0

0
0

文字

分享

0
0
0

彈卡計:每一卡都要計較-《知識大圖解》

知識大圖解_96
・2015/09/07 ・1207字 ・閱讀時間約 2 分鐘 ・SR值 445 ・四年級

-----廣告,請繼續往下閱讀-----

卡路里測定方式圖解。本圖節錄自《How It Works知識大圖解 國際中文版》第12期(2015年9月號),全見版請點擊本圖放大。
利用彈卡計測定熱量之圖解。本圖節錄自《How It Works知識大圖解 國際中文版》第12期(2015年9月號),全見版請點擊本圖放大。

彈式卡路里計能告訴我們食物有多少能量

卡路里是能量的計量單位,可以用來描述從汽油到麵包等任何燃料。一卡路里是使一公克水的溫度上升攝氏一度所需的能量。食品標籤上經常將能量標示為千卡或大卡(kcal),因為食物含有如此豐富的能量,一次標記個一千卡路里比較合理。這意味著一片標示為「100卡路里」的餅乾實際上含有10萬卡路里的熱量,可以將1公斤的水從冰點足足加熱到沸點。

所有食物中所含的卡路里熱量都以燃燒時能夠釋放出多少能量來計算。我們體內的分子機器負責燃燒我們吃進去的燃料,但是在實驗室中則利用火來製造相同的結果。

計算卡路里的傳統方法是將食物密封在一個稱為彈式卡路里計(彈卡計)的裝置內。用氧氣填充食物周圍的空間,以確保食物能完全燃燒,接著密封容器並將之由一定體積的水所包圍。火花點燃容器內的食物,讓食物完全燃燒直到變成炭為止,釋放出食物中所有的能量。能量被轉換成熱量,從而提高水的溫度。藉著測量水溫的變化,你就能知道到底有多少能量被釋放出來,並且據此計算卡路里。

如今,許多食品製造商利用一種不同的系統來產生營養成分標示;他們不必燒掉整個食品,只須將食品中如脂肪、碳水化合物和蛋白質等成分的卡路里加總在一起。

-----廣告,請繼續往下閱讀-----

空熱量

「空熱量」是營養師用來形容除了能提供能量以外,沒有任何其他營養價值的食物的術語,最主要的罪魁禍首是糖。在我們的食物裡添加糖份能增加食物的卡路里和甜味,但對食物的營養價值卻沒有真正益處。人類物種演化出了對成熟水果和漿果中天然糖份所帶來甜味的喜好,因為成熟果實比起未成熟的果實含有更多的卡路里。這些水果中也含有重要的纖維、水及維生素。今日,我們經常只為了味道而在食物中添加額外的糖,不過每茶匙的糖就貢獻了可觀的15大卡。

卡路里密度

你也許會認為吃了200大卡的零食該覺得飽了,但你的身體並不會因為你已經攝取了足夠能量而知道何時該停止進食,而是透過你胃中的伸張受器(stretch receptor)和傳送到你大腦中的化學訊號才會知道你已經飽了。脂肪是卡路里密度最高的食物,每克約含有9大卡。相較之下,每克碳水化合物和蛋白質含有約脂肪一半的卡路里,每克纖維約含2大卡,而水則完全不含卡路里。

要吃一份200大卡的點心,你可以選擇一小撮含鹽堅果、半個藍莓瑪芬、一小碗榖類食品、三顆雞蛋、四顆蘋果、六片甜瓜,或者是整整兩顆青花菜。藉著食用那些含有大量水份和纖維的食物,你可以吃得更多也感覺更飽,卻不會攝取太多的卡路里。

 

本文節錄自《How It Works知識大圖解 國際中文版》第12期(2015年9月號)

-----廣告,請繼續往下閱讀-----

更多精彩內容請上知識大圖解

文章難易度
知識大圖解_96
76 篇文章 ・ 11 位粉絲
How It Works擅長將複雜的知識轉化為活潑有趣的圖解知識,編輯方式以圖像化百科呈現,精簡易懂、精采動人、深入淺出的圖文編排,讓各年齡層的讀者們都能輕鬆閱讀。

0

1
1

文字

分享

0
1
1
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
黃瓜也可以當甜點?瓜籽肉會發出碘的味道?探索瓜味的多重宇宙——《料理滋味創意地圖》
積木文化
・2024/08/19 ・1432字 ・閱讀時間約 2 分鐘

黃瓜 CONCOMBRE

黃瓜可以只做成冷盤沙拉,也能在鹽水、英式醃菜中展現出多種滋味,甚至可以煮成配菜。它的滋味比看起來的要複雜許多:很明顯它有綠質及強烈的葉綠素滋味,但也有碘和奶油味。沒有交集的兩個世界,讓這種蔬菜能往兩種滋味方向去發揮!

黃瓜的芳香輪,解鎖更多黃瓜搭配。 圖/積木文化《料理滋味創意地圖

正確切削黃瓜:善用皮與苦味的微妙平衡

黃瓜外皮呈綠色並略帶苦味,想當然爾也有葉綠素滋味⋯⋯我們去皮不是為了美觀,而是要除掉這種苦味。又或者,我們可以刻意保留全部或部分黃瓜皮,對這有點侵略性的味道做進一步運用。經過斟酌的苦味能帶來無可否認的餘韻,也讓這種蔬菜含水量相當高的芳香特性變得複雜。薄荷、蒔蘿、青蘋果等「綠色」食材會凸顯出黃瓜的清新。

善用瓜味,或許會有意想不到的美味。 圖/積木文化《料理滋味創意地圖

籽肉的碘香秘密:黃瓜與海鮮、乳製品是絕配

為何把黃瓜的果肉跟籽吃進嘴裡時,能感受到碘味和奶油味呢?答案是因為醛類*1,存在於麵包皮和多種油裡。出乎意料的是,黃瓜能跟海藻、牡蠣、麵包和奶油做組合。為了發揮這些香氣,我們不妨將乳酸化合物(芒果、荔枝等)搭配帶乳香的乳狀食物(如希臘優格,這解釋了希臘沙拉醬﹝Tzatziki﹞*2 之所以成功的原因。或是藍紋乳酪、昂貝爾藍紋乳酪﹝Fourme d’Ambert﹞、馬斯卡彭乳酪也可以),以及一些像孔德里約(Condrieu)這樣帶奶油香味的酒。有了黃瓜內部的果肉跟籽,這些組合就保證成功。

*1:主要為 (E,z)-2,6- 壬烯醛、2-壬烯醛(non-2-énal)。

*2:譯注:以希臘優格和黃瓜碎粒為主要材料的沙拉。

除了海鮮、乳製品之外,還有其他食物也可以嘗試看看。 圖/積木文化《料理滋味創意地圖

來試試吧!甘納許巧克力黃瓜

  • 準備甘納許:煮滾 300 毫升的水,加入 1 克洋菜粉,離火並倒進 150 克的黑巧克力碎片攪打混合,再倒進容器裡約 1 公分高度,隨後放進冰箱至少一小時。
  • 準備黃瓜:將黃瓜(用果汁機)榨成汁。提取 150 毫升,取其中一半與 1 克洋菜粉和一茶匙糖一起煮沸。離火,將剩下的另一半加進去,放涼後小心地倒在巧克力甘納許上(約 0.5 公分高),然後放進冰箱。
  • 擺盤:切成固定長度(約 6 公分長,1.5 公分寬)。可和黑巧克力圓脆片(Tuiles)一起食用。

不同變化:富含葉綠素的活力蔬果汁

選擇未處理過的小黃瓜,連皮榨汁,增強青綠及微苦滋味。這種富含葉綠素的果汁可以調味油醋汁、雞尾酒(琴酒等)和西班牙冷湯。可以將果汁冷凍在冰塊盒裡供多次使用。

——本文摘自 拉斐爾.歐蒙(Raphaël Haumont)、提耶里.馬克思(Thierry
Marx),《料理滋味創意地圖:法國材料物理化學專家聯手米其林主廚,15種香調、80種常見蔬果食材的氣味因子,探索 1,500 種創新風味搭配!》,2024 年 8 月,積木文化,未經同意請勿轉載。

討論功能關閉中。

積木文化
16 篇文章 ・ 10 位粉絲