Loading [MathJax]/extensions/tex2jax.js

0

1
1

文字

分享

0
1
1

人體如何燃燒脂肪?──《知識大圖解》

知識大圖解_96
・2015/12/19 ・899字 ・閱讀時間約 1 分鐘 ・SR值 541 ・八年級

人體內有數十億個脂肪細胞,形狀不一地夾在皮膚與肌肉組織之間。然而,決定體重的並不是脂肪細胞的數量,而是這些細胞的大小;脂肪細胞的大小會根據其所儲存的脂肪多寡而變動。

當你嘗試減重時,這些積聚在體內的脂肪沉積體會如何被分解呢?簡單來說,這會牽涉一種生化程序,透過轉換脂肪細胞中佔據空間的分子而獲得能量。

38
本圖節錄自《How It Works知識大圖解 國際中文版》第15期(2015年12月號),全見版請點擊本圖放大。

一旦你開始提高活動量,並且降低卡路里的攝取(卡路里代表特定食物中所含的潛在能量),整個生化程序就開始了。當你攝取的卡路里量低於燃燒所消耗的量,人體便會產生脂肪動用激素(fat-mobilising hormone)來因應能量的缺乏;脂肪動用激素會示意重要的酵素開始分解脂肪,並將脂肪儲備起來,以提供人體所需的能量。

這個生化程序中的關鍵酵素是脂酶,脂酶會刺激脂肪細胞,使脂肪細胞釋出三酸甘油酯(triglyceride,脂肪儲存於脂肪細胞內的形式)。每個三酸甘油酯分子接著會分解成一個甘油分子與三個脂肪酸分子;甘油也會進一步被肝臟分解以釋出能量,而游離的脂肪酸分子則直接透過血管被運送到肌肉。脂蛋白脂酶(lipoprotein lipase)這種酵素則會幫助肌肉細胞吸收脂肪酸,透過燃燒這些脂肪酸,可以得到更多能量。

-----廣告,請繼續往下閱讀-----

皮膚鬆弛

皮膚具有驚人的彈性,因此在減重之後,多數情況下皮膚仍會回彈、重新緊貼在新身材上。這都要感謝膠原蛋白,這種蛋白質能使皮膚伸縮自如,也因此膠原蛋白對成長階段來說非常重要。不過膠原蛋白的纖維會隨著時間變得越來越脆弱,讓我們在年齡漸長後出現皺紋。

體重突然增加或快速成長時,膠原蛋白的生成速度也可能不夠快,於是造成皮膚過度伸展,形成可見的妊娠紋或肥胖紋。相反地,一旦體重大幅或快速地下降,也可能留下懸垂的皮膚,唯有透過外科手術才能去除。

因此,千萬別以速成減肥法做為甩掉贅肉的方案。緩慢降低體重,並搭配均衡飲食與運動,才能使皮膚鬆弛的風險降到最低。

 

 

本文節錄自《How It Works知識大圖解 國際中文版》第15期(2015年12月號)

-----廣告,請繼續往下閱讀-----

更多精彩內容請上知識大圖解

-----廣告,請繼續往下閱讀-----
文章難易度
知識大圖解_96
76 篇文章 ・ 12 位粉絲
How It Works擅長將複雜的知識轉化為活潑有趣的圖解知識,編輯方式以圖像化百科呈現,精簡易懂、精采動人、深入淺出的圖文編排,讓各年齡層的讀者們都能輕鬆閱讀。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
想要減肥或控制體重?先散步評估一下吧!——《大自然就是要你胖!》
天下文化_96
・2024/07/02 ・1877字 ・閱讀時間約 3 分鐘

恢復初始體重與延長健康壽命

身體的能量大多由細胞裡的能量工廠產生,也就是粒線體。這種能量以 ATP 的形式存在,用來驅動體內種種的生物過程,維持新陳代謝。攝取果糖後,身體會產生尿酸,對能量工廠造成氧化壓力,導致 ATP 產量減少,最後果糖所含的熱量會以脂肪和肝醣的形式儲存在體內。這個過程能幫助我們儲備能量,以因應食物不足的狀況。

生存開關活化所產生的氧化壓力,可能對細胞內的能量工廠和身體其他部位造成損害。在自然界中,這種氧化壓力通常為時短暫,能量工廠很快就會恢復正常運作。相對之下,現代人體內的生存開關卻是全年無休、火力全開。原本是為了生存而暫時抑制粒線體的能量產生,沒想到卻變成一種永久的枷鎖,並帶來嚴重的後果。

長期暴露在慢性氧化壓力中,會使能量工廠的結構發生變化。粒線體會變小,功能下降。即使在生存開關並未活化的狀況下,粒線體產生的能量也不復以往。這等於重新設定了新陳代謝的基礎值,降低能量的產生和使用,隨之而來的便是體重增加。因為身體現在認定減重前的體重才是正常,所以將體重減輕視為生存威脅,於是調整新陳代謝速率做為因應。這時,你的新陳代謝就成為你的敵人!

長期暴露在慢性氧化壓力中,粒線體會變小,降低能量的產生和使用,隨之而來的便是體重增加。因為身體現在認定減重前的體重才是正常,所以將體重減輕視為生存威脅,於是調整新陳代謝速率做為因應。圖/envato

生存開關長期處於活化狀態,不只會影響體重和能量。現在更有證據指出,慢性或反覆出現氧化壓力,也會導致人體老化,於是皮膚出現皺紋,內臟器官緩慢磨損。所有的食物攝取,多少都會對能量工廠造成氧化壓力(第一章曾說過,減少熱量攝取可能延長壽命,原因可能正是在此)。然而,與其他營養相比,攝取果糖對粒線體造成的氧化壓力要大得多。

-----廣告,請繼續往下閱讀-----

在我看來,若能在粒線體受到永久損傷之前,及早對肥胖症展開治療,效果最好。的確,我個人的經驗是,兒童和青少年的肥胖症比較容易治療,只需要改變飲食,減少攝取會活化生存開關的食物,因為年輕人仍然擁有大量功能正常的粒線體。相較之下,要治療肥胖症的長期患者挑戰就高得多,因為他們的能量工廠長期承受慢性的氧化壓力。然而,任務仍然可能達成,關鍵在於恢復粒線體。

要治療肥胖症,就得增加粒線體的產能

我們被「鎖定」在高體重和低能量的狀態,這聽來真是令人沮喪,但這種狀態並非不能改變,能量工廠是可復原的。基本上有兩大方法,首先,盡量減少對能量工廠的損害,讓它們有時間自然恢復。這種方法主要著重在中止生存開關持續活化。其次是積極修復能量工廠,甚或是增加生產粒線體,以彌補失去的數量。

評估粒線體的健康,你可以從散步開始!圖/envato

在討論如何達成這兩項目標之前,我想先提供簡單的方法,讓你評估自己能量工廠的健康狀況:觀察自己的自然步態,也就是平時的行走速度。你可以記錄自己繞行附近一個街區的時間,同時佩戴計步器計算步數,然後算出每秒行走的步數和距離。另一種方法更簡單,只要記錄繞行街區的時間,將現在的時間與之後的時間進行比較,就能判斷粒線體的健康狀況是否改變。重點在於測量時要採行自然步態;換句話說,行走時請勿故意加快腳步。正常的步行速度約為每秒 1.2 公尺,但每秒 0.6 至 1.8 公尺都算正常範圍。我建議把目標設定為每秒 1.2 公尺以上。長期超重的人步行速度通常較慢,平均約為每秒 0.9 公尺。

研究顯示,自然步行速度與粒線體的品質呈現正相關,步行速度較快的人壽命較長,整體健康狀況也較好。步行速度減慢可能是因為骨骼肌疲勞增加,或 ATP 濃度低。值得注意的是,年輕超重者的步行速度往往與其他年輕人相似,但隨著年齡增長,超重者和正常體重者之間的步行速度差異會愈來愈大。

-----廣告,請繼續往下閱讀-----

我鼓勵你去散步,評估你的自然步行節奏。這可幫助你深入了解減肥和維持體重的難易程度,不僅如此,長期監控自己的自然步行速度,還有助於評估體重控制的整體進展。

——本文摘自《大自然就是要你胖!》,2024 年 06 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

1
1

文字

分享

0
1
1
台灣第一人 邱文泰獲選國際顯微攝影競賽評審
顯微觀點_96
・2024/06/28 ・4750字 ・閱讀時間約 9 分鐘

本文轉載自顯微觀點

曾擔任 2023 Taiwan 顯微攝影的評審、成大生醫光學影像核心平台主持人邱文泰,被選為 2024 IOTY 的亞太區評審代表,是台灣第一人!

細胞狗仔隊 專拍細胞不為人知的一面

「我是細胞生物學的愛好者,我們實驗室團隊是細胞生物學的狗仔隊,專拍細胞不為人知的一面。」成大生醫工程系主任邱文泰,帶著笑容自我介紹。

邱文泰專精於活細胞分子造影、光遺傳學以及變化多端的細胞內信使:鈣離子對細胞生理機能的調控。他與團隊近年的重要研究之一,是以光遺傳學精密調控細胞內鈣離子濃度波動,觀察鈣離子如何影響細胞遷移(cell migration)。

20 世紀後半葉,生醫學界逐漸發現鈣離子是功能繁複的細胞訊息傳遞者,可調控授精、細胞增生與死亡、學習與分化,也參與細胞遷移、活化特定轉錄因子。

-----廣告,請繼續往下閱讀-----

傳統生化科技如藥理、化學、物理方法,無法在時間、空間上精準調控與觀測活細胞內的鈣離子變化。細胞如何讀取鈣離子濃度波動(calcium oscillation)訊號,如頻率、幅度等,還是一個待解的謎題。

以光操縱鈣離子通道 解碼鈣離子波動訊號

邱文泰團隊運用光遺傳學(Optogenetics)技術,將人為編輯過的光敏感鈣離子通道蛋白 CatCH(calcium translocating channelrhodopsin)基因轉染(transfect)進入人類骨肉瘤細胞(U2SO)。位在細胞膜的 CatCh 蛋白一旦吸收藍光,就會開啟鈣離子通道,讓胞內的鈣離子濃度快速提升。

光線停止照射,CatCh 就不再輸入鈣離子,細胞原本的平衡機制開始作用,將鈣離子排至胞外(或內質網中),造成細胞質的鈣離子濃度起伏。因此實驗團隊能精密調整骨肉瘤細胞的鈣離子波動,並結合螢光顯微術觀測細胞狀態。

他們以大量表現 Catch 的骨肉瘤細胞(U2OS-CatCh)作為鈣離子波動的主要實驗對象,以藍光照射細胞,調整細胞內鈣離子濃度波動的幅度、週期、頻率、時間等參數。

-----廣告,請繼續往下閱讀-----

在模擬傷口癒合的實驗中,培養皿中間表面被留下一道未被細胞覆蓋的空地,兩側細胞會逐漸往中間遷移、會合,直到將空地填滿。此細胞遷移的過程與人體傷口癒合相似,也與癌細胞在人體擴散的機制有關。

細胞遷移需要細胞骨架與細胞內諸多蛋白質分子聯合運作,參與的分子間還會彼此調控、影響。不同的細胞內訊息分子(即第二信使,second messenger)分別調控不同的蛋白分子路徑。鈣離子在其中的角色眾說紛紜,科學界對詳細機制的認識猶如管中窺豹。

邱文泰團隊發現,對 U2SO-CatCh,0.01 赫茲的藍光照射可帶來顯著高於對照組的細胞遷移量。在 0.1 赫茲的光照下,細胞遷移量卻比沒有照光的對照組更低。

參與細胞遷移的重要轉錄因子 CREB, NFAT, NF‐κB 也由不同強度的鈣離子波動活化,NF‐κB 由較低的鈣離子濃度活化;NFAT 由較高的鈣離子濃度活化;而高或低的鈣離子濃度波動都可以活化 CREB。

-----廣告,請繼續往下閱讀-----

他們的研究不僅印證鈣離子波動可調節癌細胞增生、遷移的理論,也發現鈣離子波動頻率、幅度並非愈高就愈有效。若以 10 赫茲的藍光照射 U2SO 培養皿一個小時,90% 的細胞會死亡,死亡率遠高於波動頻率較低的組別。

透過光遺傳學技術對細胞進行時間、頻率的精準刺激,邱文泰團隊發現鈣離子作為細胞第二信使,能攜帶的訊息比過往的想像更加龐大。也推進了鈣離子訊息的解碼技術,在癌症研究、轉錄因子活化機制研究上,都可能帶來幫助。

堅持研究活細胞,以影像探索未知

熱衷細胞生物學的邱文泰說,「要當細胞狗仔隊,就要有好的相機大砲,才拍得到細胞生活的秘密。」他認為,現代細胞生物學必須要以活細胞為研究材料,才能深入了解細胞生理機制。而拍攝細胞生理活動的顯微設備,是細胞生物學家依賴的重要工具。

邱文泰早期拍攝的「藍眼」:以 FRET(Fluorescence resonance energy transfer)技術拍攝 STIM1 分子和細胞膜上 Orai1 分子結合,帶螢光蛋白的目標分子結合時發生能量轉移,STIM1 會將螢光能量轉移給 Orai1,使其發出橘色螢光。

邱文泰認為,現代的細胞與分子生物學不同過往,需要以影像證據說服科學家同儕。研究發表的依據不再是間接量化的座標點、折線圖、柱狀圖,他說「現在顯微影像是不可或缺的,甚至立體影像才是學術發表的標準。」

-----廣告,請繼續往下閱讀-----

邱文泰分析,隨著類器官(organoid)、層光顯微術(light sheet)、生物組織澄清化(tissue permeabilization)等顯微技術逐漸成熟,精密顯微影像會在生醫研究領域被視為理所然的科學依據。

回想早期接觸的生物學技術,邱文泰笑說,「我那時的研究生都有一件實驗用『戰袍』,上面遍佈黑色斑點,是在暗房被顯影劑沾到的工作痕跡。現在的實驗都用數位影像,研究生恐怕連底片長什麼樣子都不知道。」

邱文泰回憶,數位顯微影像甫推出的時候,學術圈同儕普遍擔心著名期刊不接受新式的數位影像。「誰知道兩三年後,再也沒有人在暗房洗底片!接下來的細胞生物學家,實驗衣都很潔白。」

邱文泰說明,生物學研究會隨著技術演進,愈必要的技術,帶來的改變愈快。他舉例道「傳統的顯微影像以 2D 形式為主,對生物體的模擬有限。3D 影像將是未來生物學研究不可避免的趨勢。」

-----廣告,請繼續往下閱讀-----

不僅植入螢光蛋白、使螢光蛋白遺傳、分子標定等技術成為細胞生物學研究的基本配備,科學家還需要精密的顯微設備才能拍好實驗成果。

生醫光學影像核心平台 共享儀器降低門檻,帶來交流

邱文泰說,儀器的成本與操作的確會形成實驗門檻,因此成大醫學院營運生醫光學影像核心平台,聚集校內學者的貴重光學儀器,由專門經理、技術員負責保養、補充、操作事宜。每個實驗室的成員,甚至附近學校的師生、生技廠商都可以申請使用,僅需負擔相當低廉的費用。

研究生在生醫影像核心平台合作使用倒立雷射共軛焦顯微鏡。

平台內許多貴重儀器都是沈孟儒(成大藥理所特聘教授,現任成大校長)、邱文泰等學者主動提供,他們也樂意無償提供使用教學。擔任平台主持人的邱文泰說,共用貴重儀器可以提升學術圈的整體利益,不但儀器的價值得以充分發揮,研究者們也可以透過平台交流彼此的技術專長。

他舉例道,「最直接的方法,就是看誰最常登記使用特定儀器,就表示他很擅長那項技術,需要的時候可以直接請求合作。」若儀器都留在各自的實驗室裡,這種交流學習的機會無法出現。研究者也不容易嘗試不同儀器的功能,討論不同儀器的優劣長短。

-----廣告,請繼續往下閱讀-----

最嚴格的細胞生物學,點燃學術興趣

邱文泰說,自己出身苗栗鄉間,選填大學志願時沒有明確志向,只想離家遠一點。他覺得自然與生物是成長過程中熟悉的一部分,就選填了大多數的生物學科系。就讀成大生物學系,是分發之下的偶然。

在成大生物學系,周遭同學紛紛進入實驗室做專題,邱文泰卻直到大三還沒建立學術志向。直到的必修課「細胞生物學」結束後,他對實驗的興趣才被點燃。那門課由甫從美國歸來的陳虹樺老師任教,教學與考試都相當嚴格緊湊。

邱文泰回憶當年的細胞生物學課說,「期中考和期末考要寫滿四個小時,而且幾乎全部是申論題。考前壓力很大。」但也因為如此嚴格的學習要求,他踏實地讀完課本上每一個字。通過期末考後,心中充滿成就感,決定加入細胞生理相關的實驗室進行專題研究。

融合美式獨立與日式嚴謹,潛移默化的學術人格培養

求學階段多在成大吸收養分,現在也致力培育成大學生的邱文泰,認為對自己影響最深刻的,是湯銘哲(現任成大生理所特聘教授)和沈孟儒兩位學者的風範。

-----廣告,請繼續往下閱讀-----

邱文泰說,「湯銘哲老師的心胸開闊,重視自由探索與獨立研究,可說是典型美式風格的學者。碩士班學生的題目要自己發想、設計方法,老師負責引導大方向。」而且湯銘哲對學術同儕非常慷慨大方,隔壁實驗室來借任何耗材與設備,或是需要技術協助,他總是樂意援助。

邱文泰笑說,正因為這種慷慨大方,湯銘哲實驗室的成員經常處於「幫助鄰人」的狀態。他回憶說,「當時覺得很忙碌,但成為實驗室主持人之後,發現自己已經被這種風格潛移默化了。」

邱文泰也以樂於分享、協助的風格領導實驗室。他說,「我的學生也經常幫助其他實驗室的同學,我希望他們在互助、分享的氣氛中成長,成為心胸開闊的人。」

自博士班第二年開始,邱文泰加入新成立的沈孟儒實驗室,接受共同指導。他說,「沈孟儒校長是日式風格的學者,對研究與學術寫作追求完美的高標準。他如果看你的論文草稿寫錯超過三個字,就會請你拿回去重寫。」

邱文泰讚賞說,沈孟儒對科學研究的嚴謹要求,是他的職業楷模。他打開會議室的鐵櫃,數十本厚實日誌整齊排列其中。他說「因為沈老師的指導,我直到今天持續寫著實驗日誌,確實記錄每一天的實驗內容。對學生,我也要求交出完整的實驗日誌,才能從我的實驗室畢業。」

嚴謹治學的風格,呈現在邱文泰的實驗室管理,他們的藥品、抗體集合收納且全體共用,每個人都使用相同規格的研究材料。不會出現各用一套藥品,劑量、藥效不同,實驗結果難以重複的狀況。

他說,「材料的品質控制與共享,對實驗成果的精準化和均一化就是一件好事,也是科學研究的必要。」

邱文泰嚴格要求實驗室各種藥品、器材的擺放秩序,收納之後要編寫目錄和標示,任何人都能一目了然。他打趣說,「小偷闖進我們實驗室,根本不需要翻箱倒櫃,他可以按圖索驥找到所有東西。」

這種嚴謹的管理風格深刻地影響邱文泰的學生。他舉例說,一位博士班畢業生回到廈門大學擔任實驗室經理,按照邱文泰一致化與秩序化的風格整理實驗室,不但讓同事感到驚喜,連周遭實驗室的經理也紛紛來學習這種實驗室管理。

融會了兩位迥然不同的成大傑出學者風範,邱文泰長年投入引導成大學生對知識產生興趣,潛移默化對物嚴謹、對人開闊的高尚人格。因此數次獲得輔導、教學方面的優良教師獎。

鮮為人知的是,他其實差點成為高中教師,遠離成大的學術環境。

探索未知,比收入和安穩的生涯更重要

回憶起職涯轉捩點,邱文泰說,「那是人生最困難的決定。我剛退伍就在台南女中得到正式教師職位。眼看有個穩定、待遇不差的職業選擇,卻又被邀請回去讀博士班。」

邱文泰的考慮相當務實:高中教師的薪資高於社會平均、有退休保障,上下班時間穩定還有寒暑假。而博士班學生薪資不如高中教師,更不容易保持生活與工作的平衡。

收入和閒暇時間考量之外,邱文泰更重視學生對知識的態度,他回憶說,「我喜歡對高中生分享最新科學消息,例如當年諾貝爾獎得主與研究內容。」學生們的反應卻是「這些會考嗎?」

高中生在升學制度訓練下,認為只有考試相關的科學知識才是重要的,而高中教師也必須精熟解題技巧。邱文泰坦承,「我體會到,自己並不想走上鑽研教科書上既定知識與解題技巧的職涯。對我來說,更想要的是親手研究、接觸未知。」

邱文泰說,「跟我同屆考上高中老師的同學已經準備退休,而我還在規劃新的研究計畫、主持與眾人研究息息相關的生醫影像核心平台,但是我覺得這樣很充實。」

主持儀器共享平台,減少科學社群的資本差距;傳授學生知識與潛移默化的人格教育,對邱文泰來說毫無義務感,而是讓生醫領域更加蓬勃明朗的充沛機會。

查看原始文章

-----廣告,請繼續往下閱讀-----

討論功能關閉中。