Loading [MathJax]/extensions/tex2jax.js

0

8
1

文字

分享

0
8
1

統計數據是天大的謊言?我們該如何理解統計結果——《塗鴉學數學》

臉譜出版_96
・2020/07/24 ・2606字 ・閱讀時間約 5 分鐘 ・SR值 517 ・六年級

  • 作者/ 班‧歐林 (Ben Orlin);譯者/王年愷

好,我們先把這件事情說清楚。統計數據是謊言,不應該採信。史上最聰明的人都這樣說過,不是嗎?

圖/臉譜出版提供

我的重點是什麼?沒錯,數字會欺騙。但文字也會——更不用說圖案、手勢、嘻哈音樂劇和募款電子郵件了。我們的道德制度會去責怪說謊的人,而不是說謊者用來說謊的媒介。

對我來說,最有意思的批評統計之詞不是批評統計學者的不誠實,而是批評數學本身。我們可以去理解統計的瑕疵,看到每一項統計數據想要捕捉什麼(以及它會刻意忽略什麼),來增強統計的價值。也許這樣我們就能成為威爾斯想像中的優良公民。

統計中的平均數(mean)其實分配不均?

圖/臉譜出版提供
圖/臉譜出版提供

做法:把你的資料全部加起來,把總數除以資料筆數。

-----廣告,請繼續往下閱讀-----

使用時機:平均數滿足了統計的一項基本需求:捕捉一個群體裡的「中間傾向」。籃球隊的身高是多少?你每天賣出幾個冰淇淋甜筒?這班學生的考試成績如何?如果你想用一個數值來概述一整個群體,平均數是合理的第一步。

為什麼不要相信它:平均數只管兩個資訊:總和,以及用來達成這個總和的人數。假如你曾經分配過海盜搶來的財寶,就知道哪裡危險了:分配的方式有許多種。每一個人分別貢獻了多少?這是否平均,還是嚴重偏袒某一方?

如果我吃掉一整個披薩,沒有留下任何一點給你,我們是否可以公正地說每個人「平均吃掉」半個披薩?你可以跟你邀來吃晚餐的客人說,「人類平均」有一顆卵巢和一顆睪丸,但這樣是不是會讓氣氛突然冷掉?(我試過;的確會。)

人類關心分配的問題,但平均數會忽略這個問題不談。

-----廣告,請繼續往下閱讀-----
圖/臉譜出版提供

但平均數還有一個有用之處:它的特性使得它容易計算出來。

假設你的考試成績是 87 分、88 分和 96 分。(對,你在這班如魚得水。)你的平均是多少?你不必耗費腦力去加減乘除,只需要重新分配就好了。

從你最後一次的成績拿走 6 分,把 3 分分給第一次、2 分分給第二次。這樣你的分數便是 90 分、90 分和 90 分,另外還多了 1 分。把這 1 分分配給三次考試,你就會得到平均為 90⅓,完全不需要多花腦力。

統計中的中位數(median)忽視懸殊差異?

圖/臉譜出版提供
圖/臉譜出版提供

做法:中位數是你的資料集裡最中間的那一筆。有一半的資料比它低,另一半比它高。

使用時機:中位數和平均數一樣,捕捉了一個群體裡的中間傾向。差別在於它對離群值(outlier)的敏感度—或者應該說,它有多麼不敏感。

-----廣告,請繼續往下閱讀-----

就拿家庭所得來說吧。美國的富裕家庭可能收入是貧窮家庭的幾十倍(甚至幾百倍)。平均數假裝讓每一個家庭都分配到收入總和的同樣數量,因此它會被這些離群值吸引走,離開大多數資料群聚的地方。這樣它算出的數值是 $75,000。

中位數抗拒離群值的吸引力。它指認出絕對位於美國正中間的家庭所得,這會是剛剛好的中間點,有一半的家庭比這富裕,另一半比這貧窮。在美國,這個數值接近 $58,000。

它和平均數不一樣;中位數可以讓人清楚看到「典型的」家庭是什麼樣子。

為什麼不要相信它:當你找到中位數後,你知道有一半的資料比它大,另一半比它小。但這些數值距離它多遠—只有半步之遙,還是要橫越整片大陸?你只會看到中間的那一塊,不會去管其他部分有多大或多小。這樣你可能誤判。

-----廣告,請繼續往下閱讀-----
圖/臉譜出版提供

當一位創業資本家投資新創公司時,他會預期大多數新創公司將失敗。十分之一的罕見成功案例彌補其他小小的損失。但中位數會忽略這樣的動態。它大叫:「通常的結果是負面的。快中止任務!」

同理,保險公司細心建立一套組合,因為他們知道千分之一的罕見災難會消滅多年以來不太高的獲利。但中位數忽略潛在的大災難。它鼓舞你:「通常的結果是正面的。永遠不要停下來!」

這就是為什麼你常常看到中位數與平均數並列。中位數報出通常的數值,平均數則是報出總數。它們像是兩位有缺陷的證人,兩個合起來的時候會說出比任何一個更全面的故事。

統計中的眾數(mode)排除與眾不同?

圖/臉譜出版提供
圖/臉譜出版提供

做法:它是最常見的數值,最潮、最時尚的資料點。假如每個數值都獨一無二、沒有重複呢?這樣的話,你可以把資料分類,然後把最常見到的那個類別稱為「眾數組」(modal category 或 modal class)。

-----廣告,請繼續往下閱讀-----

使用時機:眾數在進行民意調查和統計非數字的資料時非常出色。假如你想要簡述大家最喜歡的顏色,不可能「計算出顏色的總和」來算出平均數。或者,假如你在舉行投票,如果把所有的選票從「最自由派」排到「最保守派」,然後把公職給拿到中位數選票的候選人,這樣會讓選民發瘋。

為什麼不要相信它:中位數會忽略總和。平均數忽略總和的分布。那眾數呢?它會忽略總和、總和的分布和幾乎所有其他的事情。

眾數只代表單一個最常見的數值。但「常見」的意思不是「有代表性」。美國的薪資眾數是 0——這不是因為大多數美國人破產又沒工作,而是有領薪水的人分布在 $1 到 $100,000,000 的光譜各處,但所有沒領薪水的人都有相同的數字。這項數據不會告訴我們任何和美國有關的事。這項事實幾乎在所有國家都適用,因為這是金錢的運作方式所造成的。

改用「眾數組」只能解決一部分的問題。這樣會讓呈現資料的人有驚人的權力,因為他可以故意操弄分組的界線,來配合他的立場。依照我劃分界線的差異,我可以宣稱美國家庭所得的眾數位在 $10,000 到 $20,000(以 10,000 進位),或 $20,000 到 $40,000(以 20,000 進位),或 $38,000 到 $92,000(以所得稅級距進位)。

-----廣告,請繼續往下閱讀-----

同樣的資料集,同樣的統計數據,但最後的樣貌完全改變了,端視畫出這個樣貌的畫家採用哪一種畫框而定。

——本文摘自《塗鴉學數學:以三角形打造城市、用骰子來理解經濟危機、玩井字遊戲學策略思考,24堂建構邏輯思維、貫通幾何學、破解機率陷阱、弄懂統計奧妙的數學課》,2020 年 5 月,臉譜出版

-----廣告,請繼續往下閱讀-----
文章難易度
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

2

2
2

文字

分享

2
2
2
買樂透真的可以賺錢?大數法則揭示了賭博的真相!——《統計,讓數字說話》
天下文化_96
・2023/03/05 ・2394字 ・閱讀時間約 4 分鐘

  • id S. Moore、諾茨 William I. Notz
  • 譯者:鄭惟厚、吳欣蓓

什麼是大數法則?

期望值的定義是:它是可能結果的一種平均,但在計算平均時,機率大的結果占的比重較高。我們認為期望值也是另一種意義的平均結果,它代表了如果我們重複賭很多次,或者隨機選出很多家戶,實際上會看到的長期平均。這並不只是直覺而已。數學家只要用機率的基本規則就可以證明,用機率模型算出來的期望值,真的就是「長期平均」。這個有名的事實叫做大數法則。

大數法則
大數法則(law of large numbers)是指,如果結果為數值的隨機現象,獨立重複執行許多次,實際觀察到的結果的平均值,會趨近期望值。

大數法則和機率的概念密切相關。在許多次獨立的重複當中,每個可能結果的發生比例會接近它的機率,而所得到的平均結果就會接近期望值。這些事實表達了機遇事件的長期規律性。正如我們在第 17 章提過的,它們是真正的「平均數定律」。

大數法則解釋了:為什麼對個人來說是消遣甚至是會上癮的賭博,對賭場來說卻是生意。經營賭場根本就不是在賭博。大量的賭客贏錢的平均金額會很接近期望值。賭場經營者事先就算好了期望值,並且知道長期下來收入會是多少,所以並不需要在骰子裡灌鉛或者做牌來保證利潤。

賭場只要花精神提供不貴的娛樂和便宜的交通工具,讓顧客川流不息進場就行了。只要賭注夠多,大數法則就能保證賭場賺錢。保險公司的運作也很像賭場,他們賭買了保險的人不會死亡。當然有些人確實會死亡,但是保險公司知道機率,並且依賴大數法則來預測必須給付的平均金額。然後保險公司就把保費訂得夠高,來保證有利潤。

-----廣告,請繼續往下閱讀-----
  • 在樂透彩上做手腳

我們都在電視上看過樂透開獎的實況轉播,看到號碼球上下亂跳,然後由於空氣壓力而隨機彈跳出來。我們可以怎麼樣對開出的號碼做手腳呢? 1980 年的時候,賓州樂透就曾被面帶微笑的主持人以及幾個舞台工作人員動了手腳。

他們把 10 個號碼球中的 8 顆注入油漆,這樣做會把球變重,因此可保證開出中獎號碼的 3 個球必定有那 2 個沒被注入油漆的號碼。然後這些傢伙就下注買該 2 個號碼的所有組合。當 6-6-6 跳出來的時候,他們贏了 120 萬美元。是的,他們後來全被逮到。

歷史上曾有主持人在樂透上做手腳,後來賺了 120 萬美元隨後被逮捕。圖/envatoelements

深入探討期望值

跟機率一樣,期望值和大數法則都值得再花些時間,探討相關的細節問題。

  • 多大的數才算是「大數」?

大數法則是說,當試驗的次數愈來愈多,許多次試驗的實際平均結果會愈來愈接近期望值。可是大數法則並沒有說,究竟需要多少次試驗,才能保證平均結果會接近期望值。這點是要看機結果的變異性決定。

-----廣告,請繼續往下閱讀-----

結果的變異愈大,就需要愈多次的試驗,來確保平均結果接近期望值。機遇遊戲一定要變化大,才能保住賭客的興趣。即使在賭場待上好幾個鐘頭,結果也是無法預測的。結果變異性極大的賭博,例如累積彩金數額極大但極不可能中獎的州彩券,需要極多次的試驗,幾乎要多到不可能的次數,才能保證平均結果會接近期望值。

(州政府可不需要依賴大數法則,因為樂透彩金不像賭場的遊戲,樂透彩用的是同注分彩系統。在同注分彩系統裡面,彩金和賠率是由實際下注金額決定的。舉例來說,各州所辦的樂透彩金,是由全部賭金扣除州政府所得部分之後的剩餘金額來決定的。賭馬的賠率則是決定於賭客對不同馬匹的下注金額。)

雖然大部分的賭博遊戲不及樂透彩這樣多變化,但要回答大數法則的適用範圍,較實際的答案就是:賭場的贏錢金額期望值是正的,而賭場玩的次數夠多,所以可以靠著這個期望值贏錢。你的問題則是,你贏錢金額的期望值是負的。全體賭客玩的次數合起來算的話,當然和賭場一樣多,但因為期望值是負的,所以以賭客整體來看,長期下來一定輸錢。

然而輸的金額並不是由賭客均攤。有些人贏很多錢,有些人輸很多,而有些人沒什麼輸贏。賭博帶給人的誘惑,大部分是來自賭博結果的無法預測。而賭博這門生意仰賴的則是:對賭場來說,結果並非不可測的。

-----廣告,請繼續往下閱讀-----
對賭場來說,贏錢金額期望值為正。圖/envatoelements
  • 有沒有保證贏錢的賭法?

把賭博很當回事的賭客常常遵循某種賭法,這種賭法每次下注的金額,是看前幾次的結果而定。比如說,在賭輪盤時,你可以每次把賭注加倍,直到你贏為止—或者,當然,直到你輸光為止。即使輪盤並沒有記憶,這種玩法仍想利用你有記憶這件事來贏。

你可以用一套賭法來戰勝機率嗎?不行,數學家建立的另一種大數法則說:如果你沒有無窮盡的賭本,那麼只要遊戲的各次試驗(比如輪盤的各次轉動)之間是獨立的,你的平均獲利(期望值)就會是一樣的。抱歉啦!

  • 高科技賭博

全美國有超過 700,000 台吃角子老虎(拉霸)。從前,你丟硬幣進去再拉下把手,轉動三個輪子,每個輪子有 20 個圖案。但早就不是這樣了。現在的機器是電動遊戲,會閃出許多很炫的畫面,而結果是由隨機數字產生器決定的。

機器可以同時接受許多硬幣,有各種讓你眼花撩亂的中獎結果,還可以多台連線,共同累積成連線大獎。賭徒仍在尋找可以贏錢的賭法,但是長期下來,隨機數字產生器會保證賭場有 5% 的利潤。

-----廣告,請繼續往下閱讀-----

——本文摘自《統計,讓數字說話》,2023 年 1 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 2
天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

3
1

文字

分享

0
3
1
我的身高有特別矮嗎?為什麼大多數女性身高都「差不多」!——《統計,讓數字說話》
天下文化_96
・2023/03/04 ・2634字 ・閱讀時間約 5 分鐘

  • id S. Moore、諾茨 William I. Notz
  • 譯者:鄭惟厚、吳欣蓓

什麼是常態分布?

圖 13.3 和 13.4 裡的密度曲線,同屬一族特別重要的曲線:常態曲線。圖 13.7 再呈現了兩個常態密度曲線。常態曲線都是對稱、單峰、鐘形的,尾部降得很快,所以我們應該不會看到離群值。由於常態分布是對稱的,所以平均數和中位數都落在曲線的中間位置,而這也是尖峰所在。

常態曲線還有一個特別性質:我們可以用目測方式在曲線上找到它的標準差。對大部分其他的密度曲線,沒有法子這樣做。做法是這樣的。想像你要從山頂開始滑雪,山的形狀和常態曲線一樣。起先,你從山頂出發時,往下滑的角度非常陡:

幸好,在你還沒有直直墜下之前,斜坡就變緩了,你愈往下滑出去,坡度愈平:

曲率(curvature)發生改變的地方,是在平均數兩側、各距平均數一個標準差的位置。圖 13.7 的兩條曲線上都標示出了標準差。你如果用鉛筆沿著常態曲線描,應該可以感受到曲率改變的地方,進而找出標準差。

-----廣告,請繼續往下閱讀-----

常態曲線有個特別的性質是,只要知道平均數及標準差,整條曲線就完全確定了。平均數把曲線的中心定下來,而標準差決定曲線的形狀。變動常態分布的平均數並不會改變曲線的形狀,只會改變曲線在 x 軸上的位置。但是,變動標準差卻會改變常態曲線的形狀,如圖 13.7 所示。標準差較小的分布,散布的範圍比較小,尖峰也比較陡。以下是常態曲線基本性質的總結:

常態密度曲線的特性

常態曲線(normal curve)是對稱的鐘形曲線,具備以下性質:

  • 只要給了平均數和標準差,就可以完全描述特定的常態曲線。
  • 平均數決定分布的中心,這個位置就在曲線的對稱中心。
  • 標準差決定曲線的形狀,標準差是指從平均數到平均數左側或右側的曲率變化點的距離。

為什麼常態分布在統計裡面很重要呢?首先,對於某些真實數據的分布,用常態曲線可以做很好的描述。最早將常態曲線用在數據上的是大數學家高斯(Carl Friedrich Gauss, 1777 – 1855)。

天文學家或測量員仔細重複度量同一個數量時,所得出的量測值會有小誤差,高斯就利用常態曲線來描述這些小誤差。你有時候會看到有人把常態分布叫做「高斯分布」,就是為了紀念高斯。

-----廣告,請繼續往下閱讀-----

十九世紀的大部分時間中,常態曲線曾叫做「誤差曲線」,也就因為常態曲線最早是用來描述量測誤差的分布。後來慢慢發現,有些生物學或心理學上的變數也大致符合常態分布時,「誤差曲線」這個名詞就不再使用了。1889 年,高騰(Francis Galton)率先把這些曲線稱做「常態曲線」。高騰是達爾文的表弟,他開拓了遺傳的統計研究。

常態分布的形狀:鐘形曲線

人類智慧高低的分布,是不是遵循常態分布的「鐘形曲線」?IQ 測驗的分數的確大致符合常態分布,但那是因為測驗分數是根據作答者的答案計算出來的,而計算方式原本就是以常態分布為目標所設計的。要說智慧分布遵循鐘形曲線,前提是:大家都同意 IQ 測驗分數可以直接度量人的智慧。然而許多心理學家都不認為世界上有某種人類特質,可以讓我們稱為「智慧」,並且可以用一個測驗分數度量出來。

當我們從同一母體抽取許多樣本時,諸如樣本比例(當樣本大小很大、而比例的數值中等時)及樣本平均數(當我們從相同母體取出許多樣本時)這類統計量的分布,也可以用常態曲線來描述。我們會在後面的章節進一步細談統計分布。

抽樣調查結果的誤差界限,也常常用常態曲線來算。然而,即使有許多類的數據符合常態分布,仍然有許多是不符合的,比如說,大部分的所得分布是右偏的,因而不是常態分布。非常態的數據就和不平常的人一樣,不僅常見,而且有時比常態的數據還有趣。

-----廣告,請繼續往下閱讀-----

68 – 95 – 99.7 規則

常態曲線有許多,每一個常態曲線都可以用各自的平均數和標準差來描述。所有常態曲線都有許多共同性質,特別要提的是,對常態分布來說,標準差是理所當然的量度單位。這件事實反映在下列規則當中。

68 – 95 – 99.7 規則
在任何常態分布當中,大約有 68% 的觀測值,落在距平均數一個標準差的範圍內。
95% 的觀測值,落在距平均數兩個標準差的範圍內。
99.7% 的觀測值,落在距平均數三個標準差的範圍內。
圖13.8、68–95–99.7規則。圖/《統計,讓數字說話》。

圖 13.8 說明了 68 – 95 – 99.7 規則。記住這三個數字之後,你就可以在不用一直做囉嗦計算的情況下考慮常態分布。不過還得記住,沒有哪組數據是百分之百用常態分布描述的。不管對於 SAT 分數,或者蟋蟀的身長, 68–95–99.7 規則都只是大體正確。

年輕女性的身高常態

年輕女性的身高約略是平均數 63.7 英寸、標準差 2.5 英寸的常態分布。要運用 68 – 95 – 99.7 規則,首先得畫一個常態曲線的圖。圖 13.9 說明了這個規則用在女性的身高上會是什麼情況。

任何常態分布都有一半的觀測值在平均數之上,所以年輕女性中有一半高於 63.7 英寸。

-----廣告,請繼續往下閱讀-----

任何常態分布的中間68%觀測值,會在距平均數一個標準差的範圍內。而這 68 %中的一半,即 34 %,會在平均數之上。所以有 34 %的年輕女性,身高在 63.7 英寸及 66.2 英寸之間。把身高不到 63.7 英寸的 50% 女性也加上去,可以得知總共有84%的年輕女性身高不到 66.2 英寸。所以推知超過 66.2 英寸的人占 16%。

任何常態分布的中間 95% 的值,在距平均數兩個標準差範圍內。這裡的兩個標準差是 5 英寸,所以年輕女性身高的中間 95% 是在 58.7(= 63.7 − 5)和 68.7(= 63.7 + 5)英寸之間。

另外 5% 女性的身高,就超出 58.7 到 68.7 英寸的範圍之外。因為常態分布是對稱的,這其中有一半的女性是在矮的那一頭。年輕女性中最矮的 2.5% ,身高不到 58.7 英寸(149 公分)。

任何常態分布中幾乎所有(99.7%)的值,在距平均數三個標準差的範圍內,所以幾乎所有年輕女性的身高,都在 56.2 及 71.2 英寸之間。

-----廣告,請繼續往下閱讀-----

——本文摘自《統計,讓數字說話》,2023 年 1 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。