0

0
0

文字

分享

0
0
0

宇宙這麼大,我們究竟找到了什麼?—「PanSci Talk:宇宙好黑好冷好寂寞?」

KevinC
・2016/07/16 ・2176字 ・閱讀時間約 4 分鐘 ・SR值 488 ・五年級

NmLdaSH

“May the force be with you.”

5/4 是國際星戰日,這一次的 PanSci Talk 特別請到兩位宇宙達人分別從微觀和巨觀兩個不同尺度來討論宇宙。宇宙之大,還有許多人類未知的範圍有待探索,而目前已知的可觀測宇宙中,我們又知道些什麼呢?宇宙中真的好黑好冷好寂寞嗎?就一起讓我們來聽聽講者們的分享吧!

28230277892_c7cd653900_z
2016年5月4日PanSci Talk 宇宙好黑好冷好寂寞大合照,這天有特地從桃園北上聽演講的朋友喔!圖/泛科學攝影

陳凱風:我們發現已知物質只佔宇宙很小一部分

陳凱風|台大物理系教授、CMS 計畫主持人

當年曾是台大最年輕副教授、專長是高能物理研究的陳凱風老師,有著可愛親切的笑容,他目前除了在台大物理系任教之外,也在日內瓦的歐洲核子研究組織的「大型強子對撞機」(LHC)擔任其中一個「緊湊渺子線圈」(CMS)計畫的主持人,主要任務是找到希格斯玻色子。

27717756724_5fb1d1bd97_z
臉上總是掛著笑容的陳凱風老師,不只是台大物理系教授,也在大強子對撞機團隊中擔任緊湊渺子線圈(CMS)計畫的主持人。圖/泛科學攝影。

在解釋 LHC 的運作原理之前,凱風老師先簡要的介紹了已知粒子的種類及組成。過去科學家們曾經認為原子就是組成物質的基本粒子了,後來才發現原子其實還可以切割成更小的粒子。目前已知的基本粒子有 17 種,不過隨著觀測技術的進步,科學家也了解到目前已知的物質其實只佔宇宙組成的一小部分,還有許多的暗物質與暗能量我們都還所知甚少。目前的未解問題包括宇宙中的粒子質量和大小是從何而來呢?還有剛被人類觀察到的重力波後續會有何發展?

螢幕快照 2016-07-01 17.21.29
基本粒子組成。圖/科學online

接著陳老師為大家介紹了大型強子對撞機(LHC)的基本原理,LHC 的建造花費了大量時間和金錢,此外還有許多研究員貢獻大量新鮮的肝來完成偵測器的線路配接,因此每個研究成果都得來不易啊!質子對撞的實驗基本架構都是先提出假設,事先用電腦程式模擬運算之後、再透過對撞實驗來驗證假設是否成立。

640px-CERN_Aerial_View
從空中俯瞰大型強子對撞機(LHC)的建造範圍和分布。圖/由Maximilien Brice (CERN) – CERN Document Server,創用CC 姓名標示-相同方式分享 3.0,wikimedia commons.

這次陳老師參與的 CMS 小組發現希格斯玻色子的過程基本上也是奠基在這個研究方法之上,不過發現希格斯玻色子只是一個開始,目前科學家所知的一切還不足以證實暗物質與暗能量的存在,所以還有很長的路途要努力。

640px-3D_view_of_an_event_recorded_with_the_CMS_detector_in_2012_at_a_proton-proton_centre_of_mass_energy_of_8_TeV
在緊湊緲子線圈探測器裏,從質心能量為 8 TeV 的質子-質子碰撞事件記錄數據製作出的三維繪景圖。圖/由McCauley, Thomas; Taylor, Lucas; for the CMS Collaboration – CMS Higgs Search in 2011 and 2012 data: candidate photon-photon event (8 TeV): 3D, r-phi and r-z transverse views,創用CC 姓名標示-相同方式分享 3.0,wikimedia commons.

徐毅宏:從電影橋段聊太空的孤獨

徐毅宏|前台北天文科學教育館研究組組長

27717754554_d960ed199d_z
有著很萌外號「徐喵」的前台北天文科學教育館研究組組長徐毅宏。圖/泛科學攝影。

生日和阿姆斯壯登月日期同一天、都是 7/20 的徐毅宏老師有個很萌的外號叫做徐喵(已融化)。長期從事科普推廣工作的他,說起話來風趣又充滿活力,今天他也用有趣的角度來切入主題,引起大家的興趣。

徐喵老師先一連舉了好幾部太空電影當開場,和大家回憶他心目中的經典片段。他說許多的作品其實都是在探討同一件事情:那就是太空人會去哪裡?宇宙到底是什麼?

Gravity-1
電影「地心引力」的這張海報完全呈現出了宇宙的孤寂感啊。圖/電影官網

徐喵老師說,目前宇宙中所有的事件都是由天文學家大膽的假設而成,用已知的理論加上過去的觀測,天文學家普遍認為現在的宇宙處於一個加速膨脹的狀態,那將來會變得如何呢?天文學家認為宇宙將來可能會有三種下場:第一種是持續老化、失去活力;第二種是膨脹到一定的程度之後開始縮小;最後一種可能則是不斷重複膨脹、縮小的循環。

那到底,宇宙是不是真的很黑很冷呢?

徐喵老師告訴我們其實宇宙裡並不是所有地方都是黑的,只要有恆星在的地方就有光,不過因為宇宙實在太大了,恆星跟恆星之間的分佈距離有時會有很大的落差,若是沒有恆星所在的位置就會黯淡無光。

hs-2004-07-n-large_web
哈伯望遠鏡拍攝的宇宙圖片。圖/Hubblesite

既然宇宙那麼大,想必地球在宇宙中一定覺得很孤獨吧?

這個問題的答案徐喵老師說要依你觀測宇宙的尺度而定,地球所在的太陽系直徑有幾百萬公里長,離太陽系最近的恆星系大約距離 4 光年多一點,而銀河系的直徑大約有十萬光年,光看銀河系內的星系之間似乎距離遙遠,不過離開銀河系之後,最近的星系距離大約 16 到 17 萬光年,這樣相較之下似乎地球又不那麼孤單了呢。


數感宇宙探索課程,現正募資中!

文章難易度
KevinC
6 篇文章 ・ 0 位粉絲
小時候曾經夢想成為太空人,隨著近視度數越來越高、數理成績越來越低,發現宇宙的距離也越來越遠,幸好喜愛科學的初衷沒有改變。 長大後就讀大眾傳播研究所,關注科學傳播、關注新媒體,希望成為一個不會被時代淘汰的媒體人。


0

28
6

文字

分享

0
28
6

極目遠眺的意義:天文學家為何追尋第一代星系

Tiger Hsiao_96
・2022/05/15 ・3764字 ・閱讀時間約 7 分鐘
  • 文/蕭予揚 清大天文所碩士生,將於約翰・霍普金斯大學攻讀天文博士
      林彥興 清大天文所碩士生,EASY 天文地科團隊總編

近日,來自東京大學和倫敦大學學院的科學家 播金優一(Yuichi Harikane) 在天文物理期刊《The Astrophysical Journal》發表了一篇論文,宣稱他們可能找到目前最遠的星系(名為 HD-1,紅移值 z 約為13),打破了原本最遠(GNz-11,z 約為 11)的紀錄。

天文學家為什麼執著要找最遠的星系呢?
是單純為了破紀錄而破、抑或是蘊藏了什麼科學涵義?
天文學家們又是怎麼尋找、並且推論這些星系多遠的呢?

HD1 的影像。圖/Harikane et al.

時間推回到二十世紀初,當時的科學家們對宇宙大小到底是恆定或是膨脹爭論不休,其中,愛因斯坦(Albert Einstein)便是支持「宇宙穩恆態理論」的知名科學家。而支持膨脹宇宙的科學家們,一直到西元 1929 年,愛德溫.哈伯(Edwin Hubble)透過測量其他星系,發現了宇宙在膨脹,才為膨脹宇宙(也就是日後人們所說的「大爆炸理論 The Big Bang Theory」)注入了一劑強心針。

接下來的各種證據,如宇宙微波背景輻射、宇宙中元素的比例等,讓天文學家們越來越確信宇宙的年齡是有限的,並開始利用紙筆與超級電腦,來推測最早、也就是第一代星系及恆星的樣貌,並嘗試用望遠鏡,來尋找早期星系是否和我們預測的相符。

科學家是如何知道距離的呢?

天文學家並沒有一把長達「一百多萬光年」的尺,那他們是如何尋找,並且知道這些早期星系距離我們有多遠呢?讓我們把兩個問題分開,先來探討在宇宙學尺度下的距離是怎麼得到的。

由於我們知道宇宙在膨脹,而這些遠離我們的星系所發出的光,也會因為類似都卜勒效應的影響,有著紅移的現象。而越遠的星系遠離我們的速度越快,它們紅移值也就越大;而從實驗室中,我們知道每種元素都會發出特定的譜線,藉由測量到星系光譜中特定譜線的實際位置,並與那條譜線所該在的位置比較,就能夠計算這些星系的紅移值了。

而結合紅移值和其他測量到的宇宙學參數(例如哈伯常數),就可以從星系的紅移值計算出物理上的距離,比如大家常會看到的「光年」。

星系的紅移(Redshift)與它跟地球的距離(Distance)可以互相換算。圖/林彥興

那既然這樣,我們只要測量所有星系的光譜,不就能知道最遠的星系是哪一個了嗎?可惜事情並沒有這麼簡單。

一來,很多星系(尤其是越遠的星系)都很黯淡,難以測量光譜,二來,測量光譜實際上是又貴又耗時的。所以,以「尋找」的為目的,做單一波段的搜索通常是比較實際的作法。但若是使用單一波段,不就代表我們沒有光譜,這樣不就又不知道距離了?

Well yes, but actually no。大家應該都聽過盲人摸象的故事,透過觀測越多的波段,我們就越能描繪出實際上的光譜,再根據現有的理論模型,我們就可以利用光譜擬合來推論出這些星系的紅移值。

那要如何鎖定這些早期的星系?

天文學家總不可能對每個能測量到的星系都做很多波段的觀測,並且大費周章的利用理論模型去擬合他們。很多特定的望遠鏡(例如 ALMA、JWST)是要寫觀測計畫書和其他天文學家競爭觀測時間的,總要給出一個有力的理由,才能讓你的觀測計劃脫穎而出。

但還沒有資料之前,天文學家要怎麼知道哪個星系是最遠的?這便產生了一個「沒有工作要怎麼有工作經驗」的迴圈。怎麼辦呢?天文學家就是要想辦法,在已經觀測的深空資料庫中去尋找最遠的星系。

哈伯太空望遠鏡拍攝的「哈伯極深空 Hubble Extreme Deep Field」影像。藉由比較圖片中不同紅移的星系的性質,天文學家就能重建出過去百億年來星系的形成與演化歷史。圖/NASA; ESA; G. Illingworth, D. Magee, and P. Oesch, University of California, Santa Cruz; R. Bouwens, Leiden University; and the HUDF09 Team

而要怎麼在龐大的資料庫中尋找遙遠的星系呢?讓我們再次簡單回顧歷史。量子物理在十九世紀末至二十世紀初逐漸開始發展時,瑞士物理學家約翰.巴耳末(Johann Balmer)研究激發態的氫原子所放出的光譜,發現在可見光波段,氫原子只會發射一系列特定波長的譜線。隨後美國物理學家西奧多.萊曼(Theodore Lyman)也接著發現,氫原子從受激態回到基態時,會放出一系列位於紫外線波段的譜線,這些特定的譜線也被稱為萊曼系。

氫原子的各個譜線家族,由上而下分別是位於紫外線的萊曼系,位於可見光的巴耳末系,以及位於紅外線的帕森系。圖/Szdori, OrangeDog

而用來尋找早期星系的第一種方法,也是最主要的搜索方法,就與萊曼系關係密切。天文學家發現,宇宙中有一種名為「萊曼斷裂星系(Lyman-break galaxies; LBGs)」的星系,這種星系的光譜有一個很明顯的特徵,便是在特定的波長以下就幾乎觀測不到,原因是波長更短的光(更高的能量)都被星際物質(Interstellar medium; ISM)和星系際物質(Intergalactic medium; IGM)的中性氫的萊曼線系給吸收了。

而萊曼線系中波長最短的譜線(常稱為萊曼極限)約在 91.2 奈米,最長的萊曼 α 譜線則約在 121.6 奈米。只要透過兩個波長足夠接近的波段去尋找「在長波長有觀測到、但在短波段沒觀測到的天體」(稱為 drop-out),就可以粗略的估計星系的紅移。

舉例來說,如果我們要找紅移值為 9 的萊曼斷裂星系,只需要稍微長於和短於 1216 奈米的兩個波段,看看有沒有星系出現在長波段的影像中,但在短波段的影像中卻沒有出現,就有可能是在紅移值為 9 的萊曼斷裂星系。如果要找越遠的萊曼斷裂星系,只需要換波長較長的波段即可。

近日打破紀錄的最遠星系,也是透過 H-band drop-out(在波長 H 波段沒有觀測到,而較長的波段有)所找出的。

光譜drop-out的例子。圖/Harikane et al (2022)

上圖為近日打破紀錄的最遠星系 HD1 的 H-band drop-out,可以看到長波段:4.5、3.6 微米以及 Ks 波段都有偵測到,但在 H 波段(以及更短波長)的影像就消失不見了。藍色的光譜 z 值為 13.3 的萊曼斷裂模型,灰色的光譜則為可能的低紅移汙染,z=3.9 的巴耳末斷裂模型。

當然,這只能幫助科學家初步的篩選,而且此種方法會受到一些其他非早期星系的汙染。

舉例來說,上文提到氫原子除了萊曼系以外,還有回到第一激發態的巴耳末系。若只是單純地透過 drop-out,因為巴耳末系本身的譜線就比萊曼系來得紅,所以也有可能找到的是紅移值較小的巴耳末斷裂;此外,非常紅且充滿塵埃的星系也會在光譜上出現類似「驟降」的特徵。

當然,更多波段以及光譜的觀測,都有助於釐清這些可能的汙染。而除了上述的方法以外,萊曼 α 發射體(Lyman-alpha emitters; LAEs)、伽瑪射線暴的宿主星系、重力透鏡效應等,也是尋找遙遠星系的重要方法哦!

那麼,找出這些早期星系有什麼科學意義?

現代宇宙學理論認為,宇宙在早期曾經經歷過兩次相變。第一次是宇宙從炙熱的游離態降溫回到中性的氣態,被稱為宇宙的復合時期(Epoch of Recombination),也是大家熟悉的宇宙微波背景的起源;第二次(也是最後一次)的相變,宇宙中的中性氫變成了游離化的氫離子,這個相變的過程被稱為再電離時期(Epoch of Reionization; EoR)。

而目前認為,第二次這個電離的原因,是第一代恆星和第一代星系所發出的強紫外線光,把周圍的中性氫游離成氫離子。藉由尋找越來越多的早期星系,我們就能透過這些早期星系來描繪宇宙再電離時期的歷史,而這又能夠進一步驗證現代宇宙學理論是否正確。不僅如此,研究這些早期星系,可以讓我們對於星系演化的歷史更往前推,或是研究早期星系的超大質量黑洞,是如何長到這麼大等等的議題。

未來展望

在 2021 年底順利升空的詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope; JWST),其中一個主要的科學目標就是研究早期宇宙。如這篇文章一開始提到的「新的最遠的星系(HD-1)」,又如前一陣子發現的「最遠恆星 Earendel」,以及同一團隊的另一個紅移約 11 的星系,都在第一輪 JWST 的觀測計畫之中。

期待幾個月後 JWST 公布的第一批科學照片,能大幅革新我們對早期宇宙的認識。

參考資料(論文們)

延伸閱讀(科普文章)


數感宇宙探索課程,現正募資中!

Tiger Hsiao_96
8 篇文章 ・ 15 位粉絲
現為清大天文所碩二學生,即將赴美於約翰霍普金斯大學攻讀天文博士。