0

0
0

文字

分享

0
0
0

太空櫻花,太空櫻花,長得快!長得快!

Peggy Sha
・2017/03/01 ・1511字 ・閱讀時間約 3 分鐘 ・SR值 479 ・五年級

有些科學家對於人類上太空後的身體變化非常好奇,例如最近就有針對雙胞胎太空人的研究,那如果把植物送上太空,會有什麼影響呢?其實,日本人早在 2008 年就做過這種有趣的嘗試了。當年,他們特別挑選櫻花的種子進入太空,而數年之後,這些種子帶著滿滿的宇宙謎團長大成樹,並提前開出特別的花朵。

現在,就讓我們來回顧一下曾讓日本的僧侶和科學家都為之瘋狂的宇宙櫻花吧。

千年櫻花終於後繼有樹

這一株「太空櫻花」曾在國際太空站(International Space Station ,ISS)度過好一段時間,其後回到原本的家園落地生根。在 2014 年的 4 月 1 日愚人節當天,它開出了漂亮的櫻花,這時,它的樹齡約為四歲,比一般自然生長的櫻樹早了整整六年開花。

太空櫻花的開花時間如此大幅度超前,使得日本岐阜市古剎願成寺(Ganjoji) 的僧侶們感到十分困惑。

願成寺的住持梶田昌宏(Masahiro Kajita)在接受法新社電訪時表示,對於櫻花的生長速度感到十分訝異,在此之前,老樹「中將姬誓願櫻」的種子從未發芽過。

「我們對此感到很高興,因為如此一來 1250 歲的老樹終於有了繼承者。」

著名的中將姬誓願櫻。圖/官網

太空計畫讓孩子參與櫻花生長

這顆來自「中將姬誓願櫻」的神奇種子,曾經參與了太空櫻花計畫。在這個民間企業發起的計畫中,收集了日本全國 14 地各式品種的櫻花種子。

這些種子在 2008 年 11 月時,跟著日本太空人若田光一(Koichi Wakata)前往國際太空站,而後再繞行地球 4100 次後,於隔年 7 月跟著若田一起回到地球。

日本太空人若田光一展示櫻花種子。圖/法新社

結束太空旅程後,有些種子被送到實驗室進行研究,不過大部分都回到自己的家鄉,其中部分種子被種在靠近寺院的苗圃中。

計畫主持機構「日本載人太空系統」(Japan Manned Space Systems ,JAMSS)的發言人冨岡美穂(Miho Tomioka)說道,送種子上太空是教育文化計畫的一部份,這個教育計畫讓小孩收集樹苗,並了解它們如何在太空之旅後生存並長大成樹。

「我們原先預期願成寺的樹會在種植後 10 年左右開花,而孩子也到了一定的年紀。」冨岡美穂說。

櫻花早開原因有待釐清

但是,這棵性急的櫻花顯然等不及孩子長大,早已先跑一步了。

在 2014 年 4 月,這株太空櫻花已經長到 4 公尺高,而後突然開出 9 朵花,這些花朵只有 5 片花瓣,而原生樹則有大約30片花瓣。相較於一般的櫻花樹,大約需要 10 年才會長出第一批花苞。

太空櫻花只有五片花瓣。圖/法新社

令人訝異的是,願成寺的樹苗不是唯一早開的太空櫻花。

在14處地方中,有4處的櫻花已經開出花朵。在 2012 年,在山梨縣北社市(Hokuto)這個位於東京西方約 115 公里的山區之中,一株年輕的櫻樹在被種下的兩年之後,開出了 11 朵花;而通常此品種的花要到 8 歲才會開花。

筑波(Tsukuba)大學的研究員富田─横谷香織(Kaori Tomita-Yokotani)向法新社表示自己為這個外星迷團所震懾,她說:我們暫時不能排除這樣的現象可能是肇因於暴露於外太空環境的影響。

横谷香織是一位植物生理學家,她認為要找到櫻樹生長速度如此之快的原因是很困難的,因為沒有對照組的存在。她說,不能排除櫻樹與其他品種的異花授粉這個原因,但是由於缺乏數據,以至於很難得出明確的結果。

「當然,有可能因為暴露於較高劑量的宇宙射線中,因此加速了種子發芽和整體生長的速度。」横谷香織表示。

這株神秘而美麗的太空櫻花帶給我們無盡的謎團,而到目前為止,科學尚未給出一個確切的解釋。寶傑,你怎麼看?

原文出處:


數感宇宙探索課程,現正募資中!

文章難易度
Peggy Sha
61 篇文章 ・ 379 位粉絲
曾經是泛科的 S 編,來自可愛的教育系,是一位正努力成為科青的女子,永遠都想要知道更多新的事情,好奇心怎樣都不嫌多。


0

22
2

文字

分享

0
22
2

極目遠眺的意義:天文學家為何追尋第一代星系

Tiger Hsiao_96
・2022/05/15 ・3764字 ・閱讀時間約 7 分鐘
  • 文/蕭予揚 清大天文所碩士生,將於約翰・霍普金斯大學攻讀天文博士
      林彥興 清大天文所碩士生,EASY 天文地科團隊總編

近日,來自東京大學和倫敦大學學院的科學家 播金優一(Yuichi Harikane) 在天文物理期刊《The Astrophysical Journal》發表了一篇論文,宣稱他們可能找到目前最遠的星系(名為 HD-1,紅移值 z 約為13),打破了原本最遠(GNz-11,z 約為 11)的紀錄。

天文學家為什麼執著要找最遠的星系呢?
是單純為了破紀錄而破、抑或是蘊藏了什麼科學涵義?
天文學家們又是怎麼尋找、並且推論這些星系多遠的呢?

HD1 的影像。圖/Harikane et al.

時間推回到二十世紀初,當時的科學家們對宇宙大小到底是恆定或是膨脹爭論不休,其中,愛因斯坦(Albert Einstein)便是支持「宇宙穩恆態理論」的知名科學家。而支持膨脹宇宙的科學家們,一直到西元 1929 年,愛德溫.哈伯(Edwin Hubble)透過測量其他星系,發現了宇宙在膨脹,才為膨脹宇宙(也就是日後人們所說的「大爆炸理論 The Big Bang Theory」)注入了一劑強心針。

接下來的各種證據,如宇宙微波背景輻射、宇宙中元素的比例等,讓天文學家們越來越確信宇宙的年齡是有限的,並開始利用紙筆與超級電腦,來推測最早、也就是第一代星系及恆星的樣貌,並嘗試用望遠鏡,來尋找早期星系是否和我們預測的相符。

科學家是如何知道距離的呢?

天文學家並沒有一把長達「一百多萬光年」的尺,那他們是如何尋找,並且知道這些早期星系距離我們有多遠呢?讓我們把兩個問題分開,先來探討在宇宙學尺度下的距離是怎麼得到的。

由於我們知道宇宙在膨脹,而這些遠離我們的星系所發出的光,也會因為類似都卜勒效應的影響,有著紅移的現象。而越遠的星系遠離我們的速度越快,它們紅移值也就越大;而從實驗室中,我們知道每種元素都會發出特定的譜線,藉由測量到星系光譜中特定譜線的實際位置,並與那條譜線所該在的位置比較,就能夠計算這些星系的紅移值了。

而結合紅移值和其他測量到的宇宙學參數(例如哈伯常數),就可以從星系的紅移值計算出物理上的距離,比如大家常會看到的「光年」。

星系的紅移(Redshift)與它跟地球的距離(Distance)可以互相換算。圖/林彥興

那既然這樣,我們只要測量所有星系的光譜,不就能知道最遠的星系是哪一個了嗎?可惜事情並沒有這麼簡單。

一來,很多星系(尤其是越遠的星系)都很黯淡,難以測量光譜,二來,測量光譜實際上是又貴又耗時的。所以,以「尋找」的為目的,做單一波段的搜索通常是比較實際的作法。但若是使用單一波段,不就代表我們沒有光譜,這樣不就又不知道距離了?

Well yes, but actually no。大家應該都聽過盲人摸象的故事,透過觀測越多的波段,我們就越能描繪出實際上的光譜,再根據現有的理論模型,我們就可以利用光譜擬合來推論出這些星系的紅移值。

那要如何鎖定這些早期的星系?

天文學家總不可能對每個能測量到的星系都做很多波段的觀測,並且大費周章的利用理論模型去擬合他們。很多特定的望遠鏡(例如 ALMA、JWST)是要寫觀測計畫書和其他天文學家競爭觀測時間的,總要給出一個有力的理由,才能讓你的觀測計劃脫穎而出。

但還沒有資料之前,天文學家要怎麼知道哪個星系是最遠的?這便產生了一個「沒有工作要怎麼有工作經驗」的迴圈。怎麼辦呢?天文學家就是要想辦法,在已經觀測的深空資料庫中去尋找最遠的星系。

哈伯太空望遠鏡拍攝的「哈伯極深空 Hubble Extreme Deep Field」影像。藉由比較圖片中不同紅移的星系的性質,天文學家就能重建出過去百億年來星系的形成與演化歷史。圖/NASA; ESA; G. Illingworth, D. Magee, and P. Oesch, University of California, Santa Cruz; R. Bouwens, Leiden University; and the HUDF09 Team

而要怎麼在龐大的資料庫中尋找遙遠的星系呢?讓我們再次簡單回顧歷史。量子物理在十九世紀末至二十世紀初逐漸開始發展時,瑞士物理學家約翰.巴耳末(Johann Balmer)研究激發態的氫原子所放出的光譜,發現在可見光波段,氫原子只會發射一系列特定波長的譜線。隨後美國物理學家西奧多.萊曼(Theodore Lyman)也接著發現,氫原子從受激態回到基態時,會放出一系列位於紫外線波段的譜線,這些特定的譜線也被稱為萊曼系。

氫原子的各個譜線家族,由上而下分別是位於紫外線的萊曼系,位於可見光的巴耳末系,以及位於紅外線的帕森系。圖/Szdori, OrangeDog

而用來尋找早期星系的第一種方法,也是最主要的搜索方法,就與萊曼系關係密切。天文學家發現,宇宙中有一種名為「萊曼斷裂星系(Lyman-break galaxies; LBGs)」的星系,這種星系的光譜有一個很明顯的特徵,便是在特定的波長以下就幾乎觀測不到,原因是波長更短的光(更高的能量)都被星際物質(Interstellar medium; ISM)和星系際物質(Intergalactic medium; IGM)的中性氫的萊曼線系給吸收了。

而萊曼線系中波長最短的譜線(常稱為萊曼極限)約在 91.2 奈米,最長的萊曼 α 譜線則約在 121.6 奈米。只要透過兩個波長足夠接近的波段去尋找「在長波長有觀測到、但在短波段沒觀測到的天體」(稱為 drop-out),就可以粗略的估計星系的紅移。

舉例來說,如果我們要找紅移值為 9 的萊曼斷裂星系,只需要稍微長於和短於 1216 奈米的兩個波段,看看有沒有星系出現在長波段的影像中,但在短波段的影像中卻沒有出現,就有可能是在紅移值為 9 的萊曼斷裂星系。如果要找越遠的萊曼斷裂星系,只需要換波長較長的波段即可。

近日打破紀錄的最遠星系,也是透過 H-band drop-out(在波長 H 波段沒有觀測到,而較長的波段有)所找出的。

光譜drop-out的例子。圖/Harikane et al (2022)

上圖為近日打破紀錄的最遠星系 HD1 的 H-band drop-out,可以看到長波段:4.5、3.6 微米以及 Ks 波段都有偵測到,但在 H 波段(以及更短波長)的影像就消失不見了。藍色的光譜 z 值為 13.3 的萊曼斷裂模型,灰色的光譜則為可能的低紅移汙染,z=3.9 的巴耳末斷裂模型。

當然,這只能幫助科學家初步的篩選,而且此種方法會受到一些其他非早期星系的汙染。

舉例來說,上文提到氫原子除了萊曼系以外,還有回到第一激發態的巴耳末系。若只是單純地透過 drop-out,因為巴耳末系本身的譜線就比萊曼系來得紅,所以也有可能找到的是紅移值較小的巴耳末斷裂;此外,非常紅且充滿塵埃的星系也會在光譜上出現類似「驟降」的特徵。

當然,更多波段以及光譜的觀測,都有助於釐清這些可能的汙染。而除了上述的方法以外,萊曼 α 發射體(Lyman-alpha emitters; LAEs)、伽瑪射線暴的宿主星系、重力透鏡效應等,也是尋找遙遠星系的重要方法哦!

那麼,找出這些早期星系有什麼科學意義?

現代宇宙學理論認為,宇宙在早期曾經經歷過兩次相變。第一次是宇宙從炙熱的游離態降溫回到中性的氣態,被稱為宇宙的復合時期(Epoch of Recombination),也是大家熟悉的宇宙微波背景的起源;第二次(也是最後一次)的相變,宇宙中的中性氫變成了游離化的氫離子,這個相變的過程被稱為再電離時期(Epoch of Reionization; EoR)。

而目前認為,第二次這個電離的原因,是第一代恆星和第一代星系所發出的強紫外線光,把周圍的中性氫游離成氫離子。藉由尋找越來越多的早期星系,我們就能透過這些早期星系來描繪宇宙再電離時期的歷史,而這又能夠進一步驗證現代宇宙學理論是否正確。不僅如此,研究這些早期星系,可以讓我們對於星系演化的歷史更往前推,或是研究早期星系的超大質量黑洞,是如何長到這麼大等等的議題。

未來展望

在 2021 年底順利升空的詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope; JWST),其中一個主要的科學目標就是研究早期宇宙。如這篇文章一開始提到的「新的最遠的星系(HD-1)」,又如前一陣子發現的「最遠恆星 Earendel」,以及同一團隊的另一個紅移約 11 的星系,都在第一輪 JWST 的觀測計畫之中。

期待幾個月後 JWST 公布的第一批科學照片,能大幅革新我們對早期宇宙的認識。

參考資料(論文們)

延伸閱讀(科普文章)


數感宇宙探索課程,現正募資中!

Tiger Hsiao_96
9 篇文章 ・ 7 位粉絲
現為清大天文所碩二學生,即將赴美於約翰霍普金斯大學攻讀天文博士。