網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

1
0

文字

分享

0
1
0

什麼是抽樣誤差?老師和媒體都沒教你的那些事

tml_96
・2020/11/19 ・3758字 ・閱讀時間約 7 分鐘 ・SR值 550 ・八年級

本文原文刊登時間為2020年11月6日,原文標題為《什麼是抽樣誤差?為何外國媒體報導的與老師教的不一樣?

美國總統大選進入最後一周時,許多媒體紛紛在搖擺州進行民調,其中佛羅里達是選情極其緊繃的大州。

美國2020總統大選情勢劍拔弩張,許多州出現極小的得票差距。圖/Pixabay

華盛頓郵報-ABC於10/24-10/29在該州民調的結果顯示:在 824 位可能投票的選民中,川普領先拜登 50−48個百分點,因為抽樣誤差為 ± 4.0 %,報導結論佛州選情難分難解。紐約時報於10/27-10/31在該州民調的結果則顯示:在1,451位可能投票的選民中,拜登領先川普47−44個百分點,其抽樣誤差為 ± 3.2%

兩個民調相隔只 2−3 天,拜登從落後 2 個百分點轉為領先 3 個百分點,這領先程度有統計顯著性嗎?(佛州開票 96% 的結果是川普 51.2% 拜登 47.8%)

弗羅里達州的民調與開票96%後的實際結果。圖/作者提供。

這裡有兩個相關問題要先解決:

  • 第一、樣本數 N=1,451 為何抽樣誤差是 ±3.2%?這個數字對嗎?一般民調若樣本數在N=1,000左右,抽樣誤差不是大約 ±3% 嗎?為何紐時的樣本數高達 N=1,451,抽樣誤差不是更低?反而更高?
  • 第二、如果抽樣誤差低於±3%,那拜登在佛州領先川普超過抽樣誤差,便可以說這差距有統計顯著性嗎

 什麼是「抽樣誤差」?

首先解釋第一個問題:所謂「抽樣誤差」(margin of error)的是當母體比例為π時,重複抽取許多樣本所得樣本比例 P 的標準差乘以 1.96。更詳細地說:當母體比例為π時,重複抽取許多樣本數為 N 的樣本會得到許多不同的P值,這些 P 值的分佈稱作 P 的「抽樣分佈」(sampling distribution)。

根據中央極限定裡,P 的抽樣分佈是以π為中心的常態分佈,其變異量是 π(1-π)/N。我們若以π為中心取一個區間(π-m, π+m)讓 P 落在區間內的機率為 95%,則代表此區間寬度的 m 即為 95% 信心水平之下的抽樣誤差,其公式為:

雖然這個公式可以適用於任何的π值,在沒有特別資訊的情況下,一般以 π=0.5 來計算 MOE。

舉例來說,聯合報在 2019 年 12 月 12-14 日實施了一個民調,它在報導中特別就調查方法報告如下:

「調查於十二月十二日至十四日晚間進行,成功訪問一千一百一十位合格選民,另二百九十一人拒訪;在百分之九十五信心水準下,抽樣誤差正負三點零個百分點以內。採全國住宅及手機雙電話底冊為母體作尾數隨機抽樣,藉由增補市話無法接觸的唯手機族樣本改善傳統市話抽樣缺點,調查結果依廿歲以上性別、年齡及縣市人口結構加權,調查經費來自聯合報社。」

同樣的,蘋果日報在報導其於 2019 年12月27-29 實施的民調時也提到:

「本次民調由《蘋果新聞網》委託台灣指標公司執行,經費來源是《蘋果新聞網》,調查對象為設籍在全國22縣市且年滿20歲民眾,調查期間為12月27日至29日,採用市內電話抽樣調查,並使用CATI系統進行訪問。市內電話抽樣依縣市採分層比例隨機抽樣法,再以電話號碼後2碼隨機抽出,成功訪問1,069位受訪者,在95%信心水準下,抽樣誤差為±3.0%。」

依上述公式分別代入 N=1,110 及 N=1069 可得 MOE=2.94%、3.00%,正是報導所說的「抽樣誤差正負三點零個百分點以內」、「抽樣誤差為 ±3.0%」。

紐時在佛州的選前最後民調的樣本數 N=1,451 要高出 1,110 甚多,為何它所報告的抽樣誤差反而較大?我們若把 N=1,451 套入上式,不是應該得到 MOE=2.57%嗎?為何紐時說是 3.2%?

其實不只紐時,華郵/ABC 民調的抽樣誤差 4.0% 也超過了以 N=824套入上式所算得的 3.41%。為何美國媒體計算民調抽樣誤差與基本統計學教科書所教的算法不一樣?華郵/ABC在描述其民調方法時特別強調其抽樣誤差是在「納入設計效應」(including design effects)之後計算所得;什麼是「設計效應」?

什麼是「設計效應」?

這個問題牽涉到「有效樣本數」(effective sample size)的概念。所謂「有效樣本數」並不是統計分析中除去遺漏值之後的「有效N」(valid N),而是在調整受訪者代表性之後的「加權樣本數」(weighted sample size)。

下面我會說明:紐時所報告的抽樣誤差其實是根據「有效樣本數」調整過的抽樣誤差,也就是納入設計效應之後算得的抽樣誤差。

一般民調樣本因為不是使用「簡單隨機抽樣」(simple random sampling)得到的結果,母體中每人被抽到的機率並不一致。因此,樣本中某些族群的代表性並不能反映它們在母體中的代表性。為了讓各族群在樣本中的代表性和母體一致,樣本必須經過加權處理。上述聯合報和蘋果日報的報導便報告了它們民調的抽樣設計和加權的概略步驟。一般民調機構會把加權所使用的權重存為資料中的一個變數,其數值代表樣本中每個受訪者所代表族群的權重。

例如「台灣選舉與民主化研究」2020年民調資料合併檔(TEDS2020)中便有這樣的一個權值變數w,它的值介於0.295至3.474之間,其變異範圍反映了各族群在原樣本中的代表性與它們在母體中的代表性差異的程度。

由於加權的關係,原來的樣本數已不能有效反映加權後的樣本數,因此有所謂「有效樣本數」(effective sample size)的概念,有效樣本數的計算方式因加權方式而異,抽樣理論大師 Leslie Kish 建議了一個粗略的算法:

除非根本沒有加權,否則這個公式一定小於N,也就是加權後的有效樣本數會比原樣本數小。以TEDS2020原樣本數N=2,847為例,ESS=2,359,也就是加權後的有效樣本數只有原樣本數的83%。

我們如果以加權後的有效樣本數來計算抽樣誤差,則調整後的抽樣誤差會比根據原樣本數算出的抽樣誤差還大。這個差異,可以說是因為實際樣本之抽樣設計背離簡單隨機抽樣而造成的結果,我們定義「設計效應」(design effect)為:

由於抽樣誤差之平方與樣本數成反比,上式也可導出:

再以TEDS2020為例,DE=1/0.83=1.21。換算可以得到加權後的抽樣誤差是原抽樣誤差的 1.1 倍。

跟據紐時所報告的加權後的抽樣誤差以及由原樣本數所算出的簡單隨機抽樣之抽樣誤差,我們可以算出佛州民調的設計效應:

這設計效應比TEDS2020要高出很多!這可能是因為TEDS採用分層隨機抽樣面訪,其設計比起新聞媒體採用電話+手機有所不同。有了設計效應的估計值,我們就可以算紐時佛州民調的有效樣本數了:它的 ESS=936,只有原樣本數的三分之二。相對而言,華郵/ABC的佛州民調的設計效應是 DE=1.37,其有效樣本數是ESS=600.

如果我們以 N=936 算基於簡單隨機抽樣設計的抽樣誤差,它會恰恰是紐時所報告的 3.2%。以 N=600 來算的話,抽樣誤差就剛好是ABC/華郵所報告的 4.0%。

值得注意的是: 如果紐時效仿聯合報用原樣本數 N=1,451 計算抽樣誤差,這2.57% 的誤差值可能會讓很多讀者誤以為拜登領先川普的三個百分點已經超過超過抽樣誤差,因而具有統計上的顯著性。紐約時報的分析家沒有這樣做,這是他們的嚴謹之處。

以有效樣本數算候選人支持度差距的顯著性

然而選舉用的對比式民調還有第二個問題:一般媒體通常只報告單一比例的抽樣誤差,而對比式民調著重的不是單一比例,而是兩位候選人所獲支持度比例的差距。此差距的抽樣誤差與單一比例的抽樣誤差完全不一樣,它可以達到單一比例抽樣誤差的兩倍或更多。

關於對比式選舉民調的抽樣誤差,我曾寫過一篇文章指出一般媒體在報導時的錯誤解讀,並提出一個計算正確抽樣誤差的公式。

這篇文章請見:對比式選舉民調的錯誤解讀 

佛州民調結果拜登領先川普47−44。我們現在可以用有效樣本數來算拜登領先差距的抽樣誤差了。我在網上提供了一個速算表歡迎讀者下載使用。

計算的結果是抽樣誤差高達 6.03 %:拜登領先的差距其實還在誤差範圍之內。

注意:如果以原樣本數 N=1,451 代入速算表,則抽樣誤差為 4.91%,比 6.03% 要小得多。

關於民調報導,還有很多進步空間

台灣的媒體在報導對比式民調的結果時,似乎都像聯合報、蘋果日報一樣報告以「簡單隨機抽樣」為假設的單一比例抽樣誤差,而未考慮設計效應。這個抽樣誤差本來就太小,再加上對比所產生的問題,可以說是雙重的誤導!

外國媒體的民調報導近年來有進步。除了一般會報告根據設計效應調整過的抽樣誤差以外,有些民調機構也報告了對比式民調抽樣誤差的正確解讀方式。有興趣的讀者可以參考 Pew Research Center 這篇解釋抽樣誤差的文章:5 Key Things to Know about the Margin of Error in Election Polls

文章難易度
tml_96
32 篇文章 ・ 220 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。


0

13
5

文字

分享

0
13
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
115 篇文章 ・ 253 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》