,這一喝就是 60 年,讓孩子們「蹭蹭蹭」地長高。

那麼台灣呢?從 2010 年與 2015 年,嘉義、雲林率先實行學童乳政策,到 2024 年在進一步全國推動「班班有鮮奶」,我們的孩子也有這樣的機會長高嗎?但如果孩子長不高,真的是因為牛奶喝不夠嗎?其實,想要孩子長個子,還有更多「長高密碼」!

為什麼長不高?哪些因素決定身高?

人的身高是高是矮,有 80% 來自於基因決定。圖/envato

到底是先天還是後天在主宰我們的身高?科學家告訴我們,影響身高的原因,有 80% 來自基因!到目前為止,已經辨識出 700 多個基因和身高有關,其中一部分是影響骨骼中的生長板,另一部分則影響身體荷爾蒙的分泌,這些基因一起合力,最終決定了我們的身高表現。

-----廣告,請繼續往下閱讀-----

影響荷爾蒙分泌的基因,就像人體的「身高總指揮」,主要控制三大荷爾蒙:生長激素、甲狀腺素和性激素。

  • 生長激素是由腦下垂體分泌的,如果人體生長激素分泌較少,身高也會明顯受影響,也就是身高比較矮。
  • 甲狀腺素則是幫助粒線體這個「細胞能量工廠」順利運作,讓細胞有充足能量來代謝與生長。如果甲狀腺素分泌不足,細胞發育自然跟不上,就會影響身高表現。
  • 性激素則是影響生長板與肌肉的關鍵!例如,女性賀爾蒙分泌旺盛,會促使骨骼中的生長板提早關閉,所以女性平均身高比男性矮。而男性賀爾蒙不僅有助骨骼發育,還能增加肌肉量,讓身材更高挑結實。

所以,基因是命定的,後天就無法再突破了嗎?其實不然!雖然基因決定了大部分,但後天的努力也有很大空間來改變結局!接下來,我們就來看看後天四大關鍵:飲食、運動、睡眠和環境,如何影響孩子的身高成長!

後天逆轉勝!抓住長高的四大黃金關鍵

長高需要什麼?首先,飲食是關鍵!長高需要足夠的營養素,充足的蛋白質、鈣質與維生素能幫助骨骼發育,而均衡飲食則是孩子長高的基石。除此之外,運動也不可或缺,發育中的孩童建議每天至少一小時的運動,包括阻力訓練、有氧運動和放鬆運動等,能讓肌肉與骨骼的發育更加堅實,並且維持正常體重,促進生長激素分泌。

睡眠則是很多家長容易忽略的重要因素 。研究顯示,生長激素的分泌高峰在晚間 11 點至凌晨 1 點,以及清晨 5 點至 7 點。因此,確保孩子有規律且足夠的睡眠時間,可以顯著提升骨骼生長效率。

-----廣告,請繼續往下閱讀-----

最後,外在環境因素也會影響兒童身高。例如,空氣污染及鉛、鎘等有害物質可能阻礙發育。為了給孩子最好的成長環境,就要避開這些污染源。

盤點完這些後天因素後,我們不禁要問:牛奶真的能幫助長高嗎?答案將隨著我們深入探討後揭曉!

喝牛奶真的能幫助長高?

後天因素同樣會影響兒童身高,那喝牛奶會有幫助嗎?圖/envato

聯合國對於發育遲緩之定義,是該年齡孩童所測量身高,低於世界衛生組織制定的身高標準中位數 2 個標準差,就視為發育遲緩。

2023 年一篇跨國研究研究顯示,增加乳製品攝取能降低發育遲緩比例。

-----廣告,請繼續往下閱讀-----

當然,乳製品消費量增加可能也代表當地正在經濟成長,可能從其他面向影響飲食。為了避免其他因素干擾,這份研究也納入了人均 GDP、兒童扶養比、人口成長率、農村電氣化比例與女性參與勞動比等等變數進行控制。此外,該篇研究還另外指出乳糖不耐症常見於青少年與成人,對孩童沒有影響,因此不必過於擔心。

總之,喝牛奶的確可能對長高有幫助,但牛奶只是眾多因素之一。而更重要的是,台灣孩童真的缺這一杯鮮奶嗎?

牛奶的確對身高的發育有幫助,但台灣的學童真的缺奶嗎?

根據《國民營養健康狀況變遷調查》,除了 1-3 歲的幼兒外,其他年齡層的乳品攝取量都遠低於建議標準。特別是 7-18 歲的學童,乳品攝取量僅達建議量的一半,顯示台灣兒童的乳製品攝取明顯不足。事實上,7-18 歲的學童中,有 8 成每天攝取不到 1 份乳品,這對正在生長期的孩子來說,營養攝取遠遠不夠。

然而,學童缺的不僅是鈣,還有維生素 D。根據 2008 年一篇回顧性的研究,維生素D對身高發育與鈣質同等重要。如果鈣和維生素 D 攝取不足,會影響骨骼發育。1999 年中國的實驗研究指出,飲用牛奶能有效促進身高,尤其是加強維生素 D 的補充後,骨密度顯著提高。

-----廣告,請繼續往下閱讀-----

那麼,台灣學童的鈣與維生素 D 攝取是否足夠呢?答案是遠遠不夠!根據國民健康署的調查,7-18 歲的學童,鈣的攝取量平均不到建議量的一半,維生素 D 的攝取量甚至只有四成多。這樣的營養狀況,怎麼能夠提供足夠骨骼發育的營養環境?

更令人關注的是,這些營養缺口與乳品攝取不足有直接關聯。每份乳品大約含有 240 毫升牛奶,其中含有 240 毫克的鈣質及 3 微克的維生素 D。根據國民健康署採用的推薦膳食攝取量(RDA),每天需要的鈣質約為 1000 毫克,維生素 D 則是 15 微克,如果每人每天攝取2份乳品類,加上其他的飲食攝取,就有機會補足鈣與維生素 D 的缺口。

此外,牛奶中的鈣質容易被人體吸收。牛奶有三分之一的鈣是以游離態存在的,能夠直接被吸收,剩餘的鈣與酪蛋白結合,當人體消化酪蛋白時,這些鈣質也會被釋放,然後被人體吸收。事實上,人體對牛奶鈣質的吸收率為 32.1%,遠高於其他食物。因此,想要補充鈣質,牛奶無疑是最佳選擇。

人體對牛奶的吸收率達 32.1%,是補鈣的理想選擇。圖/envato

喝的不是鮮奶,而是加溫處理後的保久乳,營養素會被破壞嗎?

至於保久乳的營養價值問題,根據國民健康署 2021 年針對這個問題,提出了說明。鮮乳是生乳經過短時間高溫或超高溫殺菌方式所製成,所以無法達到完全滅菌,保存期間較短,而且需要冷藏。保久乳則是透過高溫或高壓滅菌,並且以無菌的填充方式放入無菌包材,所以能夠保存較久。

-----廣告,請繼續往下閱讀-----

根據食品藥物管理署營養成分資料庫,鮮乳跟保久乳中的蛋白質、脂肪、碳水化合物(乳糖)、礦物質及維生素都沒有太大差異,只有少數熱敏感的營養素,像是維生素 C 會稍微少一點外,其他成分大致上都一樣。所以,不管是鮮乳還是保久乳,在營養成分上差異不大!

另外,許多父母擔心乳糖不耐症影響孩子喝牛奶、容易引起腹瀉。牛奶中含有乳糖,而乳糖是一種雙醣,由半乳糖與葡萄糖所構成。人體想要運用乳糖,需要先把它分解成半乳糖與葡萄糖,這時候需要一種特別的腸道酵素:乳糖酶。在兒童時期乳糖酶會正常分泌,這是為了要分解母乳,隨著年齡增加,乳品類食物逐漸減少,人體的乳糖酶漸漸地分泌越來越少。然而,這並不代表不能喝牛奶。透過逐步攝取少量低乳糖的牛奶製品,或使用乳糖酶補充品,都有機會能改善不適,重新恢復對牛奶的耐受力。

總結來看,牛奶確實能補足我們失落的鈣質和維生素 D 缺口。這些營養素,也確實與身高有關。但別忘了,影響身高的因素有很多,飲食、運動、睡眠和環境等各方面都不可忽視!補充足夠的營養素,並搭配運動和良好的作息,將會是孩子的身高發育的關鍵。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
218 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
當開發遇上「術前檢查」:環境影響評估大揭密!
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/16 ・4339字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文由 環境部 委託,泛科學企劃執行。 

無論是在立法院的質詢臺,還是網路媒體或社論上,你應該經常聽到「環評」這個詞吧?它的核心理念其實很簡單,就是要在「經濟發展」和「環境保護」之間取得平衡。不管是建設重金屬冶煉廠、台積電進駐,還是打通山壁開闢新道路,都必須經過像動手術前的詳細檢查一樣,透過環評的嚴謹審查程序,確保這些開發不會對環境造成過度或無法挽回的損害。

 環評的概念起源於 70、80 年代,當時大規模開發導致嚴重的環境破壞,人們開始反思,發現單靠法規和污染處理技術不足以應對這些問題,環境惡化越來越嚴重,於是「事前預防」的想法應運而生。

我國的環評制度是借鑒美國的經驗,但並不是所有開發案都需要環評,只有那些可能對環境產生較大影響的開發行為,才需要在開發前進行環評。環評其實是開發許可的一部分,環保機關負責審查環評報告,並擁有否決權。但即便環評通過,並不代表開發案就能立即進行,最終的開發許可還是需由相關主管機關綜合考量政治、經濟、環境等多方面因素後,才能做出決定。

-----廣告,請繼續往下閱讀-----

環評到底在忙什麼?

環評的全名為「環境影響評估」(Environmental Impact Assessment, EIA)。就像動手術會有術前檢查、術後定期追蹤及按時服藥,健康的把關需要仰賴定期進廠維修,同樣在開發行為實施前,我們需要評估其可能對環境造成的影響,提出相應的預防或減輕措施,施工中或營運後也需要由目的事業主管機關來進行追蹤,並由環保機關進行監督,確保不會進一步損害環境品質。

環評負責評估開發對環境的影響,並制定措施與監督確保環境品質。圖/envato

雖然「環評」這個名字大家耳熟能詳,但實際上它的評估過程可一點也不簡單,就像醫療檢查一樣,科學、客觀且精密,評估項目可不只侷限在空氣品質、水質或土壤是否受農藥或化肥影響、生態景觀與棲地等和自然環境切身相關的議題。根據環評法第 4 條規定,評估還涵蓋了社會、經濟、文化等多個層面。

環評就像是開發案的「術前檢查」,確保開發行為不會對環境造成不必要的風險和破壞。那麼,大家常聽說環評要耗費很長時間,那它到底在忙什麼呢?其實,環評的目的是要求開發單位對開發可能帶來的環境影響進行詳細調查和分析,這些調查結果會寫成報告,並進行公開,讓社會大眾了解並參與討論。最後,由專家組成的委員會審查,只有通過審查的案子,才有機會繼續進行開發,從而保護我們共同的生活環境。

誰應該接受環評的「考驗」?

根據環評法的立法精神,不是所有的開發案都需要進行環評,環評主要是針對那些可能對環境造成不良影響的開發行為。那麼,哪些開發案需要環評呢?環境部依法訂定了「開發行為應實施環境影響評估細目及範圍認定標準」(簡稱「認定標準」),這些標準主要是根據開發案可能帶來的影響程度、所在的敏感區域(如國家公園、重要濕地、野生動物棲息地等),以及開發的規模(如面積、處理量)來判斷是否需要進行環評。

-----廣告,請繼續往下閱讀-----

舉例來說,像高速鐵路、大眾捷運、機場、離岸風力發電系統等這些建設,不論它們的規模或地點,都必須經過環評。而像科學園區、高爾夫球場的建設,若位於國家公園、重要濕地或野生動物棲息地,也需要辦理環評;至於太陽能光電設施,則是當它位於重要濕地時,才需要進行環評。

宛如開發前的「術前檢查」!淺談環評流程

我國的環評審查採取專家審查機制,環評主管機關依法成立環評審查委員會。委員會的成員包括政府機關的代表和專家學者,其中專家學者的比例不得少於總人數的三分之二。以環境部為例,環境部的環評審查委員會共有 21 位委員,其中 14 位是來自不同專業領域的專家學者,這些專家分別在生活環境、自然環境、社會環境等方面進行把關,確保審查過程的專業性與公正性。

臺灣的環評制度通常分為兩個階段。一階環評是透過報告書撰寫前的公開意見蒐集,開發單位將意見回應情形納入報告書後由專業的環評審查委員進行審查,若經審查後認為開發後對環境有重大影響之虞,則應對症下藥,進入二階環評,這個階段的審查更為嚴謹,並且依法規定進行範疇界定,篩選出環境關鍵項目與因子。整個環評流程大致包括以下幾個重要步驟,讓開發案能夠更透明、公開地接受環境影響的評估與檢驗。

STEP 1 資料填寫:開發行為規劃

這就像醫生在手術前,先為病患制定計畫,並在檢查前登錄好病患的個人資料,例如身分訊息、健康問題、藥物過敏或病史等。同樣地,環評也是這樣運作的。開發單位首先要擬定開發案的規劃,並且將這些內容在網路上公開蒐集意見 20 天,同時也會舉行公開會議,讓大眾參與討論。

-----廣告,請繼續往下閱讀-----

接著,開發單位需要編寫環境影響說明書的主要章節,並且決定是否自願進入二階環評。這個階段開發單位會進行初步的計畫,確認開發的目標與範圍,並評估這個開發案可能對環境產生的潛在影響。這些步驟都是為了確保開發行為在開始前,能夠徹底評估可能的風險和影響

開發單位需撰寫環境影響說明書,初步評估目標、範圍及潛在影響。圖/envato

STEP 2 初步評估:編製環境影響說明書

就像術前檢查結果會匯集成一份醫療報告,在這個階段,開發單位也需要把他們的調查結果、預測和分析整理成一份「環境影響說明書」(簡稱環說書),環說書會說明如何預防或減少對環境的負面影響。

開發單位需要根據作業準則製作環說書,交給目的事業主管機關,確認無非屬主管機關所主管法規之爭點後,再轉請主管機關審查;主管機關確認沒有需要補正的地方(例如:沒有檢具環境保護對策與替代方案、執行評估的人忘了簽名等),環保主管機關所設的「環境影響評估審查委員會」則會著手進入審查階段。

STEP 3 手術可行與必要嗎:審查與結論

這部分就像醫療團隊評估手術的風險。環保機關會審查這份環境影響說明書,專家委員會會進行詳細的審查,並在一定的時間內做出結論。如果所有的環保問題都能得到妥善解決,開發案就能獲得初步通過並公告審查結論,告訴你這個「手術」(開發項目)可不可以做、在甚麼條件下做比較安全,或是可能要再做更進一步的檢查等等。以離岸風電開發為例,可能就會要求開發商調整風機位置,以避開白海豚的棲地。

-----廣告,請繼續往下閱讀-----

對應環評法施行細則裡的審查結論,除了通過審查、不應開發等結果,也可能會出現「有條件通過審查」或「進行第二階段審查評估」的狀態。

STEP 4 完善的手術方案:進入二階環評

就像術前檢查發現可能有重大問題或可能帶來影響的副作用時,醫生可能會要求進行更詳細的檢驗及評估更好的治療方案,環評也是如此。如果第一階段的環評顯示這個開發案可能對環境造成較大的影響,那麼它就必須進入「二階環評」。

進入二階環評的開發案,意味著要進行更加深入的分析與評估。就像醫生要進行更精密的檢查來了解手術風險。除了基本的環評程序,開發單位還需要舉辦公開說明會與範疇界定會議、編製更複雜的「環境影響評估報告書初稿」送目的事業主管機關,目的事業主管機關收到初稿後需進行現場勘查與公聽會,讓當地居民或關心這個開發案的人可以參與,了解開發案的影響,並提出意見。

二階環評需更深入分析,與舉辦說明會、公聽會,讓居民一同參與評估影響。圖/envato

同時,開發單位也要依據這些意見,編製更詳細的「環境影響評估報告書」,將所有的調查、分析結果都納入評估報告書中,才能由目的事業主管機關轉送環保主管機關審查。而如果在審查過程中發現需要修改或補充資料,就像醫生建議調整手術計畫一樣,開發單位會進行修正,並重新提交補正及取得定稿備查。只有在所有問題解決後,開發案才是真正通過環評審查並進入下一階段。

-----廣告,請繼續往下閱讀-----

如果在你生活周遭環境的開發案正好遇到環評的爭議,或者你關心的案件正在環評階段,你可以隨時上「環境部環評書件查詢系統」(https://eiadoc.moenv.gov.tw/eiaweb/)查詢相關的最新資訊。不僅如此,環評審查委員會的會議還有線上直播,讓大家能夠親自參與,為國內的開發案共同把關!

整個環評流程耗時多久?

環評法第 7 條規定,主管機關在收到環境影響說明書後,必須在 50 天內完成審查並公告結果,並通知相關主管機關和開發單位。如果遇到特殊情況,最多可以再延長 50 天。

根據環評法施行細則第 15 條,這個審查期限是從開發單位備妥所有資料,並繳交審查費後開始計算。但是有一些情況是不計入這個審查時間的,包括:

  1. 開發單位補充資料所花的時間。
  2. 請目的事業主管機關就法規進行釋疑,且不超過 60 天的時間。
  3. 其他不可歸責於主管機關的可扣除天數。

因此,整個環評流程的時間會因為不同情況有所變動,但主管機關的基本審查時間是 50 天內,特殊情況最多延長至 100 天。

-----廣告,請繼續往下閱讀-----

然而,實際所需要的時間,可能會根據開發案的複雜程度而有所不同。就像去放射科拍攝X光可能只要一、兩分鐘,但如果要做電腦斷層,可能就需要半個小時左右。

同樣地,根據環評法的規定,環境影響說明書的審查通常在收到資料後的 50 天內完成,若是進入二階環評,審查時間則是 60 天。聽起來似乎不算太久,通常三、四個月就能有結果。

但實際上,環評過程常常會因各種原因延長時間。環境部目前也正在進行環評總體檢,蒐集各界的意見,逐步檢視現行制度,並作為未來修正相關法規的參考依據。

環評帶來的效益是全方位的,它不僅幫助我們在追求經濟發展的同時,兼顧環境的永續。透過環評,開發行為的潛在風險可以提前被識別,並且在問題發生前採取預防和減輕措施。這樣的過程不僅讓開發行為更具透明度,減少未來可能面臨的環境爭議和成本,還能促進社會對環境議題的關注與參與。期待隨著法規的修正與完善,未來的環評制度在效率、透明度與公眾參與等方面有望取得更大進展,為可持續發展提供更有力的保障。這不僅是對環境的保護,更能促進經濟發展和社會福祉,實現政府、企業和民眾三贏的局面,讓我們共同打造一個更健康、更永續的未來。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
218 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
當心網路陷阱!從媒體識讀、防詐騙到個資保護的安全守則
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/17 ・3006字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國家通訊傳播委員會 委託,泛科學企劃執行。 

網路已成為現代人生活中不可或缺的一部分,可伴隨著便利而來的,還有層出不窮的風險與威脅。從充斥網路的惡假害訊息,到日益精進的詐騙手法,再到個人隱私的安全隱憂,這些都是我們每天必須面對的潛在危機。2023 年網路購物詐欺案件達 4,600 起,較前一年多出 41%。這樣的數據背後,正反映出我們對網路安全意識的迫切需求⋯⋯

「第一手快訊」背後的騙局真相

在深入探討網路世界的風險之前,我們必須先理解「錯誤訊息」和「假訊息」的本質差異。錯誤訊息通常源於時效性考量下的查證不足或作業疏漏,屬於非刻意造假的不實資訊。相較之下,假訊息則帶有「惡、假、害」的特性,是出於惡意、虛偽假造且意圖造成危害的資訊。

2018 年的關西機場事件就是一個鮮明的例子。當時,燕子颱風重創日本關西機場,數千旅客受困其中。中國媒體隨即大肆宣傳他們的大使館如何派車前往營救中國旅客,這則未經證實的消息從微博開始蔓延,很快就擴散到各個內容農場。更令人遺憾的是,這則假訊息最終導致當時的外交部駐大阪辦事處處長蘇啟誠,因不堪輿論壓力而選擇結束生命。

-----廣告,請繼續往下閱讀-----

同年,另一則「5G 會抑制人體免疫系統」的不實訊息在網路上廣為流傳。這則訊息聲稱 5G 技術會影響人體免疫力、導致更容易感染疾病。儘管科學家多次出面澄清這完全是毫無根據的說法,但仍有許多人選擇相信並持續轉發。類似的例子還有 2018 年 2 月底 3 月初,因量販業者不當行銷與造謠漲價,加上媒體跟進報導,而導致民眾瘋狂搶購衛生紙的「安屎之亂」。這些案例都說明了假訊息對社會秩序的巨大衝擊。

提升媒體識讀能力,對抗錯假訊息

面對如此猖獗的假訊息,我們首要之務就是提升媒體識讀能力。每當接觸到訊息時,都應先評估發布該消息的媒體背景,包括其成立時間、背後所有者以及過往的報導記錄。知名度高、歷史悠久的主流媒體通常較為可靠,但仍然不能完全放下戒心。如果某則消息只出現在不知名的網站或社群媒體帳號上,而主流媒體卻未有相關報導,就更要多加留意了。

提升媒體識讀能力,檢視媒體背景,警惕來源不明的訊息。圖/envato

在實際的資訊查證過程中,我們還需要特別關注作者的身分背景。一篇可信的報導通常會具名,而且作者往往是該領域的資深記者或專家。我們可以搜索作者的其他作品,了解他們的專業背景和過往信譽。相對地,匿名或難以查證作者背景的文章,就需要更謹慎對待。同時,也要追溯消息的原始來源,確認報導是否明確指出消息從何而來,是一手資料還是二手轉述。留意發布日期也很重要,以免落入被重新包裝的舊聞陷阱。

這優惠好得太誇張?談網路詐騙與個資安全

除了假訊息的威脅,網路詐騙同樣令人憂心。從最基本的網路釣魚到複雜的身分盜用,詐騙手法不斷推陳出新。就拿網路釣魚來說,犯罪者通常會偽裝成合法機構的人員,透過電子郵件、電話或簡訊聯繫目標,企圖誘使當事人提供個人身分、銀行和信用卡詳細資料以及密碼等敏感資訊。這些資訊一旦落入歹徒手中,很可能被用來進行身分盜用和造成經濟損失。

-----廣告,請繼續往下閱讀-----
網路詐騙手法不斷進化,釣魚詐騙便常以偽裝合法機構誘取敏感資訊。圖/envato

資安業者趨勢科技的調查就發現,中國駭客組織「Earth Lusca」在 2023 年 12 月至隔年 1 月期間,利用談論兩岸地緣政治議題的文件,發起了一連串的網路釣魚攻擊。這些看似專業的政治分析文件,實際上是在臺灣總統大選投票日的兩天前才建立的誘餌,目的就是為了竊取資訊,企圖影響國家的政治情勢。

網路詐騙還有一些更常見的特徵。首先是那些好到令人難以置信的優惠,像是「中獎得到 iPhone 或其他奢侈品」的訊息。其次是製造緊迫感,這是詐騙集團最常用的策略之一,他們會要求受害者必須在極短時間內作出回應。此外,不尋常的寄件者與可疑的附件也都是警訊,一不小心可能就會點到含有勒索軟體或其他惡意程式的連結。

在個人隱私保護方面,社群媒體的普及更是帶來了新的挑戰。2020 年,一個發生在澳洲的案例就很具有警示意義。當時的澳洲前總理艾伯特在 Instagram 上分享了自己的登機證照片,結果一位網路安全服務公司主管僅憑這張圖片,就成功取得了艾伯特的電話與護照號碼等個人資料。雖然這位駭客最終選擇善意提醒而非惡意使用這些資訊,但這個事件仍然引發了對於在社群媒體上分享個人資訊安全性的廣泛討論。

安全防護一把罩!更新裝置、慎用 Wi-Fi、強化密碼管理

為了確保網路使用的安全,我們必須建立完整的防護網。首先是確保裝置和軟體都及時更新到最新版本,包括作業系統、瀏覽器、外掛程式和各類應用程式等。許多網路攻擊都是利用系統或軟體的既有弱點入侵,而這些更新往往包含了對已知安全漏洞的修補。

-----廣告,請繼續往下閱讀-----

在使用公共 Wi-Fi 時也要特別當心。許多公共 Wi-Fi 缺乏適當的加密和身分驗證機制,讓不法分子有機可乘,能夠輕易地攔截使用者的網路流量,竊取帳號密碼、信用卡資訊等敏感數據。因此,在咖啡廳、機場、車站等公共場所,都應該避免使用不明的免費 Wi-Fi 處理重要事務或進行線上購物。如果必須連上公用 Wi-Fi,也要記得停用裝置的檔案共享功能。

使用公共 Wi-Fi 時,避免處理敏感事務,因可能存在數據被攔截與盜取的風險。圖/envato

密碼管理同樣至關重要。我們應該為不同的帳戶設置獨特且具有高強度的密碼,結合大小寫字母、數字和符號,創造出難以被猜測的組合。密碼長度通常建議在 8~12 個字元之間,且要避免使用個人資訊相關的詞彙,如姓名、生日或電話號碼。定期更換密碼也是必要的,建議每 3~6 個月更換一次。研究顯示,在網路犯罪的受害者中,高達八成的案例都與密碼強度不足有關。

最後,我們還要特別注意社群媒體上的隱私設定。許多人在初次設定後就不再關心,但實際上我們都必須定期檢查並調整這些設定,確保自己清楚瞭解「誰可以查看你的貼文」。同時,也要謹慎管理好友名單,適時移除一些不再聯繫或根本不認識的人。在安裝新的應用程式時,也要仔細審視其要求的權限,只給予必要的存取權限。

提升網路安全基於習慣培養。辨識假訊息的特徵、防範詐騙的警覺心、保護個人隱私的方法⋯⋯每一個環節都不容忽視。唯有這樣,我們才能在享受網路帶來便利的同時,也確保自身的安全!

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
218 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia