Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

狼王子可以吃巧克力,但狼爸不行?毛小孩與巧克力的愛恨情仇

Peggy Sha/沙珮琦
・2016/07/14 ・2158字 ・閱讀時間約 4 分鐘 ・SR值 560 ・八年級

-----廣告,請繼續往下閱讀-----

巧克力長居點心冠軍,但人類的心頭所好卻可能是毛小孩的致命毒藥?近日來,偶像劇《狼王子》中用巧克力餵哈士奇的橋段引起一片罵聲,但是為什麼毛小孩不能吃巧克力?

Siberian_Husky_with_Blue_Eyes
威風的「狼爸」VS「巧克力」,到底誰會是贏家?source:Wikimedia Commons

屬於神的食物

所有的巧克力都來自於可可樹,而這種熱帶植物的拉丁學名 Theobroma cacao 是由希臘文的兩個字「神」(theo)與「食物」(brosi)所組成,意為「屬於神的食物」 。

巧克力裡有著讓人著迷的化學物質,常常是情人節的送禮首選,但是,「毛小孩互助網」(Dog Help Network)就指出:「每年情人節都是狗因誤食巧克力而被送急診的高峰」。巧克力對於毛小孩可說是「生命不可承受之甜美」,而這正是因為這種備受推崇的人間美味裡面,含有一種味道微苦的植物鹼,也就是「可可鹼」,它對於某些生物而言是有毒的。

Chocolate02
巧克力真是令人又愛又恨的人間美味。 source:Wikimedia Commons

累了嗎?來點可可鹼吧

可可鹼是一種植物鹼,也是植物界中日常可見的化學物質。植物鹼是一種主要包含鹼性氮原子的化合物,通常也含豐富的碳、氫跟氧等原子。而可可鹼的化學式則是由 7 個碳原子、8 個氫、4 個氮和 2 個氧所組成。

-----廣告,請繼續往下閱讀-----

雖然生物鹼的化學式可能看起來中規中矩,但它們其實是反骨且變化多端的小東西。史上第一個(1804 年)被分離出來的生物鹼是罌粟花中的嗎啡,其他知名的生物鹼尚有古柯鹼(1860 年)、尼古丁(1828 年)、咖啡因(1820 年)、番木鳖碱(1818 年)。另外,也有一些藥用生物鹼,如抗癌藥長春新鹼、血壓藥蛇根鹼以及抗瘧疾的奎寧。

可可鹼在 1841 年於可可豆中被發現,它對於人類而言是種溫和的興奮劑,巧克力中的可可鹼和咖啡因等化合物有助於讓人提神醒腦。

2000px-Theobromin_-_Theobromine.svg
傷害毛小孩的罪魁禍首「可可鹼」。 source:Wikimedia Commons

多吃巧克力好處多多?

偶爾來點巧克力可能讓你飄飄欲仙,但如果一不小心上癮的話,你可能會直接成仙。美國的「全國危險物質資料庫」(National Hazardous Substances Database)便指出:「大量攝取可可鹼可能導致噁心和食慾不振,而人類的可可攝取量如果達到每日 50-100公克(0.8-1.5 公克的可可鹼),則會有發汗、顫抖和嚴重頭痛的情況。」若可可鹼造成嚴重反應,人們(通常是老人家)甚至需要住院治療。

2016/8/4編按:上文中「可可」攝取量曾誤植為「可可鹼」攝取量,經原文對比及相關文獻查詢後已修正,並於後附上可可鹼量以利對照。

而在其他的研究中也討論到,對於不同物種來說,攝取可可鹼的風險自然不一樣,我們可以用半數致死量 LD50(即 Lethal Dose, 50%)來判斷風險的差異。所謂 LD50,指的是「能殺死一半試驗總體之有害物質、有毒物質或游離輻射的劑量」。可可鹼對於人類的 LD50 約是 1000 mg/kg,而對於狗和貓則分別是 300 mg/kg 和 200 mg/kg。

-----廣告,請繼續往下閱讀-----
3331986_orig
狗狗體重(kg) vs 攝入量(g)達LD50 (300mg/kg) ,可點擊看大圖。Photo credit: LiFe 生活化學. CC BY-NC-ND 3.0

換言之,同樣是體重 10 公斤的貓和狗,2 公克的可可鹼就會造成一半的貓死亡、3 公克則會讓一半的狗死亡。而若是 以一般成年人的體重 60 公斤換算,得到之數據則為 60 公克。相對於貓狗,人類可承受更大量的可可鹼。根據美國愛護動物協會(ASPCA)的參考資料,一公克的半甜黑巧克力中約含有 5 毫克的可可鹼,也就是說,一般成年人如果吃下「12公斤」的半甜黑巧克力才需要擔心遭受生命威脅。

千面可可鹼

現今市面上可見許多不同類型的巧克力,其中,由於可可鹼在黑巧克力中濃度較高,因此,對於毛小孩來說,黑巧克力比白巧克力或牛奶巧克力更加「危險」。

此外,動物的體型和品種也會風險改變風險,而為了讓大家了解可可鹼對於不同毛小孩的影響,《國家地理雜誌》(National Geographic)特別製作了一個互動表格,方便寵物飼養者查詢個別的風險。至於為什麼只製作狗的版本呢?那是因為狗兒比貓更容易接觸甜品。

看到這邊你一定會想:萬惡的可可鹼!讓我們將所有巧克力都銷毀吧!

-----廣告,請繼續往下閱讀-----

千萬別衝動,因為這樣就沒有發胖的藉口了可可鹼其實是有好處的。事實上,由於人類代謝生物鹼的效率較高,所以少量的可可鹼能夠當作醫療用途,它能增加心跳率、同時擴張血管以降低血壓。它也能使氣管暢通,或許可以成為咳嗽用藥。此外,它也能當作利尿劑使用,以刺激尿液生產。最後,它也能和中樞神經相互作用(但效果不如咖啡因有效)。

享受吧!一個人的巧克力

看完了可可鹼的好處與壞處,你會發現自己還是可以狂嗑巧克力適量地來點巧克力犒賞自己,只要別效法偶像劇、拿手中的美食去餵狼爸,你的狼王子就不用擔心自己變成孤兒的風險啦!

source:台視《狼王子》
source:偶像劇《狼王子

原文出處:

參考資料:

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
Peggy Sha/沙珮琦
69 篇文章 ・ 390 位粉絲
曾經是泛科的 S 編,來自可愛的教育系,是一位正努力成為科青的女子,永遠都想要知道更多新的事情,好奇心怎樣都不嫌多。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

7
0

文字

分享

0
7
0
家中養貓狗,寶寶可能更健康?研究證實毛小孩有助於提升新生兒免疫力
PanSci_96
・2024/08/25 ・1454字 ・閱讀時間約 3 分鐘

  • 文/林芸寬、張愷丰、張庭瑀、郭亮均、林詠真 

最新研究:寵物與新生兒健康的密切關聯

現代家庭飼養寵物的比例逐年上升,貓狗已成為人類最親密的夥伴。農業部最新(2023)的資料發現,臺灣飼養貓狗的比例上升,家犬較上一期(2021)增加 19%;家貓較上一期增加 50%。然而,許多新手父母常擔心,飼養貓狗可能會影響新生兒的健康,像是引發呼吸道過敏等疾病,但近期的科學研究提供了相對令人安心的解答。 

最新研究指出,飼養貓狗,可能更能減少新生兒感染呼吸道疾病的機率。 圖/envato

科學家發現,飼養貓狗也許有益家庭中新生兒的健康。最新研究證實,家中貓狗不僅能增添樂趣,更能減少新生兒感染呼吸道疾病的機率。早在 2012 年,就有芬蘭研究團隊追蹤鄉村地區 397 名新生兒,自出生到一歲的健康狀況,發現有飼養貓狗家庭中的新生兒,較少感染呼吸道疾病。研究詳實記錄貓狗與新生兒的互動頻率,及其對新生兒健康的影響。

腸道菌相的力量:微生物如何提升寶寶免疫力

今(2024)年聖路易華盛頓大學兒科團隊發表在《Pediatrics》的最新研究,分析新生兒的就醫紀錄,並透過對父母的訪談,探討「親餵母乳」、「家中飼養貓狗」、「新生兒醫療需求」三者間的關係。研究發現,親餵母乳且家中有飼養貓狗的新生兒,出生六個月內對醫療服務的需求相對較低。華盛頓大學團隊推測,這可能是貓狗身上的微生物 ,增加了環境中微生物多樣性,並影響新生兒的免疫力。 

環境中微生物多樣性,與新生兒免疫力的關係為何?至今仍是未解的問題,但根據現有的研究,這很可能與新生兒體內「腸道菌相」的差異有關。「腸道菌相」是胃腸道中的微生物群落,由細菌、病毒和真菌組成,它們在我們的免疫系統發展中扮演了重要角色,特別是在生命的早期階段,對腸道的健康和功能有著深遠的影響。

-----廣告,請繼續往下閱讀-----

為何養狗的新生兒感染率更低?

2023 年的一項研究,進一步探討環境中微生物多樣性與新生兒免疫力之間的關係,揭示腸道菌相的多樣性在在影響了新生兒的健康。研究顯示,家中飼養狗的新生兒,其腸道中的梭桿菌、科林氏菌和瘤胃球菌等菌群明顯較多,這些菌種的豐富性有助於免疫系統的發育,也可能有助於減少新生兒過敏與氣喘的風險。

有趣的是,這份研究也提到,對於喝配方奶的新生兒而言,其腸道菌相的組成與養狗有關,「與狗接觸」可能成為他們獲取環境微生物的替代途徑,補充因缺乏母乳餵養而缺少的微生物,從而幫助免疫系統的發展。

小孩與狗的接觸,反而可能成為獲取環境微生物的途徑。 圖/envato

目前研究雖無法直接證實接觸貓狗可以增強免疫力,但可以確定的是,接觸貓狗的小孩,腸道內的微生物多樣性高,也比較不容易生病,新手父母可以不用太擔心養狗對小孩發育的影響。同時,與狗接觸還能改變嬰兒腸道中的微生物組成,這或許有助於減少呼吸道疾病的發生風險。

資料來源: 

  1. https://www.moa.gov.tw/theme_data.php?theme=news&sub_theme=agri&id=9418
  2. https://publications.aap.org/pediatrics/article/130/2/211/29895/Respiratory-Tra ct-Illnesses-During-the-First-Year
  3. https://www.nature.com/articles/s41390-024-03200-9
  4. https://onlinelibrary.wiley.com/doi/epdf/10.1111/cea.14303
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從分子科學中發掘創新美食組合:巧克力配黃瓜其實很不錯?——《料理滋味創意地圖》
積木文化
・2024/08/15 ・2489字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

水蜜桃配杏桃、草莓配覆盆子、香草配巧克力或巧克力配椰子,這些經典搭配你覺得如何?那榛果配巧克力、開心果配覆盆子、檸檬配羅勒呢?面對上述搭配,手作職人和食品加工製造商只會發表「大家還沒有準備好吃別的東西」、「如果我們做點不一樣的東西,銷售量就會不好」之類的意見。真的是這樣嗎?這個美麗的世界裡明明存在著幾百種不同的氣味,為何美食界就只滿足於那幾十種呢?當我們瞭解每一種蔬果、每一塊巧克力、每一樣香料都含有幾百種味道和氣味分子後,就會明白,我們錯過的可是不計其數的搭配可能!

每種食材都蘊含有幾百種味道和氣味分子。 圖/envato

氣味分子的秘密:從香草到薄荷的驚人連結

食物配對(foodpairing)是以化學為依據的食材搭配研究,其核心想法是把「擁有越多共同分子」的食物搭配在一起。此理論奠定在紮實的生理面根基上:人們感知到的味道,是透過味覺接收器的化學活化作用進而做出的解讀,若兩種食物的分子組成類似,就會對接收器產生相似的作用。

實際作法如下。首先,我們利用分子分離技術(例如:層析法、光譜測定法等)針對「人對滋味的感知」進行系統分析,進而獲得食物的「分子身分證」。這部分的困難之處,在於要檢測出微量存在的分子,不過數據資料庫也隨著分析設備的進步而擴增當中。

在比較來自印度洋和大溪地的香莢蘭(planifolia)或中美洲的大花香莢蘭(pompona)時,所有香草莢都呈現出很強的「香草醛」(vanilline)訊號。然而,把香草概括成香草醛——更糟的是,把香草醛概括成一種產業用的廉價合成分子「乙基香草醛」(éthylvanillne)——實在過於簡化。事實上,香草家族彼此間所有味道與氣味(甜、水果、花卉、酚類、煙草、甘草、茴香等香氣)的微妙之處,都是由低強度分子訊號所產生的;這些訊號有時很難被偵測或鑑定出來,但卻蘊藏著濃郁芳香,以及「波本香草」、「大溪地香草」等的專屬標記。

-----廣告,請繼續往下閱讀-----

許多研究結果使我們能確定大部分食物中的活性分子,像是維生素、礦物鹽和微量元素、味道分子、氣味分子、糖、蛋白質、脂肪物質等。全球研究者也分析了烹煮帶來的影響。我們根據這些研究成果,集各式香氣分子特色繪製圖譜,並以此為基礎開創出新搭配。

我們也從香水、化粧品和葡萄酒領域中擷取靈感。在香水產業,順 -3- 己烯醇(cis-3-hexen-1-ol,又稱葉醇)已被認為是葉綠素新鮮度的標記,而 1,5- 環二烯(1,5-octadiene)則是下層植被和蘑菇的標記;我們將它們歸類進幾項風味類別裡(果香、綠質、脂肪等),定出了「參考分子」。

其他還有像是羅勒、藍莓、黑醋栗或百香果中都存在桉油醇(1,8-cinéol)與辛醇(1-octanol),而黑醋栗、草莓、芭樂、百香果和哈密瓜則都含有丁酸乙酯。草莓-羅勒-黑醋栗、草莓-百香果、黑醋栗-黑莓-羅勒或哈密瓜-百香果-芭樂的組合,就是出於這種「自然而然」的前提。有些食物也扮演著「媒合者」的角色,以薄荷為例:如果說巧克力跟薄荷、黃瓜與薄荷都搭得起來,那麼何不試試巧克力配黃瓜?我們已經試過囉,結果非常搭!(請見第82頁)

我們能在料理中做什麼呢?

說得清楚些:食物配對並不是要去預測新的「食譜」,而是新的「搭配可能」。雖然無法保證這些新組合真的都適合品嘗,但絕對值得一試,而廚師也得發揮他所有的技藝,把可能的組合變成美味佳餚。前面也提到,我們感受到的味覺解讀主要來自食物分子與接受器的結合,卻並非僅止於此。嘴唇、舌頭、上顎等在整體感知中也扮演重要角色,最後則是在味覺上是否產生情緒感受。因此,廚師在食物質地上所下的功夫,得和對滋味的用心一樣多,多方嘗試如鬆脆、柔軟、鮮嫩、凝膠狀、融化的、冷的、溫的、熱的等不同條件。

-----廣告,請繼續往下閱讀-----

這本書裡提供所謂的「三元素組合」,但你可以自由將其中兩兩一組做搭配,或藉由其他調性接近的食材讓組合更多元。例如,當提到蒔蘿(又稱小茴香)時,你可以用茴香、茴芹(又稱大茴香)、孜然或所有其他具綠質/茴香味的產品代替。在三元素組合裡,我們常提供兩種主要食材,以及第三種可以被當成調味品或「加分潤飾」的選項;後者會讓餐點滋味演變出新方向。如果食物在配對上可以透過相似性發揮,做到酸味+酸味、綠蔬+綠蔬、油脂香氣+油脂香氣等組合,那麼在烹飪時,藉由把具揮發性及更為濃郁的香氣搭在一起,重新取得平衡便很重要。

測驗食物的搭配,並非只是要開發新食譜,而是尋找食物之間新的可能性。 圖/envato

味覺上的私密性:蔬果結構與被隔絕的香氣

準備食物、切割食物、選擇某個部位來食用及烹煮⋯⋯這些不僅只是料理美學的問題,有時確實是出於味道才做出的選擇,而且還希望能加強某一種芳香氣味,將它從另一種氣味中隔絕出來。藍莓、無花果或小蕪菁從上到下/從中間到外圍都有一種「獨特」味道,黃瓜或韭蔥就沒有這種特性。韭蔥的綠色部位(綠質草本香)和白色部位(綠質豆科植蔬氣息)非常不同,黃瓜的皮(綠質草本香)和果肉(柑橘香)也不一樣,而果肉本身更不同於黃瓜的「籽」(碘味)。

我們選擇藉由揭開這些食物的各種芳香面向來剖析這些食物,讓你可以在滋味上搭配出最佳組合,並且創造前所未有的協調感。

遠離韭蔥佐油醋汁,讓我們試一試白色部位的韭蔥佐開心果油,或是以綠色部位的韭蔥配百香果吧!

-----廣告,請繼續往下閱讀-----

——本文摘自 拉斐爾.歐蒙(Raphaël Haumont)、提耶里.馬克思(Thierry
Marx),《料理滋味創意地圖:法國材料物理化學專家聯手米其林主廚,15種香調、80種常見蔬果食材的氣味因子,探索 1,500 種創新風味搭配!》,2024 年 8 月,積木文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。