0

0
0

文字

分享

0
0
0

櫻花櫻花何時開!日本的櫻花預報「櫻前線」是怎麼算出來的?

活躍星系核_96
・2017/03/01 ・3676字 ・閱讀時間約 7 分鐘 ・SR值 507 ・六年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

作者/詹芷瑄

盛開的櫻花。圖/PublicDomainPictures

站在漫天飛舞的花絮中,為自己和愛人定格那美麗的瞬間,想必榮登最浪漫寶座第一名。在日本每年 2-5 月的氣象報導,會增加「櫻前線」的特別專欄,告訴國民櫻花初開及滿開的地點,隨著時間從南部慢慢移動到北部,舉國共享這份喜悅。其實在台灣,櫻花原生種也不少,我們是否也能欣賞到這樣的美景呢?櫻花花期大約只有兩個禮拜左右,賞櫻關鍵可要抓住時機。那麼日本如何判斷櫻前線呢?

日本如何判定櫻前線

首先,我們來看日本氣象廳是如何判斷櫻花的開放時間的吧。

日本氣象廳在全國各地設有櫻花標本木,每年定出幾十個櫻花觀測地點。當觀測地點中的標本木有 5~6 朵以上開花數,即達初花日;若開花率達 80% 以上,即達滿開日,大多數遊客會選擇在這個時候賞櫻,因此賞櫻人潮最多。

標本木主要選擇染井吉野櫻(Prunus yedoensis Matsum. cv. Yedoensis)品種,這是江戶彼岸櫻(Cerasus spachiana fo. ascendens)與大島櫻(Cerasus speciosa)的雜交種。江戶彼岸櫻原生地由於年代久遠已不可考,它適合生長的環境偏溫帶,像北海道等地;而大島櫻是日本南部沖繩、奄美的原生種,兩者雜交後的染井吉野櫻,開花時沒有葉子,形態色澤美麗,外觀受大眾喜愛。但染井吉野櫻無法自然繁殖後代,須利用無性繁殖技術加以保留,不過也因為如此而保存了相同的遺傳基因,所以開花特性相同。目前日本地區八成以上是此品種,所稱日本櫻花大抵就是指染井吉野櫻。

依靠同種植株預測櫻花開放時間,相對來說準確度提高不少。但在台灣並沒有大數量的染井吉野櫻,又該怎麼判斷各地的開花時間呢?那就問問櫻花本人吧!

 

櫻花會算日子! 它會數寒冬過了多長了,暖春來了多久了

櫻前線示意圖。圖/Wikipedia

櫻花是薔薇科多年生落葉性喬木,在每年夏季的生長期,會在枝條內部開始長芽,並特化成花朵的特殊構造原型。感應到日照時間縮短、黑暗期增長,或者氣溫降低,樹木生長減緩,溫度降到 10℃ 左右時,落葉性喬木就會停止生長。等到冬天真正來臨,感應到更加低溫的環境,為了抵擋寒冷的逆境,就會進入休眠。這裡的休眠是植物主動調控內部生理反應、停止生長狀態及降低體內水分等,在園藝學上稱為內生性休眠(endodormancy)。

形成內生性休眠之後,會開始計算低溫需求(chilling requirement)。也就是指在空氣溫度 0 ℃ — 7 ℃ 的條件下,累積到特定的時間,才可以打破休眠。在還沒累積足夠低溫量之前,即使外在環境達到適合生長的時間或溫度,也無法打破休眠,這是植物為了應付環境變動而演化出來的聰明機制,能感應周圍環境的變化,調整自己的生長狀態。等低溫需求到達一定的累積量,就會轉變成外生性休眠(ecodormancy)了。

外生性休眠是植物的雙重保險,能避免天氣的間歇性變化。比如冬日裡若有一兩天氣溫較高,使還沒進入春天的溫暖期前就開花,徒增承受寒害的風險。於是植物發展出計算生長積熱需求(growing degree hour requirement)的能力,算出進入溫暖的日子有多長,去判斷春天是不是真的到來。每個植物自己有不同的標準,如果累積的積熱量達到標準,植物才會確定春天真的到來了,開始萌芽開花。而低溫需求與生長積熱需求要同時考慮,才能計算出具體的開花時間。

這兩種植物生理現象也能夠用來說明,為什麼有些農民會說今年不夠冷,或是天氣忽冷忽熱,影響植物開花結果的原因了。掌握植物開花機制,專家們就能夠通過氣象資料,預測櫻花開花時間,「櫻前線」由此而來。

要怎麼知道有沒有達到「足夠的低溫量」呢?

截至目前為止,植物學家們仍然還未完全解開休眠機制的謎底,所以無法從樹木生理的角度解釋和預測開花日期。但是在栽培的過程當中,他們慢慢發現一些規律。比如冬天過冷或不冷櫻花都會比較晚開。於是他們嘗試把經驗轉化成可以量化的模型,而去測試櫻花這類落葉性喬木滿足低溫需求的有效溫度範圍,在種植的時候測量和記錄環境溫度變化,就可以判斷植物是不是滿足低溫需求了。

圖片提供/吳暘子(版權所有©暘子書屋)

把時數相加就可以知道什麼時候開花的低溫時數模型

最先被廣泛使用的模型是低溫時數模型(Chilling Hours Model),單位稱為「低溫時數」(Chilling Hour, CH),其中低溫指的是 0℃-7.2 ℃ 之間的溫度,而低温時數顧名思義就是把滿足低溫需求的小時數相加,再對照作物的已知參考值,就能判斷它是否解除休眠狀態了,是不是很簡單呢?

等等,讀到這裡似乎有個小小的矛盾,如果要計算小時數才能知道開花的時間,算完的時候也開花了,那知道了計算模型又有什麼用呢?

其實在管理者實際操作的時候,大多是根據氣象資料歷年的數據,對比今年的氣溫變化狀況,預期最快和最慢開花的時間,推測可能的開花日。而預測開花時間,就可以試著配合季節性活動,例如台大杜鵑花節等其他因素調整花期,也常常用來分散果品的產期,使水果產期延長,分散盛產掉價的風險,若提早上市還能賣到不錯的價錢呢。

這種計算小時數的方法,是大概在 1940 年代提出的第一代模型,後來也慢慢發展出其他的計算方式,像是下面要介紹的猶他模型和動力學模型,是大眾比較能夠接受和應用的模型。

圖片提供/吳暘子(版權所有©暘子書屋)

給溫度加權的猶他模型

因為大家慢慢覺得低溫時數模型計算出來的開花時間不夠準確,而植物學家進一步發現,太高或者太低的溫度會對植物累積低溫需求產生負面的影響。於是  974c 年由Richardson提出了猶他模型(Utah Chilling Model),單位稱為“猶他低溫單位”(Utah Chilling Unit, CU),將溫度更詳細劃分成不同的區塊,環境的溫度落在不同的區塊內會有不同的數值,有正有負的數值相加,才得出最後的標準參考值。因為簡單方便的關係,這個模型是目前最為廣泛應用的一種。

回歸植物生理之進擊的動力學模型

但把上述兩種方法應用到相對較高溫的地區,例如以色列等地的時候,這種利用溫度劃分的模型又變得不適用了。因此為了解決暖冬地區的植物栽培問題, 1987 年植物學家們回到植物生理的角度提出了「兩階段作用」的概念(Two-step Process),假設休眠狀態的完成度與某個「打破休眠因子「的含量呈線性關係,那麼生成這個因子的速度就決定了滿足低溫需求的快慢。

所謂“兩階段作用”,指的就是生成這個因子的過程有兩個步驟。第一階段是一個可逆的反應,通過酵素作用,在低溫條件下生成此因子的前驅物(precursor),而這種前驅物會因為高溫被破壞;第二階段是不可逆的反應,當前驅物累計達到一定量會形成穩定的“打破休眠因子”,這時候才算開始累積低溫需求。

由此看來大多時候植物其實是處在緩衝期內來回擺動,藉此發展出最新的動力學模型(Dynamic Model),單位是「低溫片段」(Chilling Portion, CP)。這個模型是藉由不間斷的偵測和計算,利用溫度的變動判斷是否滿足低溫需求,來達到最貼近植物生長狀態的模擬效果。以下是動態模型略微複雜的計算公式,其中slp, tetmlta0, a1, e0, e1為常數。

而根據Elike和Patrick的統計比較方法,把不同地區的原始數據帶入三種方法中,並將計算結果相除,發現數值差異非常大,表示這三種模型的結果並不成比例,也就是說這些模型的適用範圍不太一樣,那到底要怎麼選擇呢?

統計模型只是個工具喔

低溫需求的模型是來自於管理者的經驗,而且根據不同植物、不同地區需要進一步調整,例如調整猶他模型的溫度界限或者改變動力學模型的常數值等等,沒有一套萬能公式可以從南用到北、從櫻花用到桃花。如何選擇模型要靠自己嘗試,不適用的模型就像是不趁手的工具,這個不行就換一把再試試看囖。

低溫需求滿足後,還有高溫需求呢

高溫需求也就是剛才提到的“生長積熱需求”,它們的計算原理大同小異,只不過溫度範圍換成 4℃~25℃ 。在低溫需求被滿足之後馬上開始計算,當氣溫小於 4℃ 時不予計算;介於 4℃~25℃ 之間時,用實際氣溫減去 4℃ 得到結果;當氣溫大於 25℃ 時,就採用 25℃ 減 4℃ 得到的 21 作為累積值。累加到每種作物的已知經驗值,就可以開花囖。

圖片提供/吳暘子(版權所有©暘子書屋)

說了這麼多,如果真的很想要和心愛的人來一場浪漫的櫻花之旅的話,除了及時發漏日本櫻前線的氣象報導,或者用上述方法自己推估之外,再提供一個小小資訊給大家參考:根據 2011 年在岡山縣的櫻花物候學研究,日本櫻花的開放順序是先從都市開始,然後是北方內陸最後才是南方近海喔。這是由於當地環境、太陽照射及風速合力影響的結果。

看完這篇對櫻花的開花生理有沒有稍稍理解了呢!最後,祝大家今年能夠賞櫻成功啦!

參考文獻:

  1. Chandler, W.H. 1942. Deciduous orchards. Lea & Febiger, Philadelphia
  2. Luedeling, E. and P.H. Brown. 2011. A global analysis of the comparability of winter chill models for fruit and nut trees. Int. J. Biometeorol. 55:411-421.
  3. Fishman S, Erez A, Couvillon GA (1987a) The temperaturedependence of dormancy breaking in plants – computersimulation of processes studied under controlled temperatures. J. Theor Biol 126(3):309–321
  4. Fishman S, Erez A, Couvillon GA (1987b) The temperature dependence of dormancy breaking in plants: mathematical analysis of a two-step model involving a cooperative transition. J. Theor Biol 124(4):473–483
  5. Ohashi Y., Hiroshi K., Yoshinori S., Hiroshi I., Nobuko Y. 2011. The phenology of cherry blossom (Prunus yedoensis “Somei-yoshino”) and the geographic features contributing to its flowering. Int J Biometeorol (2012) 56:903–914
  6. Cesaraccio, C., D. Spano, R. L. Snyder, and P. Duce. 2004. Chilling and forcing model to predict bud-burst of crop and forest species. Agricultural and Forest Meteo. 126: 1-13.
  7. 日本氣象廳. 2012. さくらの開花日の変化 – 気象庁. 
文章難易度
活躍星系核_96
752 篇文章 ・ 96 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

2
0

文字

分享

0
2
0
媽!!!到底為什麼母親節要送康乃馨啊?
Peggy Sha
・2019/05/10 ・2000字 ・閱讀時間約 4 分鐘 ・SR值 447 ・四年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

每年的母親節,很多人都會買康乃馨送給媽媽。但是,你有沒有想過:到底為什麼母親節要送媽媽康乃馨?難道不能送滿天星、銅鋰鋅或自動筆芯勒?(被母親擊飛)康乃馨到底是種什麼樣的植物呢?

你真的了解康乃馨嗎?為什麼母親節要送康乃馨給媽媽呢?圖/publicdomainpictures

康乃韾象徵母親,到底是誰決定的?

要談到母親節贈送康乃馨的傳統,就不得不提起母親節的起源。其實,我們現在過的母親節是個挺「新」的節日,是由一位名叫安娜‧賈維斯 (Anna Jarvis) 的美國女子所推廣的。

賈維斯的母親在生前便常常表達自己期望能有一個可以紀念母親的日子;而在她母親過世的三年後,1908 年的 5 月 10 日,賈維斯在教堂中舉行了紀念儀式,成為史上第一個母親節。

賈維斯選擇用白色的康乃馨來象徵母親,因為她認為康乃馨的潔白能代表母愛的真誠寬廣。她也認為康乃馨花瓣不會一片片掉落、而是往中心萎縮的這個特質,就像媽媽擁抱小孩一般。

恩……不過後來商人們見獵心喜,白色康乃馨的價格應聲上揚,花販更進一步推廣紅色康乃馨,營造出「紅色康乃馨送給健康的媽媽、白色康乃馨紀念過世的母親」這種說法,把賈維斯女士給氣得半死。

我明明就說白色康乃馨,誰准你們換成紅色的!(設計對白)圖/By Olairian – Own work, cc0, wikimedia commons

康乃馨的花瓣不是真正的花瓣?

姑且不論創辦人的憤怒,以及如今送媽媽白色康乃馨可能會被打,我們現在看到的康乃馨其實都是基因突變過後的「畸形花」。康乃馨又名「香石竹」(Dianthus caryophyllus),原始野生的品種只有五片花瓣,看上去十分單薄。

野生的香石竹,看起來是不是和印象中的康乃馨差很多呢?圖/By Zeynel Cebeci – own work, CC BY-SA 3.0, wikimedia commons

那那那……現在我們在花店看到那些層層疊疊的美麗花瓣到底是什麼?其實它們是雄蕊喔!

雄蕊和花瓣原本都來自於「花原基」(flower primordia),當調控的基因出現突變,就會讓雄蕊「瓣化」(petalody)。雄蕊花瓣化後,變形的雄蕊與原本的花瓣重疊後,就形成了重瓣花。如此一來,使得整朵花的體型看起來變得更大,也更具有觀賞價值。

雖然這樣的花多數的雄蕊變形,因此不易產生花粉,卻會因為長得漂亮而被人工繁殖留了下來,慢慢變成我們現在看到的樣子。(所以說長得好看還是很重要滴)

每次母親節,我們其實都送了一堆變形的雄蕊給媽媽呢!

雄蕊花瓣化?很多漂亮的花都這樣

什、麼!?雄蕊還能變形成花瓣,還騙我在母親節送給媽媽?素每啊啊啊,這樣讓我怎麼教小孩?

怎麼會是假的花瓣啊啊啊啊啊啊!圖/giphy

還請各位看倌莫急莫慌莫害怕,雄蕊花瓣化聽起來雖然離奇,但在自然界卻是十分常見的事情。比如說大家非常喜歡的櫻花,也是其中之一。在台灣的重瓣山櫻開花期較單瓣台灣山櫻約晚一個月,而雄蕊花瓣化後,會使得花粉變少,也較不容易結果。

而除了櫻花以外,在東方象徵大富大貴的牡丹、艷麗迷人的山茶花也都是雄蕊花瓣化的結果。

但是,是不是所有雄蕊花瓣化的花看起來都非常「澎派」呢?欸…其實並不是喔。像是看上去非常小清新的野薑花,也是雄蕊花瓣化的成員之一,我們所見的那漂亮的「花瓣」其實是雄蕊,而真正的花瓣,是雄蕊背後那三根長披針形的東西。

那看起來像花瓣的其實是雄蕊,針狀的才是真正的花瓣喔!圖/flickr

說了這麼多康乃馨相關的小知識,你是不是都記住了呢?無論母親節有沒有送康乃馨,大家都要記得時時對媽媽表達你的愛與感謝喔!泛科學祝大家母親節快樂!

參考資料:

0

0
0

文字

分享

0
0
0
【特輯】但見櫻花開令人思科學:關於櫻花你該知道的五件事
PanSci_96
・2019/03/11 ・1154字 ・閱讀時間約 2 分鐘 ・SR值 449 ・四年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

春花開賞櫻去!除了尋找賞櫻名點、追逐櫻前線,你知道櫻花起源自哪?櫻花的葉子為何有鋸齒?櫻花開期為何一直變?一起挖掘櫻花樹底下究竟埋藏著多少科學,讓每朵花都開得如此嬌豔動人呢?

櫻花櫻花何時開!日本的櫻花預報「櫻前線」是怎麼算出來的?

在日本每年 2-5 月的氣象報導,會增加「櫻前線」的特別專欄,告訴國民櫻花初開及滿開的地點,隨著時間從南部慢慢移動到北部,舉國共享這份喜悅。櫻花花期大約只有兩個禮拜左右,賞櫻關鍵可要抓住時機。那麼這個「櫻前線」是怎麼算出來的呢?

櫻花櫻花幾時開?春天冷就晚點開吧!

雖然梅花是越冷越開花,但如果初春太冷,櫻花的花期也會大受影響。以 2015 年的美國為例,原本紐約、華盛頓及費城往年約 3 月中至 3 月底間就會盛開的櫻花,受到濕濕冷冷的春天影響,一路拖到了四月才逐漸盛開。

明明就到了春天,為什麼天氣一變冷就會影響櫻花開不開呢?

櫻花大戰,究竟櫻花真正的原產地在哪裡?

每年春天,東亞的櫻花都會盛開。每年櫻花盛開的時候,東亞中國、日本、韓國三國的媒體上都會出現櫻花原產地之爭。

三月末是日本最有名的櫻花「染井吉野櫻」花季,在中日韓三個國家都是盛開期。韓國媒體照例一年一度地宣傳「染井吉野是我們的」,而中國櫻花產業協會執行主席何宗儒更是語出驚人——據《南方都市報》報導,2015 年 3 月 29 日該協會在廣州召開記者會,何宗儒在會上表示櫻花既非起源於日本,又非起源於韓國,而是起源於中國。

其實,如果弄清楚「櫻花」的定義,櫻花的起源在科學上是件很清楚的事情,並沒有這麼多的紛爭——野生的櫻在數百萬年前誕生於喜馬拉雅,但現代栽培的觀賞櫻花,則是多年前的日本人在日本選育出來的。

如果可以簡單,誰想要複雜:為什麼櫻花的葉子會發育成鋸齒?

櫻花的葉子是種自成一格的氣質,和許多常見的樹葉都不同。當你仔細看著櫻葉,它邊緣的微小鋸齒很容易就會吸引你的目光。這些鋸齒到底有什麼意義?植物又為什麼會有這些長在葉緣的鋸齒呢?

 

太空櫻花,太空櫻花,長得快!長得快!

如果把植物送上太空,會有什麼影響呢?日本人早在 2008 年就做過這種有趣的嘗試了。當年,他們特別挑選櫻花的種子進入太空,而數年之後,這些種子帶著滿滿的宇宙謎團長大成樹,並提前開出特別的花朵。

現在,就讓我們來回顧一下曾讓日本的僧侶和科學家都為之瘋狂的宇宙櫻花吧。

 

0

0
2

文字

分享

0
0
2
如果可以簡單,誰想要複雜:為什麼櫻花的葉子會發育成鋸齒?
Gilver
・2017/03/03 ・3582字 ・閱讀時間約 7 分鐘 ・SR值 540 ・八年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

春天適合出遊,尤其適合賞那開滿枝椏的櫻花。但眷戀櫻花的你,可曾仔細觀賞過櫻葉之美?

全世界最愛櫻花的日本人,會在櫻花季享用一種叫做「櫻花餅」的和菓子。粉紅色的薄餅包裹著紅豆內餡,只要咬一口,整個春季的爛漫與甜蜜就在嘴裡綻開,洋溢著滿滿的幸福。櫻花餅上必不可少的點綴,就是鹽漬的櫻花葉。

關東地區的長命寺櫻餅,煎熟的粉紅薄餅皮除了甜蜜的內餡外,絕對少不了覆上一片櫻花葉--一定要是有鋸齒的喔!Photo credit: Ocdp @ Wikimedia Commons

瞧,那櫻花的葉子是種自成一格的氣質,和許多常見的樹葉都不同。當你仔細看著櫻葉,它邊緣的微小鋸齒很容易就會吸引你的目光。這些鋸齒到底有什麼意義?植物又為什麼會有這些長在葉緣的鋸齒呢?

關於葉緣鋸齒

許多植物在葉子的邊緣都有鋸齒,像是日本料理中帶有獨特芳香的紫蘇葉、象徵著愛情又帶刺的紅玫瑰,或者是秋日落滿整個山谷的楓葉。有些植物的葉緣鋸齒變成硬刺來保護自己,像是冬青(holly)和薊花(thistle),因為能夠造成疼痛,它們的葉子被視為能夠對抗邪靈,在傳說中成為悲傷和痛苦的象徵。

除了防衛,有些植物的葉緣鋸齒能夠幫忙疏導葉子上的積水,有些則能協助光合作用。但對於這些植物如何長出葉緣鋸齒、又是為何而長的問題,科學家們至今還不是很清楚。

葉緣鋸齒變成硬刺的冬青樹,具有保衛植物自身的功用。Photo credit: pixabay

在2016年9月,一群來自名古屋大學生命分子研究所(Institute of Transformative Bio-Molecules)的科學家們透過研究模式植物,發現一種名為EPFL2的多肽很可能就是植物產生葉緣鋸齒的關鍵要素,它能夠和與其對應的受器結合、調節生長素(auxin)的累積,進而控制葉緣鋸齒的發育。這份研究成果刊登在《現代生物學》(Current Biology)上。

「我被葉子吸引的原因是它們美麗的外形,以及令人驚豔的形狀變異。」本研究的第一作者爲重才覚(Toshiaki Tameshige)博士表示,「我們決定研究EPFL2的功能,看看它們對葉形的影響。」

揭開葉緣鋸齒的生長之謎

在葉緣鋸齒發育上,科學家已經初步掌握到生長素與其有關。生長素是一類植物賀爾蒙的統稱,它是專屬於植物的激素類別,和動物的生長激素是不同的東西。植物一生當中的許多重要階段都少不了它,除了葉形的發育,其他像是幼苗長根、莖向著光線生長、果實發育成熟都與生長素的調節息息相關。

植物向光性(phototropism)的示意圖。植物的莖在生長時,背光的一側生長素(紫色)濃度會較高,讓莖的背光面生長速度比向光面快,最後植物就會偏向光源生長。Picture credit: MacKhayman @ Wikimedia Commons

至於EPFL2,科學家們是最近才開始研究它。EPFL2跟生長素同樣都是由植物分泌出來、調整生長的物質,全名是EPIDERMAL PATTERNING FACTOR-LIKE 2,是一小段胺基酸所組成的多肽(peptide),只要和對應的受器(receptor)結合,就能如天雷勾動地火、啟動後續的生理反應。

研究團隊利用模式植物.阿拉伯芥(Arabidopsis thaliana)研究EPFL2的功能。阿拉伯芥在植物科學界的角色宛如動物實驗使用小白鼠一樣,是相對容易研究的實驗材料。當阿拉伯芥的EPFL2無法發揮正常功能時,它的葉緣會變得相對圓滑、沒有鋸齒,如下圖所示:

EPFL2無法發揮正常功能的阿拉伯芥,葉子會變得圓滑。本圖改自原研究Tameshige et al. (2016)

除了EPFL2的功能,研究團隊還成功的找出和EPFL2配對的受器。它們屬於ERECTA家族(ERECTA family receptor kinases, ERf)的蛋白質,既是承接鑰匙攜來訊息的「鎖」,也是激發後續生理反應的鳴槍手。研究團隊發現,喪失ERf部分功能的阿拉伯芥會長出缺少葉緣鋸齒的葉子,和EPFL2出了問題時的葉子類似。

「最困難的就是量化葉緣鋸齒化的程度。」爲重博士說,「我試過幾種不同的計算方式,發展一套量化、比較葉緣鋸齒的方法。在看了超過1000片葉子之後,我很榮幸能夠找到EPFL2在葉緣產生鋸齒扮演重要角色的證據。」

葉緣的鋸齒,來自於生長步調的差別

流行攝影作家Peter Su說過:「如果可以簡單,誰想要複雜?」植物葉子的發育也是一樣,葉子在還沒成熟前都是又小又圓的簡單形狀,在一連串複雜的發育調控機制下才會變得複雜。

變得複雜的關鍵過程,就是生長程度的差異。只要同一片葉子上的某些區域生長增強、某些區域則被抑制,這片葉子才會變得「凹凸有致」。

尚未發育成熟的葉子形狀簡單,在生長過程中才逐漸變得複雜,例如說長出葉緣鋸齒。Picture credit: 名古屋大學

過去已有研究發現:生長素會累積在葉緣的突出尖端,而不會在兩尖端之間內凹的裙部(skirt)累積,如此的生長素濃度差異就會讓葉子發育出鋸齒。但爲重博士等人就好奇:這樣子的差別待遇,是怎麼來的呢?

答案,就是EPFL2和生長素的相生相剋。

相生相剋:EPFL2多肽與生長素的較量

透過解剖切片和免疫染色、多方比對EPFL2與生長素累積的關係之後,研究團隊發現EPFL2只在葉緣鋸齒的裙部出現,而生長素的累積只在鋸齒的尖端。在無法製造EPFL2的阿拉伯芥突變株中,他們發現生長素在整個葉緣區擴散,同時也沒有出現葉緣鋸齒,因為葉緣不同處的生長素濃度差異消失了。

科學家們接下來研究為何EPFL2多肽沒有在葉緣鋸齒的尖端合成、只存在裙部。有趣的是,他們由證據推論生長素會決定EPFL2在哪裡產生--生長素在哪裡累積,EPFL2就不在哪裡合成,如下圖所示。

在葉緣的戰場之上,生長素累積和EPFL2就像是相生相剋的宿敵,而它們較量的結果,便是我們所見葉緣鋸齒的由來。

EPFL2的作用機制與生長素的相生相剋關係圖。上圖綠色圖塊表示生長素累積作用的範圍,箭頭(→)表示促進,平頭箭頭(–|)表示抑制。本圖改自研究原文Tameshige et al. (2016)之摘要圖表。

「很難說哪件事先發生,它就像是雞或雞蛋誰先出現的問題一樣。」本文的共同作者打田直行(Naoyuki Uchida)博士說,「究竟是生長素先決定了累積的位置呢?還是EPFL2先決定它在哪裡合成呢?」

其實,像EPFL2和生長素這樣抑制彼此的調控機制一點都不罕見,在生物學上這種關係稱做為回饋控制(feedback control),我們的身體也是由許許多多配對的基因和生化物質彼此合作又對抗、形塑著我們今日的樣貌,只要錯了一個小環節,就可能使身體出現缺陷。

了解葉緣鋸齒的由來能幹嘛?

雖然爲重博士等人發現EPFL2多肽在葉緣鋸齒上扮演的重要角色,但畢竟研究材料是阿拉伯芥,而不是我們一開始關切的櫻花葉,不能貿然將研究結果直接推論到櫻花身上去。「我們希望能看看相同的機制是不是也出現在其他植物中,我們的結果認為EPFL2可能會讓葉子擁有更多的鋸齒、或是擁有棘刺。」爲重博士說道。

研究植物葉子為何會有鋸齒,在園藝和農藝上面都有價值。Photo credit: D-SIDE @ Flickr

共同作者之一的打田博士認為,如果能夠透過EPFL2讓植物的葉子擁有獨特的形狀,或許就能夠應用在觀葉植物和盆栽上的改良。爲重博士則是認為,未來或許能夠藉由這種方式改變葉菜的外觀和口感。「如果我們能夠改變葉菜的形狀,像是萵苣和菠菜,也許就能創造新種植物、或是更高價值的蔬菜了。」

研究團隊的下一步是利用電腦建立數學模組,試圖去解釋EPFL2和葉緣鋸齒之間的關係。「如果能夠利用電腦模組去隨心所欲的設計植物將會很有趣。」爲重博士表示。

雖然我們仍未能確定櫻花為何有鋸齒,但這項研究的成果也許即將為未來的花園和餐桌帶來更多的樂趣呢!

資料來源

原始研究

___________
你是國中生或家有國中生或正在教國中生?
科學生跟著課程進度每週更新科學文章並搭配測驗。來科學生陪你一起唸科學!