1

1
2

文字

分享

1
1
2

鑑識故事系列:創傷性主動脈剝離的車禍理賠

胡中行_96
・2023/05/08 ・1972字 ・閱讀時間約 4 分鐘

在德國一條限速100的路上,深色的川崎LE650C機車,以每小時約60公里的速度前進。右前方路口,一輛大紅的現代i10轎車突然探頭,左轉後旋即煞車,卻仍撞個正著。轎車車頭左邊損毀,前方擋風玻璃與駕駛座側窗間的A柱變形。時年46歲的機車騎士騰空飛起,高大的軀體翻滾過對方的引擎蓋,[註1]由另一側落地。[1]

左:警方蒐證照片;右:車禍模擬圖。圖/參考資料1,Figure 3(CC BY 4.0)

升主動脈擴張

在醫院裡,男子抱怨胸部、脊椎和手臂等多處疼痛。他的陰囊血腫;右邊第1至8根肋骨後方斷裂;[1]右側血氣胸(haemopneumothorax),胸膜腔中有血液和空氣;[1, 2]右後腹膜挫傷;兩邊手肘、左手掌和左手腕骨折;而且血壓偏高,但在住院期間逐漸穩定。[1]

男子回到家,依然頭疼、疲憊和失眠。意外的9個月後,他因為高血壓,而去做檢查。心臟超音波顯示升主動脈(ascending aorta)擴張,醫師懷疑是主動脈瘤(aortic aneurysm)。又過了3個月,男子還沒等到已經安排的手術,便不幸辭世。[1][註2]

升主動脈(ascending aorta)及周邊構造。圖/OpenStax College. ‘Cardiac anatomy’. Radiopaedia.org. (CC BY 3.0)

驗屍

男子死後驗屍的時間,距離車禍已有1年左右。[1]從解剖可見其心臟外面的心包,累積了800毫升的血液;[1, 3]心臟過重,左心室的室壁肥厚;而且主動脈撕裂,部份血管壁的層與層分開。法醫綜合以上,判定他死於剝離的主動脈破裂後,所導致的心包填塞(pericardial tamponade)[1]不過,無法確定升主動脈的擴張,算是受傷引起的假性動脈瘤(pseudoaneurysm),還是血管壁無力且腫大的真性動脈瘤(true aneurysm);[1, 4]只知道破裂流出的血液,後來使心臟壓力過大,而無法正常運作。[1, 3]同時,放射科醫師重新檢視車禍後的電腦斷層影像,注意到當初病歷沒有描述的特徵:有一道鐮刀狀的東西,圍繞著升主動脈,意味著該處管壁血腫。[1]

-----廣告,請繼續往下閱讀-----

保險理賠

胸部創傷引起的慢性主動脈剝離和假性動脈瘤,並不常見。男子過世後,保險公司起先不願理賠。[1]耶拿大學附設醫院(Jena University Hospital)的法醫與放射部門,以及擅長行車安全的德凱集團(DEKRA)專家,於是合作提出下列論點,來證明車禍和死亡的關係:[1, 5]

  1. 交通事故重建:他們利用警方的蒐證照片和行車速度等有限資料,在PC-Crash事故重建軟體中,模擬意外發生時,男子從機車座位、轎車引擎蓋,到地面的整個位移路徑(如圖)。由此推論手臂、肋骨和腹部等處受傷的原因,是兩車衝撞、與地面撞擊,還是戳到機車手把等。[1]
  2. 撞擊速度:當人體遭到高速撞擊,胸腔變形,主動脈壁的內膜與中膜可能剝離,血液便在它們之間累積。研究指出,雙方行車的相對速度高於每小時50公里時,會明顯增加汽機車衝撞後主動脈剝離和破裂的機會。[1](請注意本案的兩方車輛幾乎呈直角,而非前後追撞,所以計算相對車速時,不該拿數據互減。)另外,在每小時24到37公里的台車撞擊測試中,17具受試的屍體,有5具傷到主動脈。[6]根據警方的筆錄,男子表示他騎乘的速度約每小時60公里;而專家團隊則認為此處應以每小時55公里來考量。[1]
  3. 創傷性主動脈剝離:曾有文獻記載8起創傷性主動脈剝離的個案,診斷時間點的範圍甚廣,從意外後7天至18年都有。一名20歲的駕駛,因車禍而左胸瘀青疼痛。X光片上看來沒有骨折,[1]但血液在胸膜腔中累積,即血胸(haemothorax)。[1, 2]約莫2年後,他才被診斷出假性動脈瘤。[1]也就是說,車禍對主動脈的影響,不一定會馬上浮現。
  4. 高血壓:高血壓既為主動脈剝離的危險因子,也可能是車禍使主動脈受傷後的症狀,所以無法單從這點,斷定前因後果。然而,電腦斷層影像上的那個鐮刀的形狀,似乎是急性主動脈創傷的結果。此外,男子的主動脈沒有中膜壞死(medial necrosis)等,高血壓造成剝離時的相關問題。[1]

保險公司在瞭解跨領域專家的上述分析後,終於同意理賠。[1]

用PC-Crash事故重建軟體,模擬意外時男子的位移。圖/參考資料1,Figure 4(CC BY 4.0)

  

備註

  1. 根據驗屍報告,男子身高184公分,體重約90.4公斤。[1]論文未提及從意外發生到死亡之間的一年,他是否有體重變化,所以此處僅概略描述。
  2. 個案報告的作者不曉得男子為何沒有馬上開刀。[1]

參考資料

  1. Muggenthaler H, Bismann D, Eckardt N, et al. (2023) ‘Delayed occurrence of traumatic aortic dissection? Biomechanical considerations and literature’. International Journal of Legal Medicine, 137, 353–357.
  2. Hansen-Flaschen J. (11 APR 2018) “Hemothorax“. Encyclopedia Britannica.
  3. Cardiac Tamponade’. (22 OCT 2021) Cleveland Clinic.
  4. Lopez-Jimenez F. (19 OCT 2022) ‘Pseudoaneurysm: What causes it?’. Mayo Clinic.
  5. DEKRA History’. DEKRA. (Accessed on 29 APR 2023)
  6. Muggenthaler H, Bismann D, Autsch A, et al. (2023) ‘Stabbed by motorcycle? Reconstruction of an unusual traffic accident’. International Journal of Legal Medicine, 137, 601–607.
文章難易度
所有討論 1
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
微創主動脈支架手術,精準治療主動脈剝離與主動脈瘤
careonline_96
・2023/05/02 ・2174字 ・閱讀時間約 4 分鐘

「醫師,我爸剛剛在家突然說肚子很痛,然後就倒在地上。」家屬焦急地說明事發經過。70 多歲的老先生虛弱地躺在急診推床上,顯得很不舒服。

「現在的血壓 68/40mmHg!」護理師大聲回報數據。

「你父親有什麼疾病嗎?」醫師問。

「有高血壓,但是不願意吃藥。」家屬補充說明,「很常抽菸,一直都戒不掉。」

-----廣告,請繼續往下閱讀-----

老先生的腹部劇痛、明顯鼓脹,血壓又很低,代表可能有大量內出血的狀況。林口長庚心臟外科教授陳紹緯醫師指出,緊急電腦斷層檢查顯示,患者有顆腹主動脈瘤,而且已經破裂,造成大量內出血。

經過討論後,家屬決定選擇微創主動脈支架手術。陳紹緯醫師回憶,緊急放入主動脈支架後,患者的狀況漸漸穩定下來。因為幸運撿回一條命,患者的態度變得相當配合,願意定期回診,把血壓控制好,甚至還成功戒菸!

主動脈與心臟相連,是負責將血液送往全身的大動脈。陳紹緯醫師指出,主動脈可以分為幾個部分,一開始是往上的「升主動脈」,接著經過「主動脈弓」,然後是向下延伸的「降主動脈」,穿過橫膈膜到達腹腔後稱為「腹主動脈」。

常見的主動脈疾病包括主動脈剝離、主動脈瘤。陳紹緯醫師說,主動脈剝離在亞洲人較常見,主動脈瘤西方人較常見。

-----廣告,請繼續往下閱讀-----

談到「主動脈剝離」,要先了解主動脈的結構。陳紹緯醫師解釋,主動脈壁的結構可分為內層、中層、外層,當內層破損時,血液可能灌入主動脈壁內,將主動脈壁撕裂、撐開,形成「假腔」。假腔會對血流能夠通過的真腔造成壓迫,而影響通往各個器官的血流。

主動脈剝離發生時,患者會突然感到非常劇烈的胸痛,從前胸痛到後背。陳紹緯醫師說,根據剝離的位置可將主動脈剝離分成「甲型主動脈剝離(Type A)」與「乙型主動脈剝離(Type B)」,剝離範圍包括升主動脈稱為「甲型主動脈剝離(Type A)」,剝離範圍僅降主動脈稱為「乙型主動脈剝離(Type B)」。甲型主動脈剝離是威脅性命的急症,死亡率相當高,很多患者會在發作時猝死。

「主動脈瘤」並不是腫瘤,陳紹緯醫師說,我們的主動脈會長期承受血流衝擊,當主動脈壁退化,便可能漸漸膨大。主動脈各處都有可能形成主動脈瘤,像氣球般越脹越大的主動脈瘤,破裂的風險會越來越高。主動脈瘤的危險因子包括老年人、高血壓、抽菸、家族病史等。

治療主動脈疾病,化解危機

處理主動脈疾病時,一般會根據病灶的位置來採取不同的治療策略。

-----廣告,請繼續往下閱讀-----

甲型主動脈剝離(Type A)或升主動脈瘤的治療方式建議採取標準外科手術,切掉剝離或脹大的主動脈,然後換上一段人工血管。陳紹緯醫師說,乙型主動脈剝離(Type B)或腹主動脈瘤可考慮使用微創主動脈支架手術,若發生在降胸主動脈,可使用胸主動脈支架;若發生在腹主動脈,會使用 Y 型支架。

主動脈支架手術是微創血管內治療,近年來已發展成熟並普遍運用於主動脈疾病。陳紹緯醫師說,藉助先進影像系統的導引,可在主動脈內放置人工覆膜支架,讓血流走在主動脈支架內,隔絕病變的主動脈,如此一來便能避免主動脈破裂、剝離而造成致命併發症。

微創主動脈支架手術的作法是從患者的腹股溝穿刺,將導線延伸到病變的主動脈,然後利用導管傳送系統,將主動脈支架精準地置放於主動脈病灶處。

陳紹緯教授說,相較於傳統開胸、開腹手術,微創主動脈支架手術能大幅降低手術風險,因為術中失血量較少、傷口很小,讓患者術後疼痛較少、恢復期較短。

-----廣告,請繼續往下閱讀-----

微創主動脈支架手術後,有可能發生滲漏或支架移位,患者一定要定期回診追蹤檢查。陳紹緯教授叮嚀,平時請保持良好的血壓控制,改善生活習慣,才能降低疾病復發的危險。由於每個人的年紀、解剖構造、手術風險都不相同,醫師會在審慎評估、詳細討論後,擬定較合適的治療策略。

貼心小提醒

常見的主動脈疾病如主動脈剝離、主動脈瘤,較容易出現在男性、年紀較大、高血壓、抽菸、有家族病史的族群。

陳紹緯提醒,主動脈剝離或主動脈瘤破裂往往是突然發生且相當致命,大家最好把菸戒掉,把血壓控制好,才能降低可能的風險。具有危險因子的民眾可以到心臟血管外科就診,接受專業的評估,及早介入才能化解危機!

1

3
0

文字

分享

1
3
0
「車禍」成為全球年輕人的主要死因?我們能做些什麼?
椀濘_96
・2022/09/23 ・2415字 ・閱讀時間約 5 分鐘

交通事故幾乎天天在台灣各地出現,加上近年受疫情影響,外送產業蓬勃發展,機車騎士經常面臨事故的風險。

下班尖峰時間的摩托車潮。圖/wikipedia

台灣年輕人車禍事故逐年增加

根據交通部道路交通安全督導委員會的官方數據顯示, 18 至 24 歲年輕人的普通輕型及重型機車事故,有逐年增加的趨勢。

台灣歷年車禍事件數與死亡人數折線圖。圖/作者

公路總局統計,在台灣領有機車駕照的人數多達 1497 萬人,其中 18 至 25 歲的年齡層中,持有機車駕照約 142 萬人,占總數將近 1 成。

學生與青年上班族大多以機車作為通勤工具,隨著持有駕照的人數增多,發生車禍事故的機率也跟著提升,年輕人騎乘機車相關的傷亡事故居高不下,這對於台灣人口高齡化現象有著相當程度的影響。

台灣青年多以機車作為通勤工具,相關的傷亡事故提高,對高齡化有一定程度影響。圖/Pexels

不只是台灣,全球年輕人正面臨車禍的危害

「全球交通事故正在剝奪年輕人的生命,並且持續成長,未有減緩。」

根據澳洲新南威爾士大學雪梨分校的一項新研究表明,與交通相關的死亡和傷害是全球年輕人的最大殺手——造成的死亡人數超過了疾病或其他傷害所造成的總數。

-----廣告,請繼續往下閱讀-----
全球交通事故剝奪年輕人的生命,造成的死亡人數超過了疾病和其他傷害。圖/Pixabay

該研究結果發表於專業期刊 The Lancet Public Health《刺胳針全球衛生》上,為首次對全球 10~24 歲年輕族群進行統計分析,討論因交通意外傷害相關發生率及死亡率的綜合趨勢。

研究團隊以 2019 年全球疾病負擔(Global Burden of Disease, GBD)[註1] 研究的最新數據,依照國家、性別、年齡組成(10~14 歲、15~19 歲、20~24 歲)、社會人口指數(Socio-Demographic Index, SDI;社會和經濟狀況密切相關的匯總指標)分層與人口健康狀況,分析了過去 30 年中 204 個國家的青少年,因交通事故意外傷害造成的死亡和失能調整生命年(Disability-Adjusted Life Years, DALYs;為測量疾病對人所造成影響的單位,指一個人因罹病而早夭或失能,所造成的生命損失年數)[註2],也就是:青少年因車禍而導致死亡或失能,所損失的生命年數。

註 1:全球疾病負擔(Global Burden of Disease, GBD)之研究始於 1991 年,由世界衛生組織、世界銀行及哈佛大學共同開發,以醫療經濟學的原理與方法,配合倫理學之公平原則,發展出 DALYs 新指標來測量疾病負擔。from 衛生福利部疾病管制署
註 2:死亡和失能調整生命年(DALYs) 相當於生命損失人年數(Years of Life Lost, YLLs)與失能損失人年數(Years Lived with Disability, YLDs)的總和。from 衛生福利部疾病管制署

結果發現,儘管自 1990 年以來交通傷害死亡率下降了三分之一,但在一些國家,青少年因道路交通事故造成的死亡人數仍在增加

該論文主要作者,新南威爾士大學醫學與健康學院人口健康學院研究員,艾米佩登博士指出:「特別是在低收入和中低收入國家,與道路事故傷害相關的死亡和 DALYs,其絕對數量大幅增加,這表明有越來越多人口面臨受傷的風險。」

-----廣告,請繼續往下閱讀-----

「車禍」問題,需要有更多的關注

該研究也指出,高收入國家近十年來的因交通事故造成的傷害和死亡率,其降低的速度有所減緩;與 1990 年至 2010 年間,每年下降 2.4% 的相比,2010 年至 2019 年間每年僅降低 1.7%。但也有像是澳洲這樣的高收入國家,在過去的 10 年裡,道路交通傷害率的下降基本上是停滯不前的,這也說明該國家對此議題缺乏關注。

對於低收入國家而言,交通事故所帶來的傷害也逐年嚴重,死亡人數的比例從 1990 年的 28%(271,772 人中的 74,713 人)增加到 2019 年的 47%(214,337 人中的 100,102 人)。

佩登博士提到:「低社會人口指數 (Low socio-demographic index)國家,正在應對快速城市化所帶來的挑戰,因此,年輕人面臨更大風險的道路交通和其他類型的傷害。」

車禍問題需有更多關注。圖/GIPHY

為了道路安全,我們應該採取行動

「讓道路更安全並不一定需要激進的解決方案,只需要做出更強有力的承諾來促進安全的使用道路行為。」

與其他青少年死亡原因相比,在預防道路交通傷害的資源仍然不足,與全球其他公衛議題相比,車禍的問題缺乏關注與改善的資金

-----廣告,請繼續往下閱讀-----

正式駕照、最低飲酒年齡、繫安全帶和配戴安全帽等相關法規規定,以及現在學校普及的道路交通安全教育,都已證實可以有效的減少道路交通事故傷害。

接下來我們要做的應該是促進積極的交通基礎設施,並將兒童和青少年的道路安全需求放在首位。進一步策畫一些簡單、負擔得起且行之有效的措施,來減少車禍事故;在加強全球道路安全的同時,進一步保護青少年遠離可預防的傷害。

藉由一些簡單且行之有效的措施,來減少沒有被應用或執行的道路交通傷害,進一步保護青少年。圖/Pixabay

參考資料

  1. Road injuries are killing young people, and it’s hardly slowing down—ScienceDaily
  2. Amy E Peden et al. Adolescent transport and unintentional injuries: a systematic analysis using the Global Burden of Disease Study 2019. The Lancet Public Health, 2022; DOI: 10.1016/S2468-2667(22)00134-7
  3. 台灣機車事故年奪數百性命,恐加劇少子化國安危機?
  4. 交通部道路交通安全督導委員會—道安資訊查詢網
所有討論 1