Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

增重、長妊娠紋還要忌口?媽媽為了生你究竟經歷了什麼?

吳 子函
・2019/05/14 ・2121字 ・閱讀時間約 4 分鐘 ・SR值 481 ・五年級

生命,是這個世界上最珍貴的東西。想像一下:當你除了自己之外,還背負了另一個生命,是甚麼感覺?是不是馬上覺得壓力很大,深怕自己的一舉一動會對另一個生命造成不好的影響?

從孕婦到成為媽媽,不管是在懷孕期間或生下寶寶之後,飲食、身體狀況等方面,似乎總有許多眉眉角角需要注意。在懷孕期間,準媽媽可能會為寶寶做出哪些犧牲?懷孕又會造成怎樣的身體不適呢?

平常一公斤都計較,懷孕卻八公斤起跳!

懷孕時期及產後身材的變化,是許多媽媽們十分在意的問題。究竟在懷孕期間,媽媽們通常會增加多少體重?這些體重又是打哪兒來的呢?

體重是許多媽媽在意的問題。圖/GIPHY

以台灣人來說,在懷孕第十個月出生嬰兒的平均體重約為 3.2 公斤,加上胎盤 0.6 公斤、羊水 0.8 公斤,子宮增加 0.9 公斤,乳房增加 0.4 公斤,血液增加 1.2 公斤,以及其他細胞外液多了 1 公斤,整個懷孕期體重大概至少會增加 8 公斤,約等於一個登機箱的重量。

-----廣告,請繼續往下閱讀-----

當然啦,這個數字會因人而異,而每位媽媽可以增加的體重,則會根據懷孕前的 BMI 而有所不同,每個人都有不同的建議增加體重。

孕婦的建議增加公斤數。圖/衛生福利部國民健康署孕婦衛教手冊

不只變胖!痠痛妊娠紋跟著來

不管增加幾公斤,這些體重都會增加媽媽的負擔。背一個 5 公斤的背包,可能不用幾個小時,你就會想把背包丟掉,但胎兒待在媽媽體內可不是幾個小時的事,也不是隨便就能丟掉的。

正因如此,許多孕婦都會面臨腰酸背痛的問題。這是因為懷孕時,媽媽的子宮會擴大,使得脊椎中的腰椎、薦椎曲度增加,而懷孕期荷爾蒙的改變,也會讓關節軟化、鬆弛,這些都可能是導致痠痛發生的原因。

體重除了增加對脊椎的負擔,還有可能對媽媽造成甚麼影響呢?答案是:「妊娠紋」。如果體重增加太快,使得皮膚真皮層擴張速度超過伸張度時,皮下組織的纖維組織及膠原蛋白纖維容易斷裂,此時,皮膚表面就會出現長條狀粉紅色的紋路,產生妊娠紋。不過,妊娠紋的產生除了跟體重增加的速度有關之外,遺傳也會有影響,有些人天生就比較容易產生妊娠紋。

-----廣告,請繼續往下閱讀-----

那麼,有些孕婦肚子中間那條顏色較深的線是甚麼呢?也是妊娠紋嗎?千萬別搞混了,那是妊娠中線,它和妊娠紋產生的原因不一樣,妊娠中線是色素細胞所形成的色素沉澱,是由於荷爾蒙的變化刺激而產生的,跟體重沒有關係。

懷孕媽媽肚子上可能產生妊娠紋或妊娠中線。圖/pxhere

什麼都不能吃?準媽媽心裡苦

除了要面對外表的變化,準媽媽們應該也很常被叮囑甚麼不能吃、甚麼不能喝。其中,咖啡似乎很常被劃入孕婦禁區,這對於習慣每天喝咖啡,一天甚至不只一杯的人來說,只能聞香卻不能品嘗真的很辛苦。但是,咖啡因究竟會對孕婦和胎兒會造成甚麼影響?懷孕期間真的不能喝咖啡嗎?

孕婦可以喝咖啡嗎?圖/pixabay

準媽媽之所以會受到特別的叮嚀,可能是因為咖啡因會抑制人體對鐵和鈣的吸收。懷孕期間,孕婦需要將部分養分分給胎兒,而鈣是懷孕期間容易缺乏的元素,所以,此時如果飲用大量咖啡,會讓缺鈣的情形雪上加霜。另外,曾有研究指出,過量的咖啡因對發育中的大腦有害,說到這裡,大概沒有任何孕婦敢喝咖啡了,畢竟寶寶的腦可是比什麼都重要啊。

但根據一篇 2017 年發表的研究,對於孕婦來說,每天低於 300 毫克的咖啡因攝取量是可以接受的,以便利商店中杯美式咖啡為例,其中的咖啡因含量約為 100~200 毫克。也就是說,咖啡因的攝取並非完全禁止,只是需要注意身體狀況,小心計算咖啡因的攝取量。

-----廣告,請繼續往下閱讀-----

除了咖啡之外,媽媽可能也會被提醒,懷孕期間不要吃紅蘿蔔與木瓜,因為紅蘿蔔和木瓜含有 β胡蘿蔔素,會讓寶寶產生黃疸。雖然 β胡蘿蔔素和黃疸都黃黃的,但它們之間真的有關連嗎?

吃太多含有天然色素的蔬果,確實可能造成其在人體內沉澱,導致皮膚顏色變黃,但這跟新生兒黃疸成因並不相同。新生兒黃疸是因為寶寶的紅血球較成人多,加上肝臟功能尚未發育成熟,導致體內一種叫做膽紅素的廢物累積造成,與媽媽吃了紅蘿蔔或木瓜並沒有關係。

β胡蘿蔔素並不是造成新生兒黃疸的原因。圖/pxhere

咖啡和木瓜只是所有飲食「限制」中的冰山一角,還有薏仁、冰品等也常被當作孕婦飲食禁忌。其實有些東西並不是真的不能吃,只是常有「熱心人士」以訛傳訛,讓原本就對飲食小心翼翼的媽媽們心很累。

說了這麼多,媽媽要生下我們真的很辛苦,不但要面臨孕期生理變化造成的不適,還得面對來自親朋好友乃至於鄰居阿姨加諸在身上的限制和心理壓力。希望大家別忘記,要趁著母親節好好謝謝媽媽喔!(平常也要啦!)

-----廣告,請繼續往下閱讀-----
  • Wikoff, B.T. Welsh, R. Henderson, G.P. Brorby, J. Britt, E. Myers, et al.Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children.Food Chem Toxicol, 109 (2017), pp. 585-648
  • Atik, R. Harding, R. De Matteo, et al.Caffeine for apnea of prematurity: effects on the developing brain.Neurotoxicology, 58 (2017 Jan), pp. 94-102, 10.1016/j.neuro.2016.11.012 Epub 2016 Nov 27. Review. PubMed PMID: 27899304
  • 衛生福利部國民健康署網站
  • 東元綜合醫院
  • 媽媽寶寶
  • 邱正義婦產科臉書網站
-----廣告,請繼續往下閱讀-----
文章難易度
吳 子函
4 篇文章 ・ 0 位粉絲

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
睡眠不足來杯咖啡?小心!這可能是個惡性循環——《人類文明》
天下文化_96
・2024/06/19 ・2251字 ・閱讀時間約 4 分鐘

咖啡因對大腦的影響

咖啡因是一種分子上的模仿大師。人類醒著的每一分鐘,腦中都會不斷增加腺苷(adenosine)這種化學物質,像是沙漏的沙子不斷累積,能夠告訴我們已經醒著多久,且會讓大腦運作逐漸放緩,創造出一種睡眠壓力,讓人體做好入眠的準備。所以醒著 12 個小時到 16 個小時,人就會感受到一種難以抗拒的誘惑,想回臥室躺著進入夢鄉。

然而,咖啡因的分子結構十分類似腺苷,能夠搶先一步與腺苷的受體結合,卻不會活化受體;這樣一來,反而是對這些腺苷受體形成一種化學封鎖。所以,只要你的腦中有大量咖啡因,腺苷就無法與受體結合,難以傳遞正常的訊號咖啡因就是靠著這種藥理作用來抑制睡意,使大腦保持警覺與專注。雖然腺苷依然不斷在大腦中堆積,只不過所發出的訊號就這樣被咖啡因給堵住了。但是,等到身體分解了咖啡因,腺苷就會宛如大壩潰堤,讓人感受到沛不可擋的睏意——這就是可怕的咖啡因崩潰(caffeine crash)。

植物合成咖啡因,原本是做為一種天然的殺蟲劑,避免葉子或種子遭到啃食,甚至還能殺死昆蟲。但奇怪的是,像是包括幾種咖啡類與柑橘類植物在內,有些植物的花蜜也含有咖啡因,花蜜原本該是用來吸引昆蟲授粉的。實驗結果顯示,咖啡因能夠增強蜜蜂的嗅覺學習能力,讓蜜蜂更能記得這些花的氣味,於是不斷回訪這些有著咖啡香氣的花朵。也就是說,這些植物等於是讓蜜蜂吸了興奮劑,引誘它們成為自己忠實的授粉者;可以說,正是咖啡因讓蜜蜂願意不斷嗡嗡嗡上工。

研究顯示,咖啡因是蜜蜂的興奮劑,可以讓他們願意不斷嗡嗡嗡上工。圖/envato

咖啡因的另一個作用是增加依核裡的多巴胺濃度,同時也會提高多巴胺受體的敏感性。這會刺激我們前面提過的中腦邊緣報償路徑,讓人在喝到一杯好茶或咖啡的時候,感受到愉悅的好心情;但也會讓人上癮。人類之所以愛喝咖啡或茶之類的飲料,是因為這能夠刺激大腦、抑制睡意;而且只要一開始喝了,就會因為咖啡因成癮而讓人維持這樣的習慣。於是回過頭來,我們就看到咖啡因對歷史產生了長久的影響。

-----廣告,請繼續往下閱讀-----

在啟蒙時代,咖啡在歐洲咖啡館裡刺激了知識份子的思想與話語;到了不斷變化的工業時代,則是茶讓英國工人階級的身心得以調適。工業革命淘汰了像是編織、打鐵這些傳統工藝,以龐大的機器加以取代。從煤氣燈到電燈泡,各種人造光源讓工廠開始能夠一路運作到深夜。而咖啡因不但能讓工人在單調無趣的工廠環境裡,維持清醒專注,連那些營養不良造成的飢餓感也能一併排除。茶裡面加的糖也能提供熱量,讓人在長時間的輪班期間維持體力。咖啡因就這樣將工人變成了更好的零件,更能配合那些永遠不知疲倦為何物的鋼鐵機器。

〔附注:出於類似的原因,戰爭時期的軍隊也會運用各種精神藥物。像是希特勒速度驚人的閃電戰,先是在 1939 年 9 月橫掃波蘭,接著在 1940 年初攻下法國與比利時。這一方面靠的當然是德意志國防軍裝甲師的機動性,坦克既配備了無線電裝置用於協調,還能得到德意志空軍轟炸機的空中支援。但另一方面,這項成功的背後還有另一項技術的支援:靠著合成興奮劑「甲基安非他命」(methamphetamine,分子結構類似腎上腺素),德軍能夠戰得更猛更久,而不會感覺精神倦怠或身體疲勞。安非他命的化學作用讓人進入高度警覺狀態,也大大提升了自信與攻擊性。閃電戰的成功,靠的其實也是部隊嗑了藥。就連希特勒本人也同時混打多種藥物(古柯鹼、甲基安非他命、睪固酮),提供作戰指揮時的體力。〕

咖啡因不但能讓工人在單調無趣的工廠環境裡,維持清醒專注,連那些營養不良造成的飢餓感也能一併排除。圖/envato

所以講到工業革命,工廠與磨坊的動力靠的是蒸汽機,但如果是操作機器的工人,靠的燃料就是東印度公司帶來的茶葉、加上來自西印度群島的糖。於是,茶的歷史深深植根於對勞工的剝削——從印度的茶園、加勒比海的甘蔗栽培園、再到英國的工廠,都壓榨著這些工人所有清醒的時分。

如今,若想要控制我們的睡眠清醒週期(sleep-wake cycle),咖啡因仍然是一項重要工具。這個科技社會的步調太過急促,不允許我們被動順應自己的生物時鐘,得主動加以調整,適應數位時鐘的要求。而很多人靠的就是自行攝取咖啡因,在每天上班途中把自己叫醒、讓自己能在辦公桌前熬夜趕工,或是在長途飛行後,把生理時鐘同步到新的時區。很多咖啡因成癮者都能自己調整這種藥物的劑量,一方面巧妙發揮咖啡因的正面作用,讓自己更能面對現代世界對專注力的需求,另一方面也能避免過度攝入造成的負面作用,像是焦躁不安、心跳加速、胃部不適。

然而,咖啡因雖然讓我們得以抑制大腦發出的睡意訊號,卻也成了現代人常常睡眠不足的一大主因。咖啡和茶就這樣和人類玩著兩面手法:我們喝咖啡和茶,是為了緩解長期的嗜睡;但造成這種情形的元凶也正是咖啡因。事實上,我們早上會想趕快來杯咖啡,讓腦子清醒一點、或是提振精神,很多時候其實是在緩解一夜難眠的戒斷症狀。

-----廣告,請繼續往下閱讀-----

——本文摘自《人類文明:生物機制如何塑造世界史》,2024 年 05 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

1
1

文字

分享

0
1
1
家長留意!「胎兒小於妊娠年齡」影響生長發展,從出生到成年都會面臨健康問題
careonline_96
・2024/03/05 ・2446字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

  • 林口長庚醫院 兒童內分泌科 邱巧凡醫師/新生兒科 江明洲醫師

兒童內分泌生長門診中很常出現的一個族群是「胎兒小於妊娠年齡」的孩子。

這些小朋友在長大的過程中,相較於正常出生體重的孩子,容易出現身材矮小、性早熟、過重、肥胖,甚至到成人時期罹患代謝症候群與心血管疾病的風險也明顯較高,兒童健康守護者應特別留意。

什麼是「胎兒小於妊娠年齡」

胎兒小於妊娠年齡(small for gestational age, SGA)是指「出生體重低於同樣妊娠週數新生兒第十百分位或低於負二個標準差者」。

如何知道我的孩子是否為「胎兒小於妊娠年齡」

大家可以參考以下圖片對照寶寶出生週數與體重,即可得知寶寶出生體重是否符合該週齡。

舉例來說:一個懷孕 39 週出生的足月寶寶,出生體重只有 1800 公克,屬於「胎兒小於妊娠年齡」。

為什麼會「胎兒小於妊娠年齡」

造成「胎兒小於妊娠年齡」的原因包含:母體因素、胎盤因素與胎兒因素。

-----廣告,請繼續往下閱讀-----
  • 母體因素:如高血壓、子癲前症、營養不良、甲狀腺功能低下、感染、抽菸、吸毒、飲酒、高齡妊娠等。
  • 胎盤因素:如胎盤血管異常(如單一臍動脈、雙胞胎輸血症候群)。
  • 胎兒因素:染色體異常、先天性異常、胎兒感染等。

胎兒小於妊娠年齡」孩子成長過程會面臨哪些健康問題

  • 新生兒時期

約有 1/3「胎兒小於妊娠年齡」寶寶,在新生兒時期因為肝醣儲積不足,脂肪量不足,造成「低血糖」的發生。也容易因為體表面積相對較大,皮下脂肪相對不足,而增加「低體溫」的風險。若早產合併胎兒小於妊娠年齡,也明顯「增加新生兒死亡率」。

  • 嬰兒期

「胎兒小於妊娠年齡」的寶寶往往在出生後 3~6 個月開始出現「追趕生長」,且常常體重追趕得比身長來的快。研究發現,此階段的體重快速增加將大幅提升未來長期肥胖、代謝性症候群與心血管疾病的風險。

  • 兒童時期與青春期

生長

大多數「胎兒小於妊娠年齡」的兒童,可在成長過程發生「追趕生長」。即生長速率可高於同齡同性別之平均值,使生長曲線逐漸邁入正常範圍。將近 90%「胎兒小於妊娠年齡」的兒童可在兩歲前完成「自發性追趕生長」;若「早產」合併「胎兒小於妊娠年齡」,則需要更長時間完成追趕生長,大部分可在四歲前追趕達標。

-----廣告,請繼續往下閱讀-----

然而,仍然有 10% 左右的「胎兒小於妊娠年齡」兒童無法完成自發性追趕生長,造成終生持續身材矮小。此族群目前在美國、歐盟與日本皆已列為「生長激素治療」之適應症族群。此族群透過適當的生長激素治療,除了可改善身高預後,還可改善身體組成(減少脂肪量、增加肌肉量)、改善高膽固醇血症,並提升骨質密度。

青春期發育

大多數「胎兒小於妊娠年齡」的青春期發育時間會落在正常時間:女孩 8~13 歲,男孩 9~14 歲。但平均而言,「胎兒小於妊娠年齡」兒童的青春期還是會早於正常出生體重的兒童(初經比正常出生體重兒童提前 5~6 個月),女孩容易發生「早發性陰毛發育」,青春期的進展速度也較快,但青春期階段的生長速率卻較為緩慢,而這樣「偏早又偏快的青春期,以及偏慢的長高速率」,往往不利於理想成人身高的達成。

神經發展與認知

-----廣告,請繼續往下閱讀-----

大部分「胎兒小於妊娠年齡」兒童的腦部發育是正常的。但在極度早產兒,會增加發展遲緩、認知功能障礙、注意力不足過動症與學習障礙的風險。

  • 成人時期

相較於正常出生體重的兒童,「胎兒小於妊娠年齡」兒童在成人階段有較高的機率罹患中樞型肥胖、脂質異常、胰島素阻抗、葡萄糖代謝異常、高血壓等代謝症候群與心血管疾病,特別是兒童時期高熱量飲食、體重快速增加的肥胖兒童。由此可見「小時候胖」幾乎註定成人以後肥胖的趨勢,甚至助長成人肥胖併發症的發生。

「胎兒小於妊娠年齡」的寶寶,從出生一直到長大成人,都有許多健康議題需要特別關注。建議此族群家長,應格外留意以下幾點:

  1. 「胎兒小於妊娠年齡」的寶寶,於兩歲以前的生長曲線未達標請先不要過度擔心,出生後應密切配合新生兒科醫師或兒科醫師的追蹤安排,留意後續的生長發育狀況。
  2. 若 3~4 歲生長曲線仍明顯落後,請就診兒童內分泌科進一步評估診療。
  3. 應留意是否過早出現第二性徵。若女孩 8 歲前胸部、陰毛發育,10 歲前初經來潮;男孩 9 歲前睪丸長大、陰莖明顯變長變粗、長陰毛,請務必就診兒童內分泌科。
  4. 應避免不當餵食導致過度的體重增加,因為這將大幅提升未來代謝症候群與心血管疾病的風險。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

careonline_96
568 篇文章 ・ 279 位粉絲
台灣最大醫療入口網站