0

0
0

文字

分享

0
0
0

反物質星艦可行嗎?打造那些科幻小說中的夢幻交通工具——《離開太陽系》

時報出版_96
・2019/04/15 ・5114字 ・閱讀時間約 10 分鐘 ・SR值 545 ・八年級

編按:本文摘自《離開太陽系》第八章:打造星艦。
星艦是一種尚處於理論階段,用來作恆星際旅行的交通工具。嚴格上星艦需要人駕駛,在不超過壽命的期間內到達目的地恆星系。星艦一詞目前只出現在科幻小說中,現實中人類還沒有創造出真正可以進行星際旅行的機具。

圖/wikimedia

為何要追星逐月?
因為我們的靈長類祖先選擇展望更遠的山頭,而我們是他們的後代。
因為我們不會在這裡無限期繼續生存。
因為眾星就在遠方,在嶄新的地平線外召喚我們。
──天體物理學家兄弟詹姆斯與古格里.班福德

百年星艦會議:擬定星際旅行時間表,帶領人類航向宇宙

二○一一年, DARPA 和 NASA 聯合贊助一場名為「百年星艦」(100 Year Starship)的研討會,成果豐碩。這場研討會的目標不只是要在百年內實際造出星艦,更要結合頂尖科學家之力,為下個世紀擬定可行的星際旅行時間表。這項計畫由一群資深物理學家和工程師組成的非正式團體「老衛士」(Old Guard)負責統籌,其中不少人已年越古稀。他們寄望匯集眾人智識,帶領人類航向星辰。這股熱情至今燃燒數十載,不減當年。

藍迪斯也是老衛士之一。不過這個團體還有一對奇葩──詹姆斯與古格里.班福德,這對雙胞胎碰巧都是物理學家,而且也都是科幻作家。詹姆斯告訴我,他還是小孩子的時候就迷上星艦,狼吞虎嚥所有能到手的科幻小說,尤其是羅伯特.海萊因的「太空軍」系列(Space Cadet)。

搭載夢想的星艦。圖/thewhizzer

他了解到,如果他和弟弟真心對太空感興趣,那就應該去學物理。學得越多越好。所以兩人立志要拿到物理博士學位。現在詹姆斯是「微波科學公司」(Microwave Sciences)董事長,數十年來始終積極投入「高功率微波系統」相關研究。古格里是加州大學爾灣分校的物理教授,另一個身分則是眾人嚮往的科幻界桂冠「星雲獎」(Nebula Award)得主。

百年星艦研討會結束之後,詹姆斯和古格里合寫一本書:《星艦世紀:航向最偉大的地平線》(Starship Century: Toward the Grandest Horizon),其中包含眾人在研討會發表的許多意見想法。本身是微波輻射專家的詹姆斯相信,光帆最有可能帶領人類飛出太陽系。不過他也表示,另類純物理設計也發展了相當長的一段歷史,因此這些造價貴得離譜、卻是依紮實物理定律所設計出來的新奇玩意兒,將來有一天說不定就真的做出來了。

100%能量轉換率的反物質星艦,有可能嗎?

第五波科技革命(包括反物質引擎、光帆、核融合引擎、奈米船等)或許能將星艦設計推往令人振奮的新視界。曾現身《銀河飛龍》的反物質引擎說不定會成真:這種引擎能提取宇宙蘊藏量最豐富的能源、並藉由物質與反物質碰撞,直接將物質轉換成能量。

顧名思義,「反物質」與「物質」完全相反,兩者所帶的電荷也相反。是以「反電子」帶正電,「反質子」帶負電。(我曾經在一群高中生面前嘗試驗證反物質:將一顆會放出反電子的「鈉–二十二」膠囊放進雲霧室[cloud chamber],並且拍下反物質通過時留下的美麗痕跡。後來我還造了一座兩百三十萬電子伏特的電子迴旋加速器,希望能分析反物質的特性。)

反物質與物質完全相反,兩者所帶的電荷也相反。圖/wikipedia

物質與反物質發生碰撞時,兩者會互相湮滅並化為純能量,所以這個反應釋出的能量轉換效率為百分之百。相較之下,核武的能量轉換率僅百分之一,意即氫彈所含的能量幾乎都浪費掉了。

反物質火箭的設計相對簡單:將反物質儲放在安全槽內,再以穩定流速注入內燃室。反物質與普通物質在內燃室內「乾柴遇烈火」,爆炸般地釋出巨量 γ 射線和 X 射線。反應產生的能量經排氣室出口噴出,產生推進力。

詹姆斯.班福德特別告訴我,雖然反物質火箭最受科幻迷青睞,但要想製造這種引擎會碰上幾個大問題。其一:反物質是自然現象,但其存量相對來說非常稀少,因此我們必須製造大量反物質供引擎使用。全球第一顆「反氫原子」──結構為一顆反電子圍繞反質子旋轉──於一九九五年、在瑞士日內瓦的「歐洲核子物理研究中心」(European Organization for Nuclear Research,CERN)製造誕生。

那些都是理想狀態,現實中的難題還是無法解決

研究人員將一道普通質子束射向一枚普通物質標靶,質子撞擊標靶後產生些許反質子,然後再利用巨大磁場引導質子與反質子,令其一左一右分道揚鑣。接下來,反質子會降速並儲存在「磁力阱」(magnetic trap)內,與反電子組成反氫原子。二○一六年, CERN 的物理學家取得反氫原子,分析環繞反質子的反電子殼層,一如預期地發現反氫原子和普通氫原子的「能階」(energy level)可完全對應。

CERN 物理學家宣稱,「假如我們能把在 CERN 製造的反物質全部集合起來、與普通物質進行湮滅,這個反應產生的能量大概可以讓一顆電燈泡持續亮好幾個月。」推動火箭絕對需要更多能量,更別提反物質還是世上最昂貴的一種物質形式。以今日造價估算,製作一公克反物質大概需要七十兆美元。目前,科學家只能利用粒子加速器(建造和運作成本可謂天價)製作極小量的反物質。 CERN 的「大型強子對撞機」(LHC)是全世界威力最強的粒子加速器,造價超過百億美元,卻只能產出薄薄一束反物質。若要儲備足以驅動星艦的反物質燃料,美國大概會破產吧。

大強子對撞機(LHC)是全世界威力最強的粒子加速器,造價昂貴,卻只能產出薄薄一束反物質。圖/flickr

全球現有的大型原子對撞加速器都屬於「目的導向」設備,僅供研究使用,在製作反物質方面更是極度沒效率。目前想過的部分解決方案,是建造專門用來「攪拌原子」的工廠設施。 NASA 科學家哈洛德.葛里希(Harold Gerrish)認為,如此一來,反物質的製造成本可望降至每公克五十億美元。

至於「存放」則是另一道難題,同樣所費不貲。若將反物質置於瓶中,它會撞擊瓶身,要不了多久便湮滅消失。這時就需要「彭寧離子阱」(Penning traps)來框限反物質。這種離子阱利用磁場「抓住」反物質原子,令其懸浮,防止它們與容器接觸。

在科幻小說中,諸如成本、儲存這類難題,有時會透過「天上掉下來的禮物」而順利解決(譬如突然發現一顆「反物質小行星」,讓人類能廉價取得反物質)。可是這種假設場景也同樣冒出一個複雜問題:反物質究竟來自何方?
架起儀器朝外太空掃視,舉目所及皆是「物質」,而非「反物質」。我們之所以曉得這一點,是因為電子與反電子相撞至少會放出一百零○二萬電子伏特的能量──這是反物質撞擊的指紋。然而在檢視宇宙時,我們只能偵測到非常微量的這類輻射。我們周圍的可觀測宇宙絕大部分是由普通物質──也就是構成你我的相同物質──所組成的。

圖/pixabay

物理學家相信,在「大霹靂」那一刻,宇宙處於完美的對稱狀態,含有等量的物質與反物質。若真是如此,兩種物質的湮滅作用本應十分完美且徹底,宇宙亦將純粹由放射線組成。可是你在這裡、我在這裡,你我皆由照理說已不存在的物質組成。我們的存在與現代物理理論相悖。

科學家還沒搞清楚宇宙的物質何以多於反物質。大霹靂時,僅有約百億分之一的普通物質熬過爆炸,你我也是其中一部分。目前的主流理論是,某種東西在大霹靂時違反了物質與反物質的完美對稱性,但我們還不識其真面目。諾貝爾獎仍癡癡等待能解開這道謎題的有志之士。

對所有期望打造星艦的人來說,反物質引擎始終都在決選的優先名單上。但我們對反物質的特性仍幾近一無所知。舉例來說,我們不曉得反物質「朝上」或「朝下」墜落。按現代物理學預測,反物質和普通物質一樣會朝下墜落。但這麼一來,「反重力」大概就不可能存在了。話說回來,這項理論和其他多數反物質理論皆不曾測試檢驗過。受制於成本和人類的有限理解,反物質火箭大概到下個世紀仍只會是美夢一樁──除非,「外太空飄過一顆反物質小行星」此等好事恰巧落在我們頭上。

另一個待嘗試的迷人概念:衝壓噴射核融合星艦

衝壓噴射融合火箭則是另一種迷人概念。這種火箭外表看起來像個巨大霜淇淋筒,鏟起星際間的氫氣、送進核融合反應器予以濃縮,產生能量。衝壓噴射火箭的推進模式和噴射機或巡弋飛彈一樣,相當符合經濟效益:譬如噴射機無需自行攜帶氧化劑,只要吞進大量空氣就能節省成本。而太空更是充滿無盡的氫氣,燃料供應無虞,故星艦可以持續加速到永遠。這種動力系統和光帆一樣,比衡無上限。

衝壓噴射核融合火箭。這種火箭能把星際間的氫氣「鏟」進核融合反應爐,產生動力。圖/時報出版

波爾.安德森(Poul Anderson)的名作《 τ 零》(Tau Zero),描述一具衝壓噴射火箭因故障而無法關閉的故事。當火箭加速至逼近光速時,一些光怪陸離、涉及相對論的扭曲現象逐漸浮現:火箭內時間變慢,但火箭外的宇宙時間仍正常前進。火箭速度越快,火箭裡的時間越慢。然而對於火箭或星艦上的人來說,一切看起來再正常不過,反倒是外頭(宇宙)的時間飛快掠過。最後,這艘星艦的速度快到全體組員只能無助地看著時光以數百萬年的速度飛逝。在航向未來數十億年之後,星艦組員意識到宇宙已不再膨脹,實際上反而正在塌縮:宇宙膨脹終於開始反轉。隨著宇宙邁向終點「大崩塌」(Big Crunch),星際逐漸聚集、宇宙溫度驟升。來到故事尾聲,星辰開始崩塌,星艦設法擦過並逃離宇宙這團大火球,目睹新宇宙在「大霹靂」中誕生。這篇故事或許荒誕不經,理論基礎倒是完全遵守愛因斯坦相對論。

讓咱們暫且把前段的末日預言放在一邊。初看之下,衝壓噴射核融合火箭這玩意兒厲害到不像是真的。但幾年過去,有人開始提出批評:譬如那把「鏟子」或許得做到好幾百公里寬,不僅大得不切實際、製作成本更是無人負擔得起。此外,這種引擎的核融合速度可能無法產生足夠的動力,不足以維持星艦巡航。詹姆斯.班森博士(James Benson)也明白地指出,或許銀河系內其他區域的氫氣量充足,但我們所在的這一區(太陽系)氫氣不足,無法餵飽衝壓噴射引擎。另外還有人宣稱,當衝壓噴射火箭通過太陽風帶時,太陽風的牽引力可能超過火箭推進力、使其無法達到需要的相對速度。目前物理學家已著手修改設計,期望能修正這些缺點。不過在衝壓噴射火箭成為實際選項之前,人類還有好長一段路要走。

除此之外,還有星艦旅行必須面對的難題

在此必需特別強調一點:前面提及的所有星艦旅行,都必須面對與「近光速移動」有關的諸多問題。最大的危險是撞上小行星,即便是再微小的小行星都可能畫破或刺穿星艦防護罩。誠如先前所提,宇宙碎片常在太空梭表面留下刮痕或創口,而這些碎片有時會以接近軌道速度(近地軌道)的速度、或時速近三萬公里的高速撞上太空梭。然而,如果飛行速度接近光速,那麼宇宙碎片撞擊的速度也會是前述速度的許多許多倍,搞不好還會令星艦粉碎解體。

在電影中,這類難題大多會藉由「可輕易驅除所有微小隕石的超強力場」加以排除。然而不幸的是,這種力場只存在在科幻作家的腦袋裡。就現實而言,要形成電場、磁場確實不難,但即使是不帶電的塑膠、木頭、水泥等家中一般常見物品,依然能輕易穿透這些力場。此外,遊走外太空的微小隕石因為不帶電,故無法利用電場或磁場令其偏向。至於重力場則因為具吸引力、作用力又弱,也不適合作為我們需要的防護力場。

遊走外太空的微小隕石因為不帶電,故無法利用電場或磁場令其偏向。圖/pixabay

「煞車」則是另一項挑戰。試想,若以趨近光速的速度迂迴穿越太空,接近目的地時該如何減速?光帆仰賴太陽光或雷射光提供動力,卻無法用於減速,故大多只能用於「飛越」任務。

讓這些核子動力火箭來個一百八十度大迴轉、令推進力徹底轉向,或許是這類火箭的最佳煞車方式。不過如此一來,每趟任務粗估會有一半的推進力用於達到目標速度、另一半則用於減速。關於光帆該如何減速,或可將帆體反過來,利用目的地的星光使其降速。

另外還有一個問題:具「載人」功能的星艦體積多半相當巨大,故只能在太空組裝。因為如此,人類必須執行多次太空任務,將建造星艦所需的材料分批送往近地軌道,然後再安排另一批太空任務,完成星艦組裝。為避免經費嚴重超支,科學家必須針對太空發射任務構思一套更經濟的執行方式──於是「太空電梯」登場的時刻到了。

 

 

 

本文摘自《離開太陽系:移民火星、超人類誕生到星際旅行,探索物理學家眼中的未來世界》,2018 年 12 月,時報出版

文章難易度
時報出版_96
136 篇文章 ・ 21 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。


1

4
0

文字

分享

1
4
0

解析「福衛七號」的觀測原理——它發射升空後,如何讓天氣預報更準確?

科技大觀園_96
・2021/10/25 ・2915字 ・閱讀時間約 6 分鐘

2019 年 6 月 25 日,福爾摩沙衛星七號(簡稱福衛七號)在國人的引頸期盼下升空。一年多來(編按:以原文文章發佈時間計算),儘管衛星還沒有全部轉換到預定的軌道,但已經回傳許多資料,這些資料對於天氣預報的精進,帶來很大的助益。中央大學大氣系特聘教授黃清勇及團隊成員楊舒芝教授、陳舒雅博士最近的研究主題,就是福衛七號傳回的資料,對天氣預報能有哪些改善。

掩星觀測的原理

要介紹福衛七號帶來的貢獻,得先從它的上一代──福衛三號說起。福衛三號包含了 6 顆氣象衛星,軌道高度 700~800 公里,以 72 度的傾角繞著地球運轉(繞行軌道與赤道夾角為 72 度)。這些衛星提供氣象資訊的方式,是接收更高軌道(約 20,200 公里)的 GPS 衛星所放出的電波,這些電波在行進到氣象衛星的路程中,會從太空進入大氣,並產生偏折,再由氣象衛星接收。換句話說,氣象衛星接收到的電波並不是走直線傳遞來的,而是因為大氣的折射,產生了偏折,藉由偏折角可推得大氣資訊。

▲低軌道衛星(如福衛三號)持續接收 GPS 衛星訊號,直到接收不到為止,整個過程會轉換成一次掩星事件,讓科學家取得大氣溫濕度垂直分佈。圖/黃清勇教授提供

氣象衛星會一邊移動,一邊持續接收電波,直到接收不到為止,在這段過程中,電波穿過的大氣從最高層、較稀薄的大氣,逐漸變為最底層、最接近地面的大氣,科學家能將這段過程中每一層大氣所造成的偏折角,通過計算回推出折射率,而折射率又和大氣溫度、水氣、壓力有關  ,因此可再藉由每個高度的大氣折射率,得出溫濕度垂直分布,這種觀測方式稱為「掩星觀測」。掩星觀測所得到的資料,可以納入數值預報模式,進一步做各種預報分析。 

資料同化──觀測與模式的最佳結合

在將掩星觀測資料納入數值預報模式時,必須先經過「資料同化」的過程。數值預報模式內含動力方程式,可以模擬任何一個位置的氣塊的運動,但是因為大氣環境非常複雜,模擬時不可能納入全部的動力條件,因此模擬結果不一定正確。而另一方面,掩星觀測資料提供的是真實觀測資訊,楊舒芝形容:「觀測就像拿著照相機拍照,不管什麼動力方程式,拍到什麼就是什麼。」但是,觀測的分布是不均勻的—唯有觀測過的位置,我們才會有觀測資料。

所以,我們一手擁有分布不均勻但很真實的觀測資料,另一手擁有很全面但可能不太正確的模式模擬。資料同化就是結合這兩者,找到一個最具代表性的大氣初始分析場,再以這個分析場為起點,去做後續的預報。資料同化正是楊舒芝和陳舒雅的重點工作之一。 

中央大學分別模擬 2010 年梅姬颱風和 2013 年海燕颱風的路徑,發現加入福三掩星觀測資料之後,可以降低颱風模擬路徑的誤差。圖/黃清勇教授提供

由於掩星觀測取得的資料與大氣的溫度、濕度、壓力有密切關係,因此在預報颱風、梅雨或豪大雨等與水氣量息息相關的天氣時,帶來重要的幫助。黃清勇的團隊針對福衛三號的掩星觀測資料對天氣預報的影響,做了許多模擬與研究,發現在預測颱風或氣旋生成、預報颱風路徑,以及豪大雨的降雨區域及雨量等,納入福衛三號的掩星觀測資料,都能有效提升預報的準確度。

黃清勇進一步說明,由於颱風都是在海面上生成的,而掩星觀測技術仰賴的是繞著地球運行的衛星來收集資料,相較於一般位於陸地上的觀測站,更能夠取得海上大氣資料,因此對於預測颱風的生成有很好的幫助。另一方面,這些資料也能幫助科學家掌握大氣環境,例如對於太平洋高壓的範圍抓得很準確,那麼對颱風路徑的預測自然也會更準。根據團隊的研究,加入福衛三號的掩星觀測資料,平均能將 72 小時颱風路徑預報的誤差減少約 12 公里,相當於改進了 5%。

豪大雨的預測則不只溫濕度等資訊,還需要風場資訊的協助,楊舒芝以 2008 年 6 月 16 日臺灣南部降下豪大雨的事件做為舉例,一般來說豪大雨都發生在山區,但這次的豪大雨卻集中在海岸邊,而且持續時間很久。為了找出合理的預測模式,楊舒芝探討了如何利用掩星觀測資料來修正風場。 

從 2008 年 6 月 16 日的個案發現,掩星資料有助於研究團隊掌握西南氣流的水氣分佈。上圖 CNTL 是未使用掩星資料的控制組,而 REF 和 BANGLE 皆有加入掩星資料(同化算子不一樣),有掩星資料可明顯改善模擬,更接近觀測值(Observation)。圖/黃清勇教授提供

福衛七號接棒觀測

隨著福衛三號的退休,福衛七號傳承了氣象觀測的重責大任。福衛七號也包含了 6 顆氣象衛星,不過它和福衛三號有些不同之處。

福衛三號是以高達 72 度的傾角繞著地球運轉,取得的資料點分布比較均勻,高緯度地區會比低緯度地區密集一些。相較之下,福衛七號的傾角只有 24 度,它所觀測的點集中在南北緯 50 度之間,對臺灣所在的副熱帶及熱帶地區來說,密集度更高;加上福衛七號收集的電波來源除了美國的 GPS 衛星,還增加了俄國的 GLONASS 衛星,這些因素使得在低緯度地區,福衛七號所提供的掩星觀測資料將比福衛三號多出約四倍,每天可達 4,000 筆。

福衛三號與福衛七號比較表。圖/fatcat 11 繪

另一方面,福衛七號的軟硬體比起福衛三號更加先進,可以獲得更低層的大氣資料,而因為水氣主要都集中在低層,所以福衛七號對水氣掌握會比福衛三號更具優勢。

從福衛三號到福衛七號,其實模式也在逐漸演進。早期的模式都是納入「折射率」進行同化,而折射率又是從掩星觀測資料測得的偏折角計算出來的。「偏折角」是衛星在做觀測時,最直接觀測到的數據,相較之下,折射率是計算出來的,就像加工過的產品,一定有誤差。因此,近來各國學者在做數值模擬時,愈來愈多都是直接納入偏折角,而不採用折射率。黃清勇解釋:「直接納入偏折角會增加模式計算的複雜度,也會增加運算所需的時間,而預報又是得追著時間跑的工作,因此早期才會以折射率為主。」不過現在由於電腦的運算能力與模式都已經有了進步,因此偏折角逐漸成為主流的選擇。 

由左至右依序為,楊舒芝教授、黃清勇特聘教授、陳舒雅助理研究員。圖/簡克志攝

福衛七號其實還沒有全部轉換到預定的軌道,不過這一年多來的掩星觀測資料,已經讓中央氣象局對熱帶地區的天氣預報,準確度提升了 4~10%;陳舒雅也以今年 8 月的哈格比颱風為案例,成功地利用福衛七號的掩星觀測資料,模擬出哈格比颱風的生成。

除了福衛七號,還有一顆稱為「獵風者」的實驗型衛星,預計 2022 年將會升空。獵風者的任務是接收從地表反射的 GPS 衛星電波,然後推估風速。可以想見,一旦有了獵風者的加入,我們對大氣環境的掌握度勢必更好,對於颱風等天氣現象的預報也能更加準確。就讓我們一起期待吧!

科技大觀園_96
156 篇文章 ・ 376 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策