0

0
1

文字

分享

0
0
1

看看你的腦袋裡,到底都裝了些什麼?——《科學月刊》

科學月刊_96
・2017/06/08 ・2798字 ・閱讀時間約 5 分鐘 ・SR值 542 ・八年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

文/林士傑|臺大醫學系畢,美國杜克大學神經生物學博士,現任美國國家衛生研究院研究員。

圖/Pixabay

大腦是個很奇妙的東西。人與所有動物的一舉一動幾乎都跟大腦和神經系統脫不了關係,無論是任一種感官(視覺、聽覺、觸覺、嗅覺)、動作、思緒(注意力、學習、記憶、判斷)、情緒,乃至於每一個判斷與決定,都和大腦息息相關。就算試著休息放空腦袋,大腦還是控制了呼吸、心跳、睡眠,乃至於所有基本的生理需求(餓、渴、性)。

一旦大腦的運作偏離了常軌,各式各樣的問題隨之而生:像是思覺失調、憂鬱、焦慮、注意力失調與過動、失智、帕金森氏症、癲癇、藥物成癮等。大腦裡面到底裝了些什麼東西,讓它可以負責這麼多的行為與認知功能?這是系統神經科學(systems neuroscience)所要回答的根本問題。

腦啟動計畫:把大腦當成一部電腦

近幾年來,世界各國都投入大量的資源以進行系統神經科學研究,美國的腦啟動計畫(Brain Initiative)是其中最大規模的計畫。由於大腦是由一個個神經元(神經細胞)所組成,而神經元透過電訊號彼此傳遞訊息,腦啟動計畫背後根本的想法便是將大腦當成一部電腦來理解,把大腦看成是一個處理訊息的複雜電路:當外界的資訊接觸到我們的身體,感官系統開始處理這些訊息,各種認知功能加入運作,依照身體內在的狀態與需求,做出適切的反應與決定。在這複雜的大腦電路裡,每一種行為與認知功能,都有其相對應的特殊神經迴路。

在這複雜的大腦電路裡,每一種行為與認知功能,都有其相對應的特殊神經迴路。圖/Wei-Chung Allen Lee, Hayden Huang, Guoping Feng, Joshua R. Sanes, Emery N. Brown, Peter T. So, Elly Nedivi, CC BY 2.5, wikimedia commons

在這個脈絡下,研究大腦的首要工作是得了解電路基本元件的特性跟電路設計圖。腦啟動計畫即是由此展開,確立幾個重要的研究目標:

  1. 辨識不同種類的神經元,這好比釐清電路裡各種基本元件
  2. 建立腦中神經網路的連結圖譜,像是建構大腦裡面複雜的電路圖
  3. 記錄大批神經元在各種行為及認知功能下的活性,等同於透過觀察的方式來理解大腦電路的運作方式
  4. 透過直接改變神經元活性的技術,探討神經元活性與各種行為及認知功能間的因果關係
  5. 建立統合性的腦功能理論以及分析大量資料的工具
  6. 將基礎研究的成果推展至人腦方面的疾病治療與預防

腦啟動計劃所需要的各項技術,尤其是標定各種神經元、記錄以及改變其活性的方法,在過去十年來都有革命性的發展。舉例來說,透過分子遺傳學的技術,現在已經可以在小鼠模型中精準標定各個種類的神經元,並在其中表達量身訂做的新式分子工具,包括光遺傳學(optogenetics)中的各種光控離子通道,或是超敏感螢光探針。

光遺傳學這個新技術讓研究者可以透過光照來活化不同的離子通道以控制(增強或是抑制)神經元的活性,是測試神經元活性與各種行為及認知功能因果關係的重要工具。新式螢光探針,譬如新近研發的 GCamp6,則提供了一個用光學顯微鏡大規模記錄神經元活性的途徑。

另外,利用微電極直接記錄神經元活性的電生理技術也有長足的進步,同時記錄上百個神經元的技術已經普及,記錄上千個甚至上萬個神經元的技術也已問世。這些新技術讓系統神經科學進到前所未有的境地。

行為與認知功能的重要性

有了這些新技術,就足以了解大腦運作的機轉嗎?最近兩篇論文對這問題提出新的觀點。

在第一篇裡,喬納斯(Eric Jonas)與科丁(Konrad Kording)把研究大腦的分析工具,拿來研究一個播放電動玩具的電腦晶片。他們想要知道這些分析工具是否足以理解一個簡單的電腦晶片。他們把電腦晶片裡的電晶體,當成是一個個的神經元,透過電腦模擬來觀察個別電晶體的活性,同時也在模擬過程中把個別電晶體移除,來檢視他們對電腦晶片整體運作的因果關係。換句話說,喬納斯與科丁希望透過觀察電晶體裡面數位信號的流動,來了解電腦晶片的運作的原理。

然而實驗結果讓人失望:雖然喬納斯與科丁觀察到有趣的電晶體活性,但是整體來說這些分析工具並無法理解電腦晶片的運作邏輯。如果連一個小晶片都搞不定,系統神經科學家真有可能理解大腦的運作方式嗎?

在另外一篇論文裡,克拉考爾(John Krakauer)跟他的同事們提出不同的看法。他們認為問題的癥結,在於「見樹不見林」。克拉考爾等人認為要理解播放電動玩具的電腦晶片,不能把研究的層面侷限在電晶體活性(樹)。要跳脫這侷限,需要的是直接觀察玩家打電動,才能從中整理出電玩的抽象遊戲規則(林)。這些高層次的規則可以幫助研究者回頭去理解電晶體活性,從而推導出電腦晶片的運作原理。

同樣的道理,如果要了解大腦主管運動的區域是怎麼控制雙腳行走,必須從研究人走路開始,從中萃取出走路這行為的自由度與必要的控制參數,才能回頭去釐清大腦神經元活性是怎麼控制雙腳行走。換句話說,如果研究者從來沒有研究過人走路的樣子,就算新的技術能夠完全的釐清所有神經元的種類,也建立完整的連結圖譜,並能夠同時記錄所有神經元的活性,這些資訊本身仍不足以了解與想像走路是怎麼一回事。克拉考爾的論證對於系統神經科學的啟示在於:在致力發展新技術以記錄更多更精確的神經元活性的同時,系統神經科學家也必須要用同樣的高規格來研究行為與認知功能。唯有理解行為與認知功能背後的規律跟規則,才有可能了解大腦解決這些問題的機轉。

如果要了解大腦主管運動的區域是怎麼控制雙腳行走,必須從研究人走路開始。圖/By Ballookey Klugeypop @ flickr, CC BY-NC-ND 2.0

跨領域整合需要理工專長

總括來說,新技術的快速發展讓系統神經科學正進入一個前有未見的黃金年代。要了解大腦的運作機轉,需要的不僅是生物醫學相關的背景,同時也需要數理、電機、資工、機械的專長,一起加入跨領域的研究行列。系統神經科學,不但需要生物學的專長在實驗動物模型中從事基礎系統神經科學研究,也需要認知科學與心理學來剖析認知功能與行為背後的成因與細節;以及臨床醫師(包括精神科、神經科、神經外科、復健科)的參與,將研究成果應用到病人身上。

系統神經科學同時也需電機專長來研發新的電生理與光學紀錄系統;需要統計學來處理大規模的數據分析;需要電腦與資訊科學將大腦運作的巧妙機轉運用到人工智慧跟類神經網路的設計;以及機械專長來將記錄到的神經訊號透過腦機介面的技術(brain-machine interface)來控制義肢或機械手臂,或是控制新研發的醫療儀器。這些跨領域整合的例子開展了許多新的研究方向,而其中理工專長的研究人員更是對於新技術的發展有莫大的貢獻,這是值得臺灣研究機構、大學系所、教授以及新進學生共同思考的趨勢。


〈本文選自《科學月刊》2017 年 5 月號〉

什麼?!你還不知道《科學月刊》,我們 47 歲囉!

入不惑之年還是可以當個科青

文章難易度

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!防疫新解方:長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2874字 ・閱讀時間約 5 分鐘

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022年歐盟、英、法、澳等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示針對台灣主流病毒株 BA.5 及 BA.2.75 具保護力。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
倍拉維
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
161 篇文章 ・ 270 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

8
2

文字

分享

0
8
2
切開左、右腦間的3億條神經纖維束後,會發生什麼事?——《全腦人生》
天下文化_96
・2022/08/22 ・3699字 ・閱讀時間約 7 分鐘

一刀切開大腦的糾葛!

我挺幸運,1970 年代末期身為大學生的我,親眼目睹神經科學邁向主流,舉世聞名的裂腦手術也備受矚目:史培利(Roger Sperry)博士將數名癲癇病人左右腦之間的連結切斷。

我保守一點說好了,他的研究迷得我神魂顛倒。

不曉得有沒有人也對大腦研究充滿嚮往?圖/elements.envato

史培利施以連合帶切開術(commissurotomy),將胼胝體切斷,連結兩個大腦半球之間的近三億條神經軸突纖維束於是斷開,成功防止不正常放電情形波及另一個半腦。

裂腦手術還揭開另一項優勢:葛詹尼加(Michael Gazzaniga)博士對這類病人執行心理實驗,深究胼胝體切斷後、兩半腦分別運作的模式,研究結果斐然。

我這初出茅廬的神經科學家,尤其著迷於這些實驗有如《化身博士》(Strange Case of  Dr. Jekyll and Mr. Hyde)的故事:兩個大腦半球在心理學及解剖學上的能力涇渭分明。顯然兩個半腦中間的連結切斷後,裂腦病人的行為就像是兩個獨特的人格,表現通常背道而馳。

左右腦分開後,會發生什麼事?

部分病人身上,「占據」右腦的人格表現出的意向與行為,會與「占據」左腦的人格恰恰相反。舉例來說,一名男士想用左手(右腦)打老婆,右手(左腦)則同時保護老婆。其他時候顯然也出現相同狀況:他一手使勁拉下褲子,另一手卻同時替自己拉上。

另一名病人剛好是個孩子,則是左右腦言詞不一致。問及人生目標時,他右腦說長大想當賽車手,左腦卻想當製圖師。

還有一位病人提到,她每天早上選衣服時,都要爭鬥一番,左右手好比同極相斥的磁鐵,各有既定喜好,早就描繪好自己當天該穿什麼。她去雜貨店買吃的,兩個半腦想要的食物也天差地別。她手術過後一年多,才有辦法駕馭單一意向,有意識的遏止兩個意見相左的人格在內心激烈交戰。

你能想像你的大腦裡面有兩個不同的想法一直在作對嗎?圖/pixabay

你讀到這些故事,務必了解,這些經過連合帶切開術的病人在解剖學上和你我的唯一差異,在於我們的兩個大腦半球之間有胼胝體連結,互相溝通。

科學家理解到,以神經解剖學而言,大部分的連合纖維本質屬於抑制性,運作時,訊息是從一個腦半球的某組細胞,跑到另一腦半球對應的那組細胞。兩個腦半球的細胞隨時為活躍狀態,但對應的腦半球細胞群卻是分別處在支配與抑制的狀態。

如此一來,一個腦半球即有能力抑制另一個腦半球對應的細胞群,支配特定細胞群的功能。例如,我們專心聽某人所說的詞彙及意義時(左腦),比較不會專注於對方的語調變化或情緒內容(右腦)—— 但這反而是對方真正打算溝通的事情,反之亦然。譬如,有沒有人曾對你大吼,說你根本沒聽到重點,而你錯愕不已?

既然上天給你一對腦,為何只用一邊呢?

1970 年代和 1980 年代,社會上對裂腦研究的反應有點過於熱烈,著重開發「右腦」或「左腦」的社群課程如雨後春筍冒出,許多學校甚至積極投入,設計出可以刺激一個半腦或兩個半腦的課程。

左腦人及右腦人的刻板印象進入主流:左腦人表現較有條理、準時、注重細節,右腦人點子多、創新、運動發達。

可惜,在大家痴迷左右腦之際,許多家長想讓孩子贏在起跑點,策略卻是讓孩子接觸適合其天賦的課程。沒錯,這合情合理,畢竟家長希望孩子因拿手之事獲得回報。

不過,若家長希望孩子全腦、全方位均衡發展,較完善的方式應該是鼓勵孩子參與自己並不拿手的活動。例如,若孩子具左腦優勢,擅長科學及數學,可以鼓勵他們參加戶外活動,到林間探索與蒐集資料,也可以引導擅長運動及藝術的孩子發揮創意,設計超酷的科展作品,參加衡量某類表現的科學展覽會。

由於過去四十年來,家長只著重激發單個半腦的優勢,造成孩子的能力朝向兩極端發展。目前有些著作及教學技巧專門開發不慣用的腦半球,例如至今仍廣為使用的經典之作《像藝術家一樣思考》(Drawing on the Right Side of the Brain)。

Heart Love GIF by nerdbugs
不慣用的腦半球也應該要適度的刺激,才能更均衡的發展。圖/GIPHY

另外,你不必費勁就能發現,行銷人員如何善用策略,瞄準我們對右腦或左腦的偏好。就連電腦作業系統也符合這種分野:一般認為 蘋果產品直指右腦創造力,任何微軟的可笑產品則直指左腦分析力。還記得黑莓機嗎?這機子則是用來讓我的右腦哀哀叫。

左、右腦獨立運作?這是迷思!

依此種刻板印象推廣的科普知識五花八門,旨在開發左右半腦的潛能。除此之外,也有成山成海的實證科學,清楚描繪左右半腦在解剖學及功能上的差異。

如想知道半世紀以來,科學家在巨觀與微觀方面發現了哪些差異,英國精神科醫師麥基爾克里斯特(Iain McGilchrist)博士的《主人與使者》描寫得深入淺出,亦蒐羅最新的研究內容。

如想了解哈佛精神科醫師如何與左右腦人格合作,協助精神病人復原,不妨閱讀薛佛(Fredric Schiffer)博士的《雙腦革命》,著實教人大長見識;該書甚至敘述了兩個人格有多麼相異:其中一個人格體驗到的疼痛感,另一個人格真的會感覺不到,或是也不會表現出來。

若想知道處理心理健康問題的替代工具,史華茲(Richard Schwartz)博士的內在家族系統值得一試;該模型有助辨識一個人的部分性格,以便互相合作,找出健康的解決之道。上述書籍與工具皆發人深省,可幫助大家知曉大腦的奧祕。

本來左右腦就會持續造就任一經驗時刻的整體經驗,所以我的意思並不是左腦或右腦獨立運作。

現代科技顯示,任何時刻兩個半腦顯然皆會造就神經系統的輸入、經驗與輸出。然而如我先前所述,腦細胞的標準做法,就是支配並抑制對應部位的腦細胞,因此,除非死亡,腦部在任何情況下,都不是全開機或全關機的狀態。

人類的性格,究竟是怎麼被塑造出來的?

想了解大腦運作,自然會提出這問題:「一群腦細胞到底怎麼可能合作打造一種人格?」我可不是第一個提出這問題的人,我也不是第一個經歷腦部創傷、性格大變、創傷細胞復原然後重拾舊迴路、舊技能組合、舊人格特質的人。

不過,我大概是第一位歷經腦部創傷及復原、踏上求解之路的神經解剖學家,率先深入探查自己大腦神經與心理方面的運作模式,並獲得四大人格的獨到見解。

Pink And Blue Animation GIF by palerlotus
明明都是神經細胞,為甚麼卻有各種不同的人格?圖/GIPHY

腦細胞是美妙的小生物,形態大小各異,其設計說明了執行特定功能的能力。例如,位在兩個半腦主要聽覺皮質區的神經元具有獨特形狀,能處理聲音資訊;其他連結不同腦部區域的神經元,形狀也適合其功能,運動系統的神經元更不例外。

值得注意的是,從神經解剖學的角度來看,每個人的腦部神經元本身以及互相連結的方式,基本上並無二致。

從結構上來看,每個人的大腦皮質最外層的隆起與溝渠根本一模一樣,而且相像到——如果你腦部特定區域受損,我腦部該區域也受損,那我倆喪失的功能也一模模一樣樣。以運動皮質為例,如果你和我某個半腦的特定細胞群都受損,我們的身體超有可能在同樣的部位癱瘓。

左腦、右腦到底有甚麼差異?

左右半腦固有功能的差異在於,神經元處理資訊時,各有獨特方式。

先說左腦,左腦神經元其實是以線性方式運作:會先接收一個想法,拿這個想法和下一個想法互相比較,接著再拿這些想法的副產物和再下一個想法互相比較。

由此可知,左腦能以次序方式思考。例如,我們知道必須先發動引擎,才能打檔。左腦可是令人嘆為觀止的序列處理器,不僅創造抽象的線性(例如1 + 1 = 2),還為我們展現出時間性,將時間以線性感,分割成過去、現在與未來。

右腦神經元則完全不是用來建立線性次序,反而有如平行處理器,可引進多條資料流,同時顯示單一的複雜經驗時刻。記憶是由兩個腦半球共同創造,右腦則替記憶的創造成果增添深度,豐厚了此時此地的面貌。

儘管許多腦細胞負責執行顯而易見的工作,例如理解語言或呈現視覺,其他神經元卻負責創造想法或情緒。

「模組」這詞就是用來說明哪組神經元和其他神經元互相連結,並以集合體的形式共同運作。我們大腦中的四大人格,即是以特定且獨特的神經元模組運作。

——本文摘自《全腦人生:讓大腦的四大人格合作無間,當個最棒的自己徒》,2022 年 8 月,天下文化,未經同意請勿轉載。

天下文化_96
116 篇文章 ・ 600 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

1

11
11

文字

分享

1
11
11
為什麼大腦如此耗能?——淺談神經元的基本構造和功能
Heidi_96
・2022/04/13 ・4565字 ・閱讀時間約 9 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

身為人體總司令,大腦每單位重量所消耗的能量,約為其他器官的 8 至 10 倍[1]。所以,即使大腦只佔據人體總重量的 2%,仍然得消耗人體高達 20% 的總能量才能保持運作,就連休息和睡覺時,消耗的能量也絲毫不減。

為什麼大腦這麼輕,卻得消耗如此多的能量呢?

以往,科學家認為這和「腦電活動」有關,也就是腦內神經元運作時,所產生的電活動。神經元是神經系統負責傳遞訊息的基本單位。這些細胞形狀細長,結構可分為三個部分:細胞本體、樹突(dendrite)和軸突(axon)。樹突看起來就像樹枝,有很多專一性受體,可以接收來自上一個神經元的神經傳導物質。

神經元形狀細長,結構可分為三個部分:細胞本體、樹突和軸突。圖/國家實驗研究院

靜止膜電位:穩定的休息狀態

在樹突沒有收到化學訊號的狀態下,神經元的靜止膜電位(resting membrane potential)約為 -70 mV;也就是說,在休息狀態時,神經元內的電壓相較於細胞外低了 70 mV。造成電位差的關鍵在於細胞膜外的正離子(鈉離子,Na+)比較多,膜內的正離子(鉀離子,K+)比較少。

可是,物質不都是從高濃度往低濃度的地方移動嗎?為什麼還可以維持在 -70 mV 呢?

第一,是透過主動運輸。這種運輸方式必須消耗能量才能進行,而負責這項任務的就是細胞膜上的「鈉鉀幫浦」(Na+/K+-ATPase)。鈉鉀幫浦所消耗的能量是三磷酸腺苷,也稱作 ATP,是細胞的「能量貨幣」,專門儲存和提供能量。幫浦每消耗 1 個 ATP,就可以將 3 個鈉送出細胞,再將 2 個鉀送入細胞。只要幫浦不斷運作,就能維持恆定的離子濃度差,使得細胞外有較多鈉離子,而細胞內則有較多鉀離子。

ATP(C10H16N5O13P3)是細胞的「能量貨幣」,專門儲存和提供能量。圖/Wikipedia

第二,是透過被動運輸。這種運輸方式不需要消耗任何能量,只要有濃度差異,離子就可以經由通道蛋白,從高濃度處擴散到低濃度處。然而,細胞膜上的鉀離子通道蛋白數量較多,約為鈉離子通道蛋白的 50 倍,所以鉀離子可以輕鬆離開細胞,鈉離子卻難以回到細胞,使得細胞內部正離子數量較少。

那麼,收到化學訊號時,神經元的膜電位會怎麼變化呢?

動作電位:活躍的工作狀態

剛剛提到神經元的靜止膜電位約為 -70 mV,細胞膜內帶負電、膜外帶正電,這種兩極化的電荷環境,稱為「極化」(polarization)。當神經傳導物質和樹突上的受體結合,受體就會根據接收到的訊號種類,調整離子通道的通透性。

在極化階段,鈉離子通道(紫)和鉀離子通道(橘黃)皆未開啟,只有鈉鉀幫浦(藍綠)持續進行主動運輸。圖/Wikipedia

比方說,若是收到興奮性的訊號(專有名詞是「興奮性突觸後電位」;EPSP),就會增加細胞膜對鈉離子的通透性,使鈉離子流入細胞內。因為鈉離子帶有正電,原本維持在 -70 mV 的膜電位就會上升。若是膜電位高於 -55 mV 的閾值,軸突前端的軸丘(axon hillock)就會立即反應,產生動作電位(action potential),以電訊號的形式打開附近所有鈉離子通道,使得鈉離子大量湧入細胞,形成「去極化」(depolarization)。

在去極化階段,鈉鉀幫浦(藍綠)暫停運作,鈉離子通道(紫)開啟,使得鈉離子進入細胞,提升膜電位。圖/Wikipedia

動作電位啟動後,膜電位通常可以衝高到 40 mV。為了平衡細胞膜內過多的正電荷,鈉離子通道便會關閉,而鉀離子通道會同步打開,讓細胞內的鉀離子流出細胞,使得膜電位再次回到帶負電的狀態,稱為「再極化」(repolarization)。

可是,因為鉀離子通道關閉速度較為緩慢,所以當膜電位回復到 -70 mV 時,鉀離子仍不斷流出細胞,造成電位低於靜止膜電位的「過極化」(hyperpolarization)現象。此時,鈉鉀幫浦就會主動消耗 ATP,重複將 3 個鈉離子送出細胞,再將 2 個鉀離子送回細胞的循環,讓膜電位和離子濃度都順利回到最初的極化狀態。

在過極化階段,鈉離子通道(紫)關閉,鉀離子通道(橘黃)開啟,使得鉀離子流出細胞,降低膜電位。圖/Wikipedia

以上四階段(極化、去極化、再極化、過極化)就是一個完整的動作電位!

另一方面,若是樹突上的受體收到抑制性的訊號(專有名詞是「抑制性突觸後電位」;IPSP),就會增加對鉀離子的通透性,使鉀離子流出細胞外,造成原本帶負電的狀態更加極端,無法達到閾值,便不會產生動作電位。

要注意的是,動作電位通常不是根據單一訊號刺激而產生,畢竟神經元隨時都在接收各種不同的訊號,但無論如何,只要加起來的電位變化強度超過閾值,就可以產生動作電位,反之則不會引起任何神經傳導反應。這就是動作電位的「全有全無律」(all-or-none law)。

若是膜電位高於 -55 mV 的閾值,軸丘就會立即反應,產生動作電位。圖/A-Level Biology

動作電位如何傳導電訊號?

軸丘產生動作電位後,並不會反傳回細胞本體,而是傳給隔壁的軸突。軸突是一條細長的神經纖維,只要最前端產生動作電位,就可以引發後續一連串的反應。整個過程類似大隊接力,而且不會往回傳,因為當訊號傳送到下一個位置時,前一個發生動作電位的地方處於再極化狀態,鈉離子通道沒有開放,所以無法同時進行去極化。如此一來,就能確保電訊號單向傳導。

當電訊號抵達軸突末端的突觸(synapse)時,會刺激突觸小泡(synaptic vesicle)釋放神經傳導物質,以化學刺激的形式將訊息傳遞出去。下一個神經元的樹突接收到訊號後,就會根據訊號類型,開啟鈉離子通道(引發去極化,產生動作電位)或鉀離子通道(引發過極化,不產生動作電位)。綜上所述,神經系統就是透過神經元不斷重複這樣的循環來傳遞訊息。

動作電位四階段:(1)極化、(2)達到閾值、(3)去極化、(4)再極化、(5)過極化。圖/國家實驗研究院

最新研究發現大腦耗能的關鍵

現在,我們大致知道了神經元如何以電訊號和化學訊號傳導訊息。(如果你沒有看懂,那也沒關係,總之這整個過程都需要燃燒大量 ATP!)科學家以往都認為大腦之所以這麼耗能,就是因為神經元隨時都在消耗 ATP,而且這些神經元的數量多達 860 億個[2]。可是,過去幾十年的臨床研究發現,在植物人和重度昏迷患者腦內,神經元產生的電活動極少,大腦消耗的能量卻沒有明顯下降。

如果不是電活動,那究竟是什麼消耗了這麼多能量?

去(2021)年底發布在《Science Advances》期刊的一篇研究公布了答案。研究團隊來自威爾康奈爾醫學院(Weill Cornell Medicine),第一作者是提姆.萊恩(Timothy Ryan)教授,他專攻生物化學和結構生物學。近年來,他的團隊深入研究神經元的突觸,試圖找出大腦耗能的原因。有鑑於老鼠的大腦結構和神經迴路都近似人腦,團隊決定透過實驗鼠進行研究。

萊恩教授的團隊深入研究突觸,試圖找出大腦耗能的原因。圖/The Rockefeller University

首先,團隊使用毒素,讓實驗鼠的神經元停止運作,阻斷電訊號,卻發現突觸仍然持續消耗能量。為了進一步釐清原因,團隊將焦點轉移到專門儲存、釋放神經傳導物質的突觸小泡,讓小泡表面各種不同功能的幫浦失去活性,使得突觸無法釋放相對應的化學訊號。

與此同時,團隊利用螢光顯微鏡觀察突觸。經過比對後,發現正在偷偷燃燒 ATP 的是一種稱為「氫離子幫浦」(proton pump)的通道蛋白,其運作形式類似鈉鉀幫浦。研究結果顯示,即使神經元處在休息狀態,突觸小泡內的氫離子幫浦仍然得持續工作,將不同的神經傳導物質送進小泡待命,以備不時之需。可是,作為交換,幫浦會帶走小泡內部的氫離子(H+)。

如果進入小泡的化學物質是甘氨酸、麩胺酸或 GABA,幫浦就會帶走 1 個氫;如果是血清素、多巴胺、組織胺、乙醯膽鹼或正腎上腺素,幫浦則會帶走 2 個氫[3]。有時候,就算沒有任何化學物質進入小泡,幫浦還是會偷偷帶走氫離子,造成小泡內部的氫離子濃度下降。為了維持穩定的離子濃度,突觸小泡必須不斷製造氫離子才能滿足需求,而這樣的過程佔據了 44% 的突觸能量消耗。

研究團隊使用巴佛洛霉素(bafilomycin)抑制氫離子幫浦,發現實驗鼠的突觸能量消耗剩下 56%(圖 E 紅色長條),代表氫離子幫浦的作用佔據了 44% 的突觸能量消耗。圖/Science Advances

萊恩教授表示,雖然每次流失的氫離子數量不多,也就一兩個,但是神經元數量非常多,「即使沒有任何電活動,整體能量消耗依然非常可觀。」目前還不清楚大腦為什麼會有這種機制,很可能是為了預先儲存神經傳導物質,因應突如其來的電訊號,「就像是高速空轉的賽車引擎,雖然會浪費額外的燃料,卻能以更快的速度起步。」

萊恩和他的團隊認為這份研究成果非常可貴,能讓人類對於大腦有更透徹的瞭解,也希望將來能用於治療帕金森氏症(Parkinson’s disease)這類神經退化性疾病。他表示帕金森氏症患者的大腦可能沒有足夠的能量合成 ATP,「這就像是讓一輛油管破裂的賽車高速空轉,很容易釀成大禍。」

註解

  1. Pulido, C., & Ryan, T. A. (2021). Synaptic vesicle pools are a major hidden resting metabolic burden of nerve terminals. Science Advances, 7(49). https://doi.org/10.1126/sciadv.abi9027 
  2. Azevedo, F.A., Carvalho, L.R., Grinberg, L.T., Farfel, J.M., Ferretti, R.E., Leite, R.E., Filho, W.J., Lent, R. and Herculano-Houzel, S. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. Journal of Comparative Neurology, 513(5), 532-541. https://doi.org/10.1002/cne.21974 
  3. Synaptic vesicle – Wikipedia

參考資料

所有討論 1
Heidi_96
7 篇文章 ・ 12 位粉絲
PanSci 編輯部角落生物|外語系還沒畢業,潛心於翻譯與教學,試圖淡化語言與知識的隔閡。