0

2
0

文字

分享

0
2
0

高能物理學之福爾摩斯探案,發現新粒子!--《科學月刊》

科學月刊_96
・2015/11/12 ・2551字 ・閱讀時間約 5 分鐘 ・SR值 561 ・九年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

蔣正偉/美國卡內基美隆大學物理博士,現任國立中央大學特聘教授、中央研究院合聘研究員、國家理論科學中心科學家。

歐洲核子研究組織(CERN)的大型強子對撞機(Large Hadron Collider, LHC),在2013年的夏天,發現了一個新粒子的存在。接著的實驗陸續檢查這個新粒子所參與的各種反應, 證實它極其符合粒子物理的標準模型中希格斯粒子的特性。這項發現的重要性在於完備了標準模型中的所有基本粒子,讓我們確信自然界對稱性的破壞、基本粒子質量的來源,的確都跟希格斯粒子密切相關。加上它對數不清的基本粒子實驗成功而精確的預測或解釋,標準模型也被正名為「標準理論」。

Standard_Model_of_Elementary_Particles.svg
2013年夏天,CERN終於確定他們在LHC對撞中發現的「新粒子」,就是「希格斯波色子」(圖片右邊黃色的粒子),此發現完備了「基本模型」,並將其正名為「基本理論」。但是,這真的是「最基本」嗎? Source: wiki

宇宙的終極理論

然而,粒子物理學接下來的一個重要問題是:「這個標準理論就是自然界的終極理論嗎?」有很多理論上的推敲,以及實驗上暗物質、暗能量和微中子質量的發現,告訴我們問題的答案是否定的。我們需要超越標準理論的新物理來幫助解釋暗物質、暗能量的存在,微中子質量的來源,以及許多宇宙觀測、演化的現象。所以,未來粒子物理學的挑戰是:新物理在哪裡?我們該如何去發現與檢驗?宇宙的終極理論究竟是什麼?

因為標準理論的基本粒子已經都在實驗中被發現,所以新物理將會聚焦於尋找其他新粒子,這也同時是高能實驗物理學一直以來積極進行的方向。如果我們可以具體預測某個新粒子的質量以及交互作用的種類與強度,那麼對撞機就有明確的搜尋目標與方法,或者增加對撞能量、提高對撞機率,又或者改進偵測器的靈敏度等。可惜的是,我們現在擁有各種理論模型,卻沒有百分之百的信心哪一個是對的。在這種缺乏線索的情況下,粒子物理學的進展往往需要一些運氣。

2046228644_daab5255bd_o

發現新的共振態

今年六月,LHC 的實驗公佈了一項結果,從某些粒子的衰變模式中,發現在2 TeV(兆電子伏特)能量附近似乎存在一個新的共振態(物理學家用共振態泛指在實驗中之某個物理態,其質量恰等於對撞的能量,以致於大量的生成。在能量頻譜曲線上,這種共振態的明顯特徵就是峰值的出現)之所以說「似乎」,是因為目前的統計量不足,所得信號僅偏離背景3個標準差左右,信心度並不夠高。根據粒子物理的標準,信號必須要偏離背景 5個標準差以上,才夠資格稱作發現。按照愛因斯坦的質能互換,這個共振態具有相當於約2100個質子的質量。想當然爾,粒子物理學家對於這個新發現非常興奮,並且寄予厚望。因為一旦確定,僅僅這樣一個新的共振態就會提供許多新物理的資訊,引領我們跨進粒子物理的嶄新世紀。

Standard_deviation_diagram.svg
標準差(σ,為Σ的小寫),可以理解為「樣本偏離常態(均值)的多寡」。在樣本數趨近無窮的情況下,樣本偏離1.96個標準差表示「此現象有5%的機會由非實驗操弄所引起」,而3.89個標準差有0.01%的機會,這對社會科學(心理學之類)來說,已是相當顯著。文中提及的5個標準差,大約只有0.000057%的機會。圖為常態分部圖。 Source: wiki

除了上述的質量以外,從實驗的論文當中,我們還得知下列訊息。在過去8 TeV的LHC實驗中,約產生了數十個這樣的共振態,我們因此知道它的產生機率(或稱產生截面積)。從衰變模式看來,它應該是個玻色子(自旋角動量為整數的粒子),而且與電弱規範玻色子交互作用。從能量頻譜分析,知道它的總衰變強度應該小於100 GeV(十億電子伏特),算是個窄頻寬的共振態。另一方面,利用其他衰變模式來搜尋新粒子的實驗也告訴我們,這個共振態並不喜歡衰變到某些最終狀態,或稱末態(例如輕子末態),因而存在著一些限制。

追尋可能的線索

從這些有限的已知資訊中,國際上許多理論學家已經展開各種邏輯上可能性的討論,試圖將所有線索拼湊起來,提供一個合理、完整的圖像。在短短的兩個月內,已經有超過40篇的理論論文提出解釋,當中也有臺灣的貢獻。一開始,絕大多數的人很自然地想到,這個共振態可能是自旋為1的規範粒子(統稱帶電荷的W’或不帶電荷的Z’玻色子),其中包括國內張敬民、阮自強教授的工作。如果真是如此,這意味著自然界至少還存在另一種新的交互作用力,也許可以增加我們對大統一理論的了解。還有一種可能是,它是自旋為0的另一個希格斯粒子;國內陳泉宏教授即有一篇論文討論。如果是這種情況,就表示自然界存在不止一種希格斯粒子,這對宇宙早期的創生或許有重要的影響,對基本粒子質量的來源也會有不同的理解。

另一個有趣的可能性是,此共振態並不是一個基本粒子,而是由其他新粒子透過新的強交互作用所構成的合成粒子,這是為什麼大家保守地稱它為共振態的原因。這陣子在日本東京大學的訪問期間,我因緣際會與當地的物理學家共同合作,率先提出這種可能性以及建立一個具體的模型。在此架構中,我們猜想自然界在更高能量的尺度下,還有一群新的、更重的基本粒子,像是我們所熟悉的夸克,會互相凝聚、形成一系列合成粒子,並透過特定的媒介子與標準理論的基本粒子相互作用,而其中最輕的合成粒子可以成為宇宙中的暗物質。

如前面提到的,現在實驗的統計量還太低,LHC的超環面儀器(ATLAS)和緊湊渺子線圈(CMS)實驗組看到的共振態質量也不盡然吻合(分別為2 TeV和1.8 TeV),而且某些該發生的衰變也還未觀測到,所以現在看到的信號很可能又只是統計上的隨機漲落,讓人空歡喜一場。不過,大家都還是抱著很大的期待,特別是理論物理學家,希望透過它來嘗試新模型的建構,更盼望在LHC最近恢復更高能量運轉的短時間之內,可以確定它的存在,進而引導粒子物理邁向新的方向。

201510本文選自《科學月刊》2015年10月號

延伸閱讀:
實驗發現了五夸克粒子,真的嗎?
天上掉下來的粒子—從包利到希格斯

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以
當個科青

文章難易度
科學月刊_96
232 篇文章 ・ 2405 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!免疫功能低下病患防疫新解方—長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2882字 ・閱讀時間約 6 分鐘

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022 年美、法、英、澳及歐盟等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示該藥品針對 Omicron、BA.4、BA.5 等變異株具療效。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
帕克斯洛維德
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度

0

2
0

文字

分享

0
2
0
微擾理論:我們有沒有可能遮蔽了新的物理?——《撞出上帝的粒子》
貓頭鷹出版社_96
・2023/01/27 ・2632字 ・閱讀時間約 5 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

對撞機能夠給出什麼答案?

物理學家想用大型強子對撞機來解答的重要問題,可以總結如下:在大型強子對撞機的能量級下,粒子物理的標準模型是否有效?「對撞機能量級」是個大大的躍進,因為其能量大小超越了電弱對稱破缺尺度;在這個尺度之上,兩種基本作用力相互統一,而 W 和 Z 玻色子、甚至所有其他基本粒子的質量,也許都是起源於此。

從空中鳥瞰大型強子對撞機的地理環境。圖/wikipedia

如果標準模型可以成功描述新能量範疇的現象,希格斯粒子應該就會存在,但看來不會有什麼其他的新發現;反之,如果標準模型失效,也許就沒有希格斯粒子了,不過背後一定會藏著稀奇古怪的事物。其實有個不易察覺的問題會左右這件事:我們究竟有多了解標準模型在此能量級下預測的現象?這並不容易回答。

一般而言我們並沒有能耐百分之百準確地解出標準模型。所有人都是用近似法。而絕大多數的近似方法之所以可行,是因為基本作用力的「耦合」,也就是強度,沒有很大。「耦合」就是在物理過程對應的費曼圖中,每個作用頂點帶有的值。(參見【科學解釋 8】)

微擾理論的應用

作用力的強度可以用一個數值來表示。如果說這個數值是 0.1,那麼兩個粒子交互作用的機率就會和 0.1 乘上 0.1,也就是 0.01 成正比。要是有三個粒子,機率就變成 0.1 的三次方,0.001,四個粒子的話就是 0.0001,如此這般。由此可知,如果耦合值很小,你就可以忽略比方說四個粒子以上的粒子交互作用―超過這個臨界值的項對於主要結果都只是極小的微擾罷了,因為前面至少會乘上 0.1 的五次方,也就是 0.00001。

可見更多粒子的反應項只會些微改變原本的結果而已。這就是「微擾理論」的例子,微擾理論廣泛運用於解決物理界和化學界中許多的問題。只要耦合值很小、也就是作用力很弱,這個理論就十分準確。

然而,這種近似法並不是永遠有效。微擾理論失效的地方大多涉及強核力、也就是量子色動力學。這就是為何大家要把這種作用力稱為強核力。我們不是故意要混淆視聽的,強核力的確和它的名字一樣難以應付。

舉例來說,在我們對撞質子,想一探其內部夸克及膠子的種類分布時,某些方面的資訊其實無法從先前所提的原則計算得到(參見 4.5 節)。除此之外,我們也無法算出夸克和膠子最後是如何結合成新的強子的。雖然大家手上有量子色動力學的限制條件,也有一些基本的能量守恆、及動量守恆定律,以及不少從其他地方得到的數據,卻無法用微擾理論。

由二個上夸克及一個下夸克所構成的質子。圖/wikipedia

原因在於強核力的耦合值非常接近一,不論幾次方都還是一。因此,不管你計算的對象是幾個粒子,得到的結果都不會收斂到某個可信的值。最終我們只好依據自己的經驗來猜測結果、或建立模型。而這樣的結論一直都有調整空間。

因此我們要嚴肅看待一個問題:大家在調整模型的時候,實際上可能會遮蔽了令人興奮的新物理。要避免這個問題,你得拿自己熟悉、以微擾理論計算的結果,連結上自己還不太明白、有調整空間的模型。我想像出一個比較毛骨悚然的情景來譬喻這件事――一具以精準預測架構的骨架,嵌在以最佳猜想組成的濕軟肉體內。

肉體的形狀可以改變。你可以重搥它的肚子,或捏它的臉頰(相對來說比較不痛);但是它有兩隻手兩隻腳,如果你打斷了某根骨頭,自己一定會知道。

用既有的知識探索未知

無論如何,大家利用電腦程式來把可塑的模型、與不易動搖的微擾理論整合在一起,而且絕大部分的工作都已經完成了;這種程式就是蒙地卡羅事件產生器(Monte Carlo event generator)。程式不但能編譯大部分我們擁有的粒子對撞現象的相關知識,同時也是個珍貴的工具,能協助物理學家設計新的實驗,並釐清既有的實驗對不同模擬數據會如何反應與解讀。「蒙地卡羅」這個名字有其典故,因為就和俄羅斯輪盤賭注一樣,這種事件產生器用上了很多隨機的數字。

這一切其實都牽涉到一點有趣的科學社會學。身為一位理論學家,有時你會因為投入某類蒙地卡羅事件產生器相關的研究而吃虧。你的一篇論文可能已經被引用了數千次,大家還是會說:「不過是電腦軟體罷了。」或是「這只是蒙地卡羅那類的玩意兒。」反之,要是你是發表一篇弦論的論文,又被引用這麼多次的話,你就能像個巨人般橫行全世界了。但說到底,弦論努力想預測的現象距離實證還是很遙遠,蒙地卡羅事件產生器卻可以實際解釋數據。

蒙地卡羅事件產生器雖然不是唯一的辦法,大致上仍是物理學家在理解標準模型的意義、與儘量試著利用模型精確預測現象時,所付出的一份心血。

粒子物理標準模型。圖/wikipedia

雖然和大型強子對撞機的學界相比,蒙地卡羅事件產生器的研究社群規模較小,但相對來說,這個領域的成員盡的心力甚至不會比大家建造對撞機的付出還要少。美國物理學會也許是考量到了這一點,將 2011 年的櫻井獎(J.J. Sakurai Prize)頒給在這個領域工作的三位理論學家,分別是韋伯(Bryan Webber)、阿塔瑞利(Guido Altarelli)、斯舍斯特蘭(Torbjörn Sjöstrand)。頒獎典禮的引言如下:

因為三位物理學家的洞見,我們得以縝密驗證粒子物理的標準模型,實現高能物理實驗的目標、並從中學習量子色動力學、電弱交互作用、與可能的新物理的確切知識。

我很開心他們獲獎,因為其中兩位是我很親近的朋友,也更是因為三人所寫的計算方法及程式對大型強子對撞機幾乎所有的研究都十分重要,像是確保大家不會在不知情的情況下遮蔽任何新的物理。當前,我們正在嘗試確認希格斯粒子搜尋實驗的不定變數大小,並縮減其數量;人人都在尋找關鍵的三標準差證據、甚至是五標準差的大發現。為了這個目標,許多人夜以繼日持續比對新的數據和蒙地卡羅事件產生器的結果。

——本文摘自《撞出上帝的粒子:深入史上最大實驗現場》,2022 年 12 月,貓頭鷹出版,未經同意請勿轉載。

貓頭鷹出版社_96
50 篇文章 ・ 20 位粉絲
貓頭鷹是智慧的象徵。1992年創社,以出版工具書為主。經過十多年的耕耘,逐步擴及各大知識領域的開發與深耕。現在貓頭鷹是全台灣最重要的彩色圖解工具書出版社。最富口碑的書系包括「自然珍藏、文學珍藏、台灣珍藏」等圖鑑系列,不但在國內贏得許多圖書獎,市場上也深受讀者喜愛。貓頭鷹的工具書還包括單卷式百科全書,以及「大學辭典」等專業辭典。貓頭鷹還有幾個個性鮮明的小類型,包括《從空中看台灣》等高成本的視覺影像書;純文字類的「貓頭鷹書房」,是得獎連連的知性人文書系;「科幻推進實驗室」則是重新站穩台灣科幻小說市場的新系列,其中艾西莫夫的科幻小說,已經成為台灣讀者的口碑選擇。

1

11
11

文字

分享

1
11
11
2021 年《Science》年度十大科學突破
PanSci_96
・2021/12/29 ・5289字 ・閱讀時間約 11 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

轉眼就來到 2021 年的尾聲。今年,《Science》雜誌評選的「年度十大科學突破」橫跨眾多領域,包括 AI、天文、物理、生物、醫學,以及備受矚目的能源議題,趕快來看看究竟是哪十項突破吧!

十大突破之首——利用 AI 預測蛋白質結構

AI 預測兩種蛋白質如何在酵母菌中形成參與修復 DNA 的複合物。圖/SCIENCE

蛋白質是組成生物體不可或缺的分子。在 1950 年代,科學家透過分析 X 射線繪製蛋白質結構。然而,既有的方法在繪製成本上過於高昂,往往得耗費數年時間,因此在 1970 年代,科學家開始運用計算機建模,預測蛋白質的折疊方式。直到 2018 年,Google 旗下的 DeepMind 團隊開發了 AI 軟體「阿爾法摺疊」(AlphaFold),使得該領域研究取得突破性進展。

多虧這項 AI 技術,科學家得以精準、快速、大量繪製蛋白質結構。今年 7 月,DeepMind 團隊宣布他們成功分析了 350,000 種人體蛋白質,佔所有已知人體蛋白質的 44%,更預計在明年發布所有已知物種的蛋白質結構,約莫 1 億個。團隊也正在進行更進一步的研究,預測這些蛋白質如何在生物體內相互作用,用來製作新型抗病毒藥物。

在這 COVID-19 肆虐的大疫之年,科學家更利用阿爾法摺疊模擬 Omicron 變種病毒,研究棘蛋白突變帶來的影響,試圖找出中和抗體失效的原因。AI 預測蛋白質結構的技術不僅徹底革新分子生物學領域,也勢必在醫學領域大放異彩!

探勘古代洞穴,解鎖 DNA 寶庫

在墨西哥 Chiquihuite 洞穴記錄沉積物樣本的研究員。圖/SCIENCE

誰說沒有化石就不能研究古生物?科學家今年踏足古代洞穴,採集土壤裡的人類細胞核 DNA,藉此重建古代生態系,釐清世界各地穴居人的身份。在美國,Satsurblia 洞穴存有尼安德塔人未知譜系的女性 DNA;在西班牙,Estatuas 洞穴中的土壤 DNA 揭露 8 萬至 11.3 萬年前人類的遺傳特徵,證實在 10 萬年前的冰河時期結束後,某個尼安德塔人譜系取代了其他眾多人類譜系。

除了人類以外,這種研究方法還可以運用在其他生物上,比如在墨西哥 Chiquihuite 洞穴中,有研究員採集到 1.2 萬年前的黑熊 DNA。與現代熊 DNA 比對後,科學家發現黑熊在上個冰河時期結束後,向北遷徙到阿拉斯加。

「核融合反應」的歷史性突破

192 道雷射光聚在微小的燃料芯塊周圍,準備進行融合反應。圖/SCIENCE

太陽之所以能發光發熱,供給地球能量,都要歸功於太陽內部不斷進行著的核融合反應。長期以來,科學家為了解決地球能源不足的問題,不斷嘗試人工進行核融合反應,可是要達到足夠產生融合反應的壓力和溫度非常困難(請參考:融合能量增益因子/維基百科)。今年,美國國家點火設施(NIF)運用 1.9 兆焦耳的雷射脈衝,壓縮胡椒粒大小的氘(氫的同位素),產出 1.35 兆焦耳的能量,遠高於先前實驗獲得的 17 萬焦耳。

目前,NIF 仍持續進行實驗,試圖藉由更換燃料或調整雷射脈衝數值來提高能量產出,找出能夠最大化能量轉換比例的組合。未來,或許融合反應能夠成為供給地球能源的主流方法!

COVID-19 口服藥「莫納皮拉韋」問世

默克藥廠研發的 COVID-19 口服藥「莫納皮拉韋」。圖/SCIENCE

COVID-19 口服藥終於問世啦!今年秋季,美國默克(Merck)藥廠發布數據,證明其研發的 COVID-19 口服藥「莫納皮拉韋」(Molnupiravir)可將未接種疫苗者的重症和死亡率降低 30%;如果在出現症狀的 3 日內服用輝瑞開發的口服藥 PF-07321332,則可降低 89% 住院率。

雖然口服藥無法取代疫苗接種,卻扮演非常關鍵的角色。若是 Omicron 變異株造成大量突破性感染,或許口服藥就能接棒,防堵病毒擴散。

創傷後壓力症候群的新興療法——搖頭丸

正在進行 MDMA 治療的創傷後壓力症候群患者。圖/SCIENCE

什麼?搖頭丸還能治病?沒錯!這份發表在《Nature Medicine》的研究證實搖頭丸的主要成分「3,4-亞甲基二氧基甲基苯丙胺」(MDMA)可以減輕創傷後壓力症候群(PTSD)患者的症狀,而且效果十分顯著。該研究將 76 名受試者分成 MDMA 組和安慰劑組,接受 3 次療程,發現 MDMA 組有 67% 的病患試後不再符合 PTSD 的診斷標準,而安慰劑組僅有 32%。

可是這項結果也引起了對於雙盲實驗的質疑,因為試後有高達 90% 的受試者表示他們其實知道自己的組別,這可能大幅影響症狀改善的機率。目前正在進行更大型的實驗,若實驗結果確定 MDMA 能治療 PTSD,預計將在 2023 年提交美國食品藥物管理局(FDA)批准上市。

開發單株抗體,對抗各類傳染性疾病

單株抗體(紅色和藍色)對抗 COVID-19 病毒(紫色球狀物)假想圖。圖/SCIENCE

單株抗體(mAb,簡稱單抗)是融合腫瘤細胞與免疫細胞製造而成的人工抗體,不但有腫瘤細胞不斷分裂的能力,也有免疫細胞產生抗體的能力——簡單來說,單抗可以大量製造相同的抗體,更有效地打擊病毒。除了往年的伊波拉病毒、炭疽病、狂犬病單抗以外,今年也順利合成了瘧疾、愛滋病和呼吸道合胞病毒(RSV)的單抗。目前,科學家正在積極開發更多種類的單抗,首要目標是打擊流感、茲卡病毒和巨細胞病毒(CMV),使得這項新技術有望成為打擊傳染病的「標配」。

「洞察號」揭密火星內部結構

地震波顯示火星有一層薄薄的地殼、地函和液態核心。圖/SCIENCE

自 2018 年「洞察號」(InSight)登陸火星至今,科學家蒐集 35 筆地震數據,藉以估計火星的地殼厚度、地函結構和地核大小。今年的數據分析結果出爐後,發現這顆紅色行星的平均地殼厚度不到 40 公里,地函非常淺,而且只有一層(不像地球有上、下兩層地函),地核特別巨大,佔了火星體積一半,主要組成元素是低密度的液態鐵和液態鎳,以及硫、氧、碳和氫等較輕元素。這是人類首次使用地震數據探測其他行星的內部結構,也是探索神秘火星的一大步。

改寫粒子物理學模型的繆子實驗

繆子在美國費米實驗室的磁場中旋轉。圖/SCIENCE

在 1960 年代,粒子物理學家提出理論解釋強核力、弱核力和電磁力,這三種理論被稱為標準模型。然而,科學家今年發現「繆子」(Muon)——一種比電子更重、更不穩定的粒子——其實際測得的 g 值(自旋角動量與磁性大小之間的關係)比標準模型所預測的還要大,且兩者的誤差範圍沒有交集。

目前,眾多科學家正在美國費米實驗室(FNAL)進一步分析實驗數據。假如繆子實驗沒有任何閃失,這樣的結果將撼動物理學界,徹底改寫擁有 50 年歷史的標準模型。

CRISPR 基因編輯——確實能在體內發揮療效!

RNA(藍色)將 DNA 切割酶(白色)引導至目標(橙色)。圖/SCIENCE

去年,科學家運用 CRISPR 基因編輯技術,在實驗室修改造血幹細胞,治癒鐮刀型貧血和乙型(β 型)地中海貧血。今年,科學家更大膽了,直接在人體內部署 CRISPR!研究結果顯示,這種基因編輯技術可以有效減少一種有毒的肝臟蛋白質數量,甚至改善遺傳性失明患者的視力,讓兩名幾乎完全失明的患者能夠感覺到光線,並且在昏暗的光線下避開障礙物。

體外胚胎培養——研究生命體早期發育歷程

在罐中成長的小鼠胚胎可以幫助科學家更了解人類發育的早期階段。圖/SCIENCE

透過研究胚胎,科學家得以找出先天性缺陷和流產的原因,但礙於倫理學和法律規範,目前對於體外胚胎培養的了解並不多。今年,有團隊利用誘導性多能幹細胞(Induced pluripotent stem cell,簡稱 iPS 細胞)成功複製人類的囊胚(受精後準備孵化及著床的胚胎),另外有團隊發現皮膚細胞經 iPS 細胞誘導、轉化後,也可以產生類似囊胚的結構,作為體外胚胎實驗的替代品。

除了十大科學突破以外……

《SCIENCE》今年也特別列出三項影響科學發展的重大阻礙,包括難解的氣候議題、備受爭議的癌症新藥,以及在疫情之下遭受猛烈砲火抨擊的科學家。

越來越熱!減碳目標恐難以達成

這座位於德國博克斯貝格(Boxberg)的燃煤電廠預計 2038 年才會關閉。圖/SCIENCE

自從工業革命以來,全球氣溫升幅達到了 1.2°C,近年極端氣候事件更是層出不窮。對此,今年的聯合國氣候變遷大會(COP26)達成多項協議,包括將全球氣溫升幅限制在 1.5°C 以內、確立碳交易市場架構,以及減少碳排放量。然而,全球經濟現在依然大幅仰賴化石燃料,況且聯合國協議不具約束力,是否能達成減碳目標,必須取決於各國政策制訂。

充滿爭議的阿茲海默症新藥「Aduhelm」

正子斷層掃描(PET)顯示 Aduhelm 能有效清除 β 類澱粉蛋白斑塊。圖/SCIENCE

美國食品藥物管理局(FDA)近 20 年來首次核准阿茲海默症藥物,即百健(Biogen)藥廠開發的 Aduhelm。經臨床實驗證實,這種藥物能清除異常堆積在患者腦內的「β 類澱粉蛋白斑塊」,也就是失智症發病和惡化的原因。照理說,這是患者和家屬期盼以久的好消息,卻被不少大型醫院和醫學中心拒絕採用,因為在兩項大型臨床實驗中,只有一項實驗證明其改善認知功能的療效勝過安慰劑,卻沒有證據顯示 Aduhelm 有顯著的改善效果。

當疫情碰上政治形態——夾縫中求生存的科學家

比利時病毒學家範蘭斯特(Marc Van Ranst)收到來自極右派狙擊手柯寧斯(Jürgen Conings)的死亡威脅後躲避自保。圖/SCIENCE

長期以來,科學家遭受攻擊的事件層出不窮,但在今年,對於 COVID-19 的政治分歧引發大眾對科學家前所未有的敵意,包括各種形式的恐嚇、抗議和死亡威脅。遭受威脅的有美國首席防疫專家佛奇(Anthony Fauci)、英國首席醫療官惠提(Chris Whitty),以及世界各地的學者和防疫工作者。

《Nature》訪問 321 名研究人員,發現有超過 50% 的人信譽受到攻擊,15% 的人收到死亡威脅,甚至有許多人從此辭去他們熱愛的研究工作。

所有討論 1