1

6
0

文字

分享

1
6
0

呆萌的墨西哥虎螈不簡單!淺談牠的兩棲「變態」機制——《我們身體裡的生命演化史》

鷹出版_96
・2021/09/16 ・2480字 ・閱讀時間約 5 分鐘

華爾特.戈斯登(Walter Garstang,1968〜1949)就對赫克爾的概念鄙夷到連自己所做的批評最後都轉變為對於生物演化的新概念。他一生有兩個相距甚遠的嗜好:蝌蚪和韻文。當他沒在研究青蛙的幼態時,就在寫押韻五行詩。這兩份嗜好在他去世後兩年集合成《動物幼體形式與詩文》(Larval Forms and Other Verses)一書,書中把科學研究轉換成了詩句發表。

〈墨西哥虎螈與幼八目鰻〉看來不像是首好詩的標題,內容提到了蠑螈(墨西哥虎螈)和類似蝌蚪的動物(幼八目鰻)。

在水族箱中的蠑螈。圖/Pixabay

不過詩中表達的意義改變了整個領域,並且決定了後來數十年的研究方向。戈斯登的概念不只解釋了迪梅里圈欄中發生的神奇事件,也揭露了讓人類能夠出現在地球上的一些變革。對於戈斯登而言,幼態不只代表了發育的過程,也具備了許多生物演化史的痕跡,以及未來變化的潛能。

居住在水中的蠑螈,發育過程中有許多時間待在石頭下、落在溪流中的樹枝上,或是池塘的底部。牠們的幼體出生時頭部扁平、有鰭狀肢以及寬廣的尾部。鰓從頭顱的基部冒出,就像雞毛撢子中有一撮羽毛突出來一般。每片鰓都既扁平又寬大,將表面積增加到最大,好吸收水中的氧氣。牠們的鰭狀肢和尾部再加上鰓,顯然是為了在水中生活。墨西哥虎螈的卵中蛋黃含量非常少,所以孵化出的幼體必須大吃大喝,才能夠生長發育。牠們的大頭像是吸濾漏斗,只要把嘴張大,水和食物顆粒就會流進去。

墨西哥虎螈的腮。圖/WIKIPEDIA

接著就發生了變態(metamorphosis),上述特徵全都改變了。幼體的鰓消失了,頭顱骨骼、四肢和尾巴重新改造,從水生生物變成陸生生物了。新的器官讓牠們能夠在新的環境中棲息。在陸地吃的食物也和在水中的不同。頭部結構原來適合在水中吸入獵物,在空氣中就不管用了。所以牠們的頭顱骨骼改變,讓舌頭能夠快速伸出抓取獵物。一個簡單的轉變影響了全身,包括鰓、頭顱與循環系統。這個從水中到陸地的轉變,數億年前發生在人類的魚類祖先身上,而在蠑螈幾天的變態過程中重現了。

迪梅里在他的圈欄中看到蠑螈這樣驚人的變化,便追蹤了蠑螈整個生活史。這些蠑螈是戈斯登詩作中所說的墨西哥虎螈,牠們通常會從居住在水中的幼體,變態為在陸地上生活的成體。但是一如迪梅里後來所發現的,事情並非全然如此。變態有兩種途徑,取決於幼體生活的環境;如果環境比較乾燥,那麼蠑螈在生長的過程中就會變態,進而失去在水中生活的特徵,成為在陸地生活的成體。

但若是在潮濕的環境中長大,那麼牠們就不會產生變態,而是直接長成水生幼體的放大版,具有完整的鰓與鰭狀的尾巴,寬的頭顱很適合在水中攝食。當時迪梅里並不知道他從墨西哥得到的大型成體並沒有發生變態,因為牠們原本居住的環境是潮濕的。但那些蠑螈的後代是在乾燥的圈欄中生長,於是發生了變態,以致幼體所有跟水棲有關的特徵全都在變態過程中消失了。發生在迪梅里圈欄中的神奇事蹟,只是動物發育的過程出現了一個簡單的轉變。現在我們知道,變態之所以會啟動,是因為血液中的甲狀腺激素(thyroid hormone)濃度突然增加。

幼態維持的蠑螈,具有完整的鰓與鰭狀的尾巴 。圖/WIKIPEDIA

這種激素造成某一些細胞死亡、某一些增殖,還有另一些轉變成其他形式的組織。如果甲狀腺激素濃度維持平穩,或是細胞對甲狀腺激素的變化沒有反應,變態過程就不會啟動,如此一來,蠑螈將保有幼體的特徵而長大成熟。發育過程中的變化縱然很微小,也能促成整個身體的改變。

戈斯登改善迪梅里的研究,提出一個共通原則:在發育過程中適時出現的小變化,有可能在演化上造成巨大的差異。這樣說好了,在某個遠古發育階段的序列中,如果發育減緩或是提早結束,那麼這個後代就會看起來像是祖先年幼時的樣貌。

發生在蠑螈身上,就可能讓牠們的身體看起來像是在水中生活的幼體,依然有露在外面的鰓,而且四肢的指頭比較少。另一方面,如果發育過程延長或是加速,誇張的器官或是身體部位就會出現。蝸牛的外殼是在發育階段一圈又一圈地加上去的。有些種類的蝸牛演化成發育時間增長,或是發育速度加快,這樣蝸牛的後代,殼圈的數量就會比祖先更多。同樣的過程可以解釋各種大型或是誇張器官的出現過程,不管是麋鹿的角,還是長頸鹿的脖子。

「 在發育過程中適時出現的小變化,有可能在演化上造成巨大的差異」,或許能解釋麋鹿誇張的角是如何演化而來。 圖/WIKIPEDIA

修改胚胎發育的過程,能夠造就出截然不同的新生物。從戈斯登開始,科學家針對發育的時機如何改變並造成演化上的改變,進行了分類。減緩發育的速度與提早結束發育,是兩種不同的過程。這兩種過程造成的結果很相似,都有看起來較年幼的後代,但是起因卻不同。類似的因果關係也出現在發育的速度較快,以及延長發育時間的狀況下。在這兩種情況下,有些特徵變得誇張或是變大了。

科學家在找尋不同的原因時,會去調查可能控制這些事件的基因,或是引發事件的激素,例如甲狀腺激素。這種發育與演化的研究方式稱為「異時發生」(heterochrony),後來成為獨自一門的研究領域。動物學家和植物學家這一個多世紀以來比較了各種生物的胚胎和成體,指出改變發育事件的時機, 會讓動物和植物產生新型態的身體。戈斯登自己就舉出一個人類演化過程中的驚人例子,那時我們人類的祖先還是像蠕蟲的動物。

——本文摘自《我們身體裡的生命演化史》,2021 年 月,鷹出版

文章難易度
所有討論 1
鷹出版_96
3 篇文章 ・ 4 位粉絲
在絕壁和雲層之上,開通想法的路。 鷹出版將聚焦在自然、科普、哲學等知識領域,以超克的視野,提供生活之慧眼與洞見。

1

2
0

文字

分享

1
2
0
華勒斯的演化論與生物地理學,源自亞馬遜的燦爛之火
寒波_96
・2023/02/22 ・3721字 ・閱讀時間約 7 分鐘

公元 1823 年華勒斯在英國誕生,於 1913 年以 90 歲高壽去世,今年 2023 年是他誕生 200 年。我們懷念他是因為,他曾經和達爾文聯名發表演化觀點,以及提出解釋東南亞海島間生物分佈差異的「華勒斯線」。

Alfred Russel Wallace 在台灣常翻譯為華萊士,不過如威廉華勒斯等等 Wallace 都翻譯作華勒斯,本文就統一作華勒斯。

達爾文會提出演化論,深受他知名的小獵犬號之行影響。華勒斯的東南亞考察也給予他不少啟示,一如達爾文的加拉巴哥群島等地;然而在此之前,華勒斯已經在亞馬遜有 4 年經歷。為了紀念華勒斯兩百歲生辰,Nature 期刊 2023 年初刊登兩篇文章,緬懷他的亞馬遜之旅。

華勒斯 1860 年代的畫像,當時 40 歲左右。圖/Mondadori Portfolio via Getty

與強者朋友一起前進亞馬遜,然後分道揚鑣

和前輩達爾文相比,華勒斯的家境普通,也沒有受過正規的學術研究訓練。所幸身處文化發達的大英帝國,有志青年仍有不少學習和出人頭地的機會。何況他爸爸是學過法律的自耕農,文化資本其實不算低。

成年後喜歡生物的華勒斯在 1844 年,21 歲之際遇見小他 2 歲的貝茲(Henry Walter Bates),兩人志同道合;華勒斯也從一般愛好者,升級為有系統的標本搜集者,可謂一隻腳踏入研究領域的門檻。

1848 年,華勒斯 25 歲之際與貝茲一同航向大西洋對岸的亞馬遜。不過兩人大部分時候分開行動,貝茲在亞馬遜南部,華勒斯在北部的尼格羅河(Rio Negro)一帶。

華勒斯年輕時在談笑無鴻儒,往來皆白丁的階段,我猜朋友大概不會只有貝茲一位。不過貝茲後來提出的貝氏擬態(Batesian mimicry)沿用至今,可謂華勒斯的強者我朋友,事後諸葛的我們建構歷史敘事時,也就津津樂道兩人的友誼。

英國病人碰上船難,買保險很重要!

離家萬里的華勒斯,依然透過經紀人與國內保持聯繫,郵寄異鄉產品回英國賺錢。在亞馬遜待了 4 年後他決定返鄉,期間一直被疾病威脅生命,可謂現實意義上的英國病人(The English Patient)。

最慘的是他弟弟 1849 年遠渡重洋來照顧他,卻自己也感染黃熱病,返國途中不幸病逝。而華勒斯要等到幾個月後才收到消息。

1852 年華勒斯搭乘海倫號(Helen)貨船返國,沒想到出海三個星期後火燒船,使他漂浮在大西洋海面上,眼睜睜看著攜帶的行李大多損毀。最後他耗費 80 天返回英國,比起與貝茲的去程 29 天漫長得多。好在經紀人有買保險,讓華勒斯獲得部分補償,不至於血本無歸。

返回英國的海倫號火燒船事件後,沒有損毀的少數紀錄。圖/The Natural History Museum/Alamy

回到英國的華勒斯將近 30 歲,闖出一些名號,卻沒有受到太多重視。所幸保住生命加上幾年累積的知識,賦予他東山再起的契機。1854 年他得到前往東南亞的機會,1858 年 35 歲時就和達爾文聯名發表歷史巨作。

從亞馬遜參透生命的奧秘:生物地理學

華勒斯僅管在亞馬遜一直生病,也淬煉出不侷限於觀察的科學眼光,從船難撿回一條命回到英國後,展露學術鋒芒。1852 年 12 月 14 日,他在倫敦的動物學會發表研究亞馬遜猴子的論文,主張亞馬遜各地的猴子款式,受到大河形成的地理障礙強烈影響。

當時華勒斯受到一些批判,後來證明他的論點無誤,而且是生態分佈的普遍現象。現在我們知道更多:亞馬遜的河道歷史上改道多次,導致生物的分佈範圍持續變化。

用現代標準看,前往亞馬遜考察的 4 年差不多等同華勒斯的博士班修行,回國後發表的報告則是他的博士論文。這篇博士級論文中還觸及一個要點,所謂的「亞馬遜雨林」內部其實差異不小,他是首先有意識提及此事的研究者。

華勒斯觀察到亞馬遜的不同地區,物種組成不太一樣。他劃分 4 大區域:幾內亞、厄瓜多、秘魯、巴西,由其間的亞馬遜河、尼格羅河、馬德拉河(Madeira)這些大河分割出不同地區的地理障礙。如今所知更多,還可以切得更細。

具體是觀察到有幾條河分割出幾塊地,超乎其上普世性的生物學道理是,由於地理環境的阻隔,各地會形成不同的「特有種(endemism)」。華勒斯領悟地理障礙會影響生物分佈,可謂生物地理學的先驅。

華勒斯 1853 年出版書籍中的亞馬遜地圖。圖/Mary Evans/Natural History Museum

自學成才的英國洞觀者

現在的人可能覺得上述觀點都是些普通常識。可是華勒斯是在 1852 年提出,那時演化論尚未問世,跟他同齡的孟德爾,當時也尚未開始種植豌豆。

一百多年後的常識,首度問世時常常是驚天動地的新突破!

年輕的華勒斯沒有受過正規學術訓練,還是需要持續賣標本換錢的月光族,提出的研究成果竟有如此理論性。由此可知亞馬遜之行,確實讓華勒斯從所謂的集郵者,蛻變為具備洞察力的科學家。

法國詩人韓波(Arthur Rimbaud)認為,詩人必需是能看穿事物表面,有洞察力的洞觀者(voyant),我想這也是頂級科學家必需配備的能力,亞馬遜的神秘力量加持過後,華勒斯可謂成功通靈。

這類自學成才的科學家,當時英國不只華勒斯一位。以時代來說,那時的英國社會有點厲害。後來華勒斯沈迷於「唯靈論(spiritualism )」就是另一個故事了……

華勒斯年輕的南美洲經歷,讓人聯想到更早將近一百年的洪堡(活到很老,1859 年 90 歲時去世)。身為晚輩,華勒斯讀過洪堡作品,他站在洪堡巨人的肩上,觸及到更高的思想境界。

許多人覺得遺憾,遺傳、演化並稱,但是孟德爾提出遺傳學法則後被埋沒超過 30 年,等到 1900 年代才重現於世,因此 1882 年去世的達爾文沒有機會知悉。這方面華勒斯比較幸運,他年紀比孟德爾小半歲,又一直活到 90 歲,有機會見證遺傳學的發揚光大。

華勒斯 1853 年出版書籍中提到的「黑暗中一團燦爛之火(sitting amidst the gloom, shining out like a mass of brilliant flame)」圭亞那動冠傘鳥。圖/Hein Nouwens/Getty

燦爛之火多年以後依舊燃燒

多年在亞馬遜、東南亞走跳的華勒斯,有不少接觸原住民的機會。照文字紀錄看來,他年輕時的思想應該和同時期的普通英國人差距不大,沒有特別進步或反動;不過相比於同時代人,他更尊重在地知識,這也有助於他的成功。

亞馬遜的生物多樣性如今依然天下第一,世界卻變化不少。尼格羅河盆地的原住民,在華勒斯時代是被觀察者,類似實驗動物的角色,現在漸漸變成主動的研究者,他們用源自不同文化的手法探索自己的世界,成為現代知識體系的一份子。

然而,曾經啟發華勒斯的尼格羅河盆地,至今仍缺乏一流的研究機構,無法培育本土的研究人才,本地學子必需離鄉背井。科學從華勒斯到現代突飛猛進,仍有不少進步空間。

上圖是華勒斯描述為「黑暗中一團燦爛之火」的圭亞那動冠傘鳥(Guianan cock-of-the-rock ,學名 Rupicola rupicola),目前沒有滅團危機,依然在華勒斯探索過的雨林中飛翔。希望燦爛之火永不熄滅,但是不要變成失控的森林大火。

延伸閱讀

參考資料

  1. Alfred Russel Wallace’s first expedition ended in flames
  2. Escaping Darwin’s shadow: how Alfred Russel Wallace inspires Indigenous researchers
  3. Evolution’s red-hot radical

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 1
寒波_96
180 篇文章 ・ 745 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

1
0

文字

分享

0
1
0
環境 DNA 猛獁象現蹤,化石消失幾千年後才真正滅團?
寒波_96
・2023/01/13 ・3575字 ・閱讀時間約 7 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

一萬多年前冰河時期結束後,許多地方的生態系明顯改變,例如歐亞大陸和美洲的猛獁象都滅絕了,僅有少少倖存者,殘存於北冰洋的小島一直到 4000 年前。

上述認知來自對化石遺骸的判斷,可是最近由環境沉積物中取樣古代 DNA 分析,卻指出猛獁象等幾種生物,在亞洲和美洲大陸其實又延續了好幾千年。這些證據可靠嗎,猛獁象到底什麼時候滅絕?

距今 200 萬前的格陵蘭,生態想像圖。圖/Beth Zaikenjpg

古時候的環境 DNA,創下 200 萬年紀錄

DNA 原本位於生物的細胞之內,生態系中有很多生物,時時刻刻留下各自的 DNA,從土壤、水域等來源取樣分析所謂的「環境 DNA」(environmental DNA,可簡稱為 eDNA),能得知環境中包含哪些生物。

如果環境樣本能保存成千上萬年,那麼定序其中的 DNA 片段,再加上化石、花粉等不同線索,便有希望窺見古時候的生態系。

威勒斯勒夫(Eske Willerslev)率領的一項研究,藉由此法重現來自格陵蘭沉積層,距今 200 萬年之久的 DNA 片段,2022 年底發表時成為年代最古早的 DNA 紀錄,也得知當年存在格陵蘭的眾多植物與動物。[參考資料 5]

最出乎意料的莫過於乳齒象(mastodon),由於缺乏化石,古生物學家一直認為那時候的乳齒象,並未棲息於這麼北的地帶,此一發現充分展示出古代環境 DNA 的價值。然而 DNA 的探索範圍也明顯有侷限,例如該地區出土超過 200 個物種的昆蟲化石,DNA 卻只能偵測到 2 種。

猛獁象化石無存後幾千年,依然有留下 DNA

當時間尺度是百萬年時,實際是 200 萬 3300 年或是 199 萬 8700 年,也就是 200.33 或 199.87 萬,幾千年的誤差範圍無關緊要。但是當探討對象是最近一萬年,猛獁象的 DNA 究竟存在於 9000 或 6000 年前,意義就差別很大。

這兒的「猛獁象」都是指真猛獁象(woolly mammoth,學名 Mammuthus primigenius)。由另一位古代 DNA 名家波因納(Hendrik Poinar)和威勒斯勒夫各自率隊,同在 2021 年底發表的論文獲得類似結論:猛獁象化石消失的幾千年後,沉積物中仍然能見到 DNA,可見還有個體又存續幾千年。[參考資料 1, 2]

威勒斯勒夫主導論文的取材地點。以北極為中心,視角和台灣人習慣的地圖很不一樣。圖/參考資料 2

波因納率領的研究探討白令東部,也就是如今加拿大的育空地區,距今 4000 到 3 萬年前的沉積層;結論是原本認為早已消失的美洲馬、猛獁象,一直延續到 5700 年前。威勒斯勒夫戰隊取材的地理範圍廣得多,包括西伯利亞西北部、中部、東北部、北美洲、北大西洋,判斷猛獁象生存到 3900 年前。

更詳細看,威勒斯勒夫主導的論文指出,猛獁象在西伯利亞東北部最後現蹤於 7300 年前,西伯利亞中北部的泰梅爾半島(Taimyr Peninsula)為 3900 年前,此一年代和北冰洋的外島:弗蘭格爾島(Wrangel)之化石紀錄相去不遠。而北美洲則是 8600 年前,比波因納戰隊的 5700 年更早。

如果兩隊人馬的判斷都正確,意思是猛獁象(與某些大型動物)在北美洲延續到 5700 年前,在亞洲大陸與外島到 3900 年;比起當地出土最晚化石的時間,皆更晚數千年。

只有 DNA 不見化石,會不會是死掉好幾千年仍一直外流 DNA?

根據化石紀錄,冰河時期結束後,仍有少少生還的猛獁象在弗蘭格爾島一直延續到 4000 年前。由此想來,當大多數同類已經滅團時,某些地點還有孤立的小團體延續,並不意外。只是我們不見得能見到化石。

然而,威勒斯勒夫主導的論文受到挑戰。質疑者提出,猛獁象這類動物住在寒冷的環境,去世後遺體如果被冷凍保存,又持續緩慢解凍,在接下來的幾千年便有可能不斷釋出新鮮的 DNA,讓我們誤以為仍有活體。[參考資料 3]

舉個極端狀況。假如 2 萬年前死亡的猛獁象,去世後一直冷凍在冰層中,現在被我們取出解凍,也許其中仍保有不少生猛 DNA,可是實際上牠已經去世很久了。

上述質疑,應該是這類研究手法共通的潛在問題。發生在一百萬年前無關緊要,一萬年內卻會導致不小的誤判。

喔~~喔喔~~喔喔~~喔喔~爪爪

距今 1 萬多年前的育空,生態想像圖。圖/Julius Csotonyi

化石消失的時刻,往往比生物滅團更早

威勒斯勒夫戰隊則回應表示:論文結論沒有問題,沈積層中取得的古代 DNA 確實來自那時在世的動物。我覺得不論觀點是否正確,回應的思路都值得瞧瞧。[參考資料 4]

為什麼動物依然存在時,見不到當時的化石紀錄?主因是動物去世後,只有極低比例的個體會變成化石。一種動物在滅團以前,通常個體數目持續降低,少到一個程度後,還能留下化石的機率已逼近 0 。所以化石紀錄最後的時間點,早於動物實際消失的年代。

和化石相比,動物遺留 DNA 的機率遠高於化石。活生生的動物就會持續排放 DNA,死亡身體分解後又會釋出不少; DNA 未必會留在原本生活的地點,不過如今的偵測技術足夠敏銳,即使只有幾段也有機會抓到。

猛獁象,活的!

是否有可能,猛獁象去世幾千年仍持續釋出 DNA 片段?的確無法排除可能性。不過這項研究中有 4 個方向,支持沉積層之 DNA 源於族群規模大減,卻依然活跳跳的猛獁象。

不同時間,各地猛獁象的粒線體 DNA 型號。可以看出趨勢是,猛獁象分佈的範圍愈來愈窄,遺傳型號也愈來愈少。圖/參考資料 2

第一,如果環境中的 DNA 來自死亡多時的動物,那麼各地區應該都會見到類似現象。實際上只在少部分取樣地點偵測到。

第二,假如猛獁象遺骸緩慢分解,DNA 持續進入沉積層,同一地點的不同取樣應該都能見到。可是同一處地點,只有少數樣本能抓到猛獁象 DNA。

第三,不同沉積層取得的環境樣本,包含當時生態系中很多生物的 DNA。存在猛獁象 DNA 的樣本,也能見到適合猛獁象生態系的其他植物;表示猛獁象的命運,很可能與適合牠們生活的環境同進退。

第四,倘若較晚沉積層的猛獁象 DNA,直接源自較早去世的個體,遺傳多樣性應該不會變化。然而較晚出現的粒線體型號明顯變少,後來只剩下一款。

實際狀況沒人可以肯定。我覺得前三點,都涉及樣本保存的潛在問題,干擾因素較多。第四點大概是最有力的證據,支持環境沉積物中留下的 DNA 並非源於死象遺骸,而是活體猛獁象。

研究日新月異,腦袋也要趕上

科學研究日新月異,不少人見到論文寫什麼就信以為真,卻不了解做研究其實有很多限制,即使是結論「正確」的論文,也會處處碰到解釋的侷限。

持續搜集證據,反覆思考才能進步。腦袋要靈活運用,但是也不要胡亂腦補!

延伸閱讀

參考資料

  1. Murchie, T. J., Monteath, A. J., Mahony, M. E., Long, G. S., Cocker, S., Sadoway, T., … & Poinar, H. N. (2021). Collapse of the mammoth-steppe in central Yukon as revealed by ancient environmental DNA. Nature Communications, 12(1), 1-18.
  2. Wang, Y., Pedersen, M. W., Alsos, I. G., De Sanctis, B., Racimo, F., Prohaska, A., … & Willerslev, E. (2021). Late Quaternary dynamics of Arctic biota from ancient environmental genomics. Nature, 600(7887), 86-92.
  3. When did mammoths go extinct?
  4. Reply to: When did mammoths go extinct?
  5. Kjær, K. H., Winther Pedersen, M., De Sanctis, B., De Cahsan, B., Korneliussen, T. S., Michelsen, C. S., … & Willerslev, E. (2022). A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA. Nature, 612(7939), 283-291.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
180 篇文章 ・ 745 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

1

1
1

文字

分享

1
1
1
動物其實吃不出甜食!因「偏食」而消逝的味覺演化——《舌尖上的演化》
商周出版_96
・2023/01/02 ・2011字 ・閱讀時間約 4 分鐘

本喵不懂甜食啦!

貓即便有了甜味受器,也不會更容易存活或繁殖,如果牠們花更多時間吸花蜜,吃獵物的時間就會變少,如此一來還可能會影響生存。因此,即便貓的祖先的甜味受器失去功能,牠依舊可以存活。

時任蒙內爾化學感官中心研究員的李夏發現:這個演化對貓不僅有存活的意義,更是現代貓科動物的味覺濫觴,沒有任何一種現代貓科動物具有活化的甜味受器,充滿花蜜與甘甜果實的森林對貓沒有一絲口慾上的吸引力。

如果你給一隻貓一片糖霜餅乾,呃,牠也不會理你;就算牠吃了餅乾,也沒辦法感受到糖霜帶來的愉悅感,因為這個餅乾對牠來說沒有甜味。

貓咪其實無法分辨甜味。圖/envatoelements

除了貓以外,其他肉食動物如海狗、亞洲小爪水獺、斑鬣狗、馬島長尾狸貓以及瓶鼻海豚,牠們的甜味受器也沒有作用,只是這些甜味受器基因出現的破壞性突變都屬於獨立的演化事件,不過也共屬於一種基因功能缺失的趨同演化。

有人可能會想問,為什麼其他肉食性動物的甜味受器沒有失去功能?例如貓的鹹味味覺受器,就跟其他肉食性動物一樣依舊安在,但牠們獵物體內鹽分的含量就足以應付生理所需,所以牠們的鹹味味覺受器喪失功能可能只是時間早晚的問題。

海獅已經喪失了甜味跟鮮味的味覺,海豚也是,而且海豚的無味人生開始得更早,牠們根本無法嚐出甜味、鹹味或是鮮味。對海豚來說,存在的只有飢餓感與飽足感,餓了就去吃飽,而牠們相信海裡任何長得像魚而且會動的東西都可以餵飽自己。

有人可能也會好奇,到底海豚的獵物要有什麼特色才能為牠們帶來進食的愉悅感?我們不知道。海豚的愉悅感從哪來、是什麼,至少到目前為止都是科學謎團。

不吃肉改吃素的大貓熊

特定味覺受器失去功能的情況,並不單發生在肉食性動物身上,也發生在食物選擇非常專一的動物身上。大貓熊的祖先屬於熊科動物,也跟現代的熊一樣是雜食性動物,會狩獵,會吃酸酸的螞蟻,也會吃甜甜的莓果。但到了大貓熊身上,新的食物偏好出現了,就是愛吃竹子,牠們吃竹子就可以活。

其實,當牠們才剛開始喜歡吃竹子時,竹子跟肉都是牠們愛吃的食物,但久而久之,仍然愛吃肉的大貓熊就變得難以生存或難以交配繁殖,或另一個機率較小的可能是,牠們的食物偏好無法符合生理需求,所以在覓食時無法專心致志。一段時間後, 大貓熊的鮮味受器就失去功能了,就像貓兒的甜味受器。現在就算你把肉端到大貓熊面前,牠們也不會碰上一口。

即便在多年後的未來,貓、海獅或海豚的後代也不太可能會嚐到甜味,大貓熊也依然無法嚐到鮮味,雖然隨著竹林減少,大貓熊對吃竹子的執著也讓牠們的數量不斷減少。從這些日常生活中的演化故事中我們學到:當某些東西成為需求時,比起破壞,建設是更困難的。但從頭做起雖然很難,也並非完全不可能。

現在的熊貓不在吃肉,演化成只吃竹子。圖/《舌尖上的演化》

過了三億年,蜂鳥才嘗到了「甜」的滋味

以甜味受器為例, 它在某些動物身上曾經失去功能, 但後來又重新復活了。三億年前,現代鳥類、哺乳類與爬蟲類的祖先,應該可以嚐到食物中的鹹味、鮮味與甜味,然而現代鳥類的甜味味覺沒了,不知是什麼原因,牠們的甜味受器都失去了功能。因此鳥類無法嚐出甜味,至少大多數鳥類都無法。

蜂鳥是從古燕演化而來的,而古燕跟現代的燕子一樣專門吃昆蟲,喜歡品嚐蟲子體內會出現的鮮味,對於糖分則沒什麼興趣。但在大約四千萬年前,有一群燕子開始以花蜜與含糖物質為食,可能只是為了解渴。一般鳥類並無法嚐出花蜜的甜味,所以牠們吸食花蜜就像在喝水,但花蜜畢竟不是水,裡面可富含著糖分。

因此有一假說猜測,那些喝到比較多花蜜的鳥可能獲得更多能量,因此更有機會將牠們的基因傳給後代,而牠們的鮮味受器在演化過程中,變成不只辨識原本的鮮味成分﹙像麩氨酸或是某些核苷酸﹚,也可以同時偵測糖分。

出現這種特徵的古燕就是最早的蜂鳥。蜂鳥跟一般鳥類不同,不僅能嚐出胺基酸,也能嚐出糖分。不過牠們只靠同一種味覺受器,所以胺基酸跟糖分對牠們來說,應該是同一種味道,一樣是帶來愉悅感的「鮮甜味」。

動物吃下新食物而產生美味感受的同時,也滿足了營養所需,這類美妙的演化故事,正是生物藉由愉悅感以精巧調控的生化機制滿足需求的例子。只要持續研究味覺受器的演化,我們就會發現更多類似的故事。

——本文摘自《舌尖上的演化》,2022 年 12 月,商周出版出版,未經同意請勿轉載。

所有討論 1
商周出版_96
111 篇文章 ・ 347 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。