0

0
0

文字

分享

0
0
0

小小RNA立大功 – mir17~92 扮演維持運動神經元之存活關鍵

活躍星系核_96
・2015/06/03 ・2211字 ・閱讀時間約 4 分鐘

作者:董盈岑 陳俊安

前陣子火紅的冰桶挑戰募款活動,應該讓大家對於「漸凍人」(Amyotrophic lateral sclerosis, 肌萎縮性脊髓側索硬化症)並不陌生。這個好發於成年人的運動神經元退化疾病,病人體內特定的運動神經元會逐漸退化凋亡,特別是控制四肢活動的運動神經元會最先受損。

但是因為其制病機制仍然不明,目前除了支持性療法外,尚無有效的治癒或延緩方法。最近,由中研院分生所陳俊安老師的研究團隊發表的論文提出一群稱為mir17~92 的微型核糖核酸(microRNA,miRNA),在運動神經元發育與退化時扮演重要角色。這項研究成果登上 2015年5月26日「細胞報告」(Cell Reports)國際專業期刊,並榮登為當期封面 [1 ]。此項結果將來亦可進一步應用在解開「漸凍人」以及相關運動神經元退化疾病之未知機制。

celrep_11_8_3c陳俊安老師的研究團隊進一步解釋,近年來的研究顯示,miRNA在神經發育的過程中,會扮演微調修飾後基因轉錄的角色。miRNA是由21~23的核苷酸分子所組成的短片段RNA,屬於非編碼RNA(non-coding RNA,ncRNA)的一種。

人類完整轉錄體(transcriptome)裡至少含有超過一半以上的ncRNAs,他們不像大家熟知的信使RNA(mRNA)會被轉錄成有功能性的蛋白質,而是直接以RNA的形式去執行其任務。miRNA的作用機制,是藉由辨認與其序列相對應的標靶mRNA,並與之結合,進而抑制標靶mRNA轉錄成蛋白質。目前在人類已發現700 種以上的miRNA,而一種miRNA會有數十種以上的標靶mRNA,因此對基因調控的影響甚巨。然而 miRNA在胚胎神經系統發育的角色,仍處於混沌不明的狀況。

slider image_ES MN

在兩年前,陳俊安老師的研究就發現當小鼠失去產生miRNA酵素Dicer時,控制四肢的運動神經元在發育時期就會大量死亡。為了找出關鍵的miRNA,陳俊安老師與實驗室成員將發育中小鼠的運動神經元分離出來,以次世代RNA定序法與雜交染色法進行miRNA表現的分析,發現這群miRNA在控制四肢的運動神經元中表現量特別高;當他們進一步以遺傳學方法剔除小鼠的mir17~92現時,控制四肢的運動神經元便會大量死亡 [2 ]。也就是說mir17~92表現量的多寡,對於這群特定運動神經元的生存十分重要。但是為什麼mir17~92能特異性維持這些運動神經元的生存呢?

研究團隊進一步比較正常與失去mir17~92的小鼠運動神經元,發現mir17~92的標靶mRNA–PTEN可能會影響四肢運動神經元的生存。PTEN其實早已在癌症病理學中頗負盛名,因為它的存在可促進癌細胞的死亡; 而近年來的研究更發現,如果讓PTEN跑進癌細胞的細胞核中,則更加速癌細胞的凋亡。但是PTEN 對於神經細胞的影響,目前並不像癌細胞領域有清楚定論 [3 ]。

研究團隊利用幹細胞所衍生的運動神經元與動物實驗同步證實,在控制四肢的運動神經元中,高量的mir17~92會抑制PTEN蛋白質表現的數量,並同時影響其他酵素表現,而阻止PTEN進入細胞核中。如此PTEN不能啟動細胞凋零機制,這些神經細胞就可以快樂地活下去。此外,他們也用小鼠模式驗證,若在運動神經元失去mir17~92時,把PTEN降低回正常的的表現量,那些理應退化的運動神經元便可以活下來。這些證據更加支持mir17~92與PTEN 的調節作用,是影響四肢運動神經元生死存亡的關鍵。

這個複雜的調控機制,其實是神經在發育時為了建立適當網路聯繫所採取的策略。為了確保運動神經元產生之後,能夠正確延伸並聯結到遠端肌肉(特別是遙遠的四肢),過量的運動神經元會先被製造出來。而後這些運動神經細胞經由先天與後天篩選,讓本身具高mir17~92 表現量的運動神經元存活下來後,如此便可往標的肌肉延伸過去;讓最先靠近肌肉的運動神經元接收到肌肉所分泌的生長因子,進而建立強韌之連結。

陳老師研究團隊進一步推測,既然mir17~92和PTEN對於控制四肢運動神經元的存活很重要,是否在漸凍人疾病中,控制四肢的運動神經元因為失去mir17~92的保護而開始退化 。因此他們將來的後續研究,便想進一步探討在「漸凍人」的模式老鼠發病前,運動神經元中的mir17~92是否減少,同時伴隨PTEN在細胞核內累積,造成這些運動神經元的死亡。由於最近有個已進入臨床第三階段試驗的新治療法,將修飾過的小RNA分子打入中樞神經系統中,來延緩另一個神經肌肉疾病–脊髓性肌肉萎縮症(SMA)的發病,頗具療效。未來或許也可將mir17~92的類似物,以同樣方式使其進入運動神經元中,提升其保護作用,延長運動神經元與漸凍人或脊髓性肌肉萎縮症病人的存活。

這些推論仍需許多實驗去透徹驗證,但這篇有趣的論文除了讓我們對神經發育機制有更進一步的了解,也提供了漸凍人制病機制另一層面的探討。這也顯示基礎研究的重要性,或許一開始只是對於生理現象的好奇,但其成果上的突破,亦能幫助臨床疾病應用的發展。

研究團隊成員包括兩位共同第一作者中研院分生所董盈岑博士與助理呂雅琳、學生彭冠智與顏雅萍、助理張綿以及交通大學洪瑞鴻助理教授。最後值得一提的是,陳俊安老師的母親- 蘇美玉女士,以其獨樹一幟的新嶺南派畫風描繪以小鼠為模式動物,研究運動神經元之發育與退化。陳老師母子聯手創作巧妙融合中華藝術之美于現代科學之中,讓這項研究榮登「細胞報告」(Cell Reports) 當期封面,成為杏壇佳話。

slider image_4

參考文獻:

  1. Tung et al., Mir-1792 Governs Motor Neuron Subtype Survival by Mediating Nuclear PTEN, Cell Reports (2015)
  1. A. Chen, H. Wichterle, Apoptosis of limb innervating motor neurons and erosion of motor pool identity upon lineage specific dicer inactivation. Frontiers in neuroscience 6, 69 (2012)10.3389/fnins.2012.00069).
  2. S. Song, L. Salmena, P. P. Pandolfi, The functions and regulation of the PTEN tumour suppressor. Nature reviews. Molecular cell biology 13, 283-296 (2012); published online EpubMay (10.1038/nrm3330).

相關連結:

文章難易度
活躍星系核_96
759 篇文章 ・ 70 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0

爸媽的話左耳進右耳出?其實都是噪音惹的禍!——如何找出最佳「訊噪比」?

雅文兒童聽語文教基金會_96
・2021/09/24 ・2843字 ・閱讀時間約 5 分鐘

作者 / 林堂智|雅文基金會聽語科學研究中心 研究助理

從生理結構來看,我們可以利用眼瞼作為視覺訊息接收的開關,閉上眼睛就能眼不見為淨。對於聽覺而言,這樣的按鈕也貌似存在,畢竟當一個人發呆、做白日夢時,即使別人喊破喉嚨,他沒有反應就是沒有反應,這不就是關閉聽覺的表現嗎?這種「你有說,但我沒聽到」的現象,究竟是怎麼發生的?讓我們繼續看下去!

常常把我的話當耳邊風!真是夠了!圖/pixabay

耳朵是無辜的!訊息的選擇大腦說了算

耳朵的主要工作僅止於訊息傳遞,而後續的訊息處理工作其實是由大腦完成的,也就是說,當這個全年無休的聲音接收器孜孜不倦地傳遞訊息,最終在眾多雜訊中,該聚焦處理哪些訊息是由大腦決定。在雜訊中聚焦處理訊息的能力稱作「聽覺注意力」。然而,聽覺注意力卻也容易受到認知負荷量噪音的影響。

在處理訊息的過程中,大腦需要提供燃料(認知資源)給聽覺注意力進行運作,然而資源有限[1],若是接收過多或太複雜的訊息,大腦便有可能因為運轉「過熱」而呈現放空或呆滯的狀態。就好比每台電腦都會有特定進行資料運算的空間,一旦超過負荷就會運轉緩慢或甚至當機。同理,當我們處在一個訊息繁雜的環境下,我們的聽覺注意力便有可能會無所適從,讓訊息接收和判斷更困難。

聽你想聽的,是人之常情

還好就如《人海中注意你的聲音、喧鬧中聽見我的名字:認識雞尾酒會效應[2]一文中,筆者透過雞尾酒會效應[3](Cherry,1953)討論聽覺注意力的展現與運轉機制。當訊息繁雜時,我們的注意力能選擇目標訊號來優先處理,並抑制非目標訊息的干擾。不過,若非目標訊息達到可被察覺的門檻(Threshold)時,我們仍會因此分心而被影響。

好比說,下課時正起勁地和同學聊最新的手遊,即使走廊吵雜,一聽到暗戀女孩的笑聲,耳朵還是會立刻豎起,心裡小鹿亂撞地慌張轉頭尋找她的蹤影。不過,當非目標訊息(aka噪音)太大聲時,還是會讓你「充耳,卻沒辦法聞」,想聽也聽不到。

充耳,卻沒辦法聞 ,想聽也聽不到。圖/Pexels

還是充耳不聞?也許就是噪音惹的禍!

噪音是一種人們不想(需)要(unwanted/undesired)的聲音,它不但會干擾思考、工作與日常,也會為身心理健康帶來負面影響。[4]日常生活中,噪音無處不在,不論是捷運站、學校教室、甚至是家中客廳的噪音皆可能影響語音察覺能力。過去研究顯示,70 dBA 以上的環境噪音(相當於使用吸塵器的音量)對於聽覺注意力有顯著的負面影響。[5] Zhang 等人的研究指出,在學校的環境噪音下(如:操場遊戲聲、電風扇運轉聲、窗外車流聲等),孩子於視覺追蹤作業的反應速度、任務準確性與注意力表現皆較差。[6]尤其在達 75dB SPL 的高強度噪音下,孩子需要耗費更多的認知資源才能維持注意力來接收與處理訊息。Fernandes 等人也發現高強度噪音會讓孩子的閱讀與理解作業表現較差。[7]

找出最好「訊噪比」,讓我們和噪音共處

然而,環境噪音的問題並非無法解決,現今許多科技產品,像是很多老師會佩帶的小蜜蜂麥克風,就能在教學現場克服環境噪音。這類科技產品可以讓目標訊息(老師說話的內容)更大聲,用來蓋過環境噪音,讓學童聽得更清楚。

訊息和噪音音量的比值又稱為訊噪比(Signal-to-Noise Ratio),可用於反映訊號清晰度。訊噪比值越高越有利於聆聽;當訊噪比越低或為負數時,則代表噪音比訊號的音量來得大,不利聆聽,就算想聽也是聽不清楚的。若要有效傳遞聲音訊息,較為理想的狀態是提高目標音量或是降低噪音音量,讓訊噪比維持在利於聆聽的值。

訊噪比值的高低,決定訊號內容的清晰度,也許試著將聲音訊號再放大聲一點或降低噪音的音量,打造利於聆聽的環境。圖/雅文基金會

別一竿子打翻一船人!你懂低訊噪的好嗎? 

雖然訊噪比和聆聽品質有關,但噪音真的只能夠扮演反派角色嗎?其實訊噪比的機制主要圍繞著「遮蔽」(Masking)的概念。當我們感知到噪音多於目標訊息時,則表示噪音已遮蔽目標訊號,可能因此發生訊息缺漏或難以察覺目標訊號的情況。

噪音遮蔽可分為能量遮蔽(energetic masking)與訊息遮蔽(informational masking)。[7] 能量遮蔽指噪音在時間和頻率上與目標音重疊,主要發生在聽覺外周(auditory periphery),例如隔壁鄰居的狗吠聲被豪大雨聲蓋過去了。訊息遮蔽則是噪音與目標音訊息由於其在認知層次上的相似性而在處理的過程中所造成的遮蔽。好比台語使用者聽到「脫口罩」時,因週遭環境語音的干擾,而聽成「脫褲走」的訊息判斷錯誤。[8,9] 

我們也能善用噪音遮蔽的特性改善生活品質。比如說,在日本或誠品書店洗手間常見的「音姬(OTOHIME)」機台會在有人如廁時,自動發出涓涓流水聲,用來遮蔽解放的尷尬聲響。聽覺系統作為全年無休的勞工,即使我們在睡覺,他仍在運作;因此只要有突然的聲音(狗叫聲、汽車引擎聲、打鼾聲等),皆可讓大腦警覺而使你驚醒。此時,頻率平穩一致的白噪音(吹風機、電風扇)和粉紅噪音(下雨聲、營火聲)就十分好用,可以遮蔽影響睡眠的外界聲音變化,達到噪音消除的作用,讓你一夜好眠。

噪音用得恰,如廁不尷尬。圖/tohoint.co.jp

不論處在哪種生活情境,噪音無處不在,且難以殲滅,不過我們可以使用一些策略來改善生活品質。例如:尋找適當的位置(背對噪音源或移駕到安靜角落)讓聆聽更輕鬆,或使用科技產品來降低噪音或提升目標音量,以凸顯目標訊息內容。最後,善用遮蔽效應即可抵銷噪音,提升學習、工作,甚至是休息時的效率與品質[10]

參考資料

  1. Kahneman D. (1973). Attention and Effort. Englewood Cliffs, NJ: Prentice-Hall.
  2. 雅文兒童聽語文教基金會(2021)。人海中注意你的聲音、喧鬧中聽見我的名字:認識雞尾酒會效應。泛科學
  3. Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. The Journal of the Acoustical Society of America25(5), 975–979.
  4. Fink, D. (2019, December). A new definition of noise: noise is unwanted and/or harmful sound. Noise is the new ‘secondhand smoke’. In Proceedings of Meetings on Acoustics 178ASA (Vol. 39, No. 1, p. 050002). Acoustical Society of America.
  5. Schlittmeier, S. J., Feil, A., Liebl, A., & Hellbrück, J. (2015). The impact of road traffic noise on cognitive performance in attention-based tasks depends on noise level even within moderate-level ranges. Noise & Health, 17(76), 148-157.
  6. Zhang, Z., Zhang, Y., & Kang, J. (2018). An Experimental Study on the Influence of Environmental Noise on Students’ Attention. In The 11th EuroNoise Conference, Crete.
  7. Fernandes, R. A., Vidor, D. C. G. M., & Oliveira, A. A. D. (2019). The effect of noise on attention and performance in reading and writing tasks. In CoDAS 31(4). Sociedade Brasileira de Fonoaudiologia.
  8. Yang, Z.-G., Song, Y.-W., Zhang T.-T., Li, L. (2014). The subcomponents of informational masking: Evidence from behavioral and neural imaging studies. Advances in Psychological Science, 22(3), 400-408.
  9. 徐灿、杨小虎、汪玉霞、张辉、丁红卫、刘畅(2018)。 语音型噪音对二语者汉语元音声调感知的影响。心理與行為研究16(1):22-30。
  10. Lu, S. Y., Huang, Y. H., & Lin, K. Y. (2020). Spectral content (colour) of noise exposure affects work efficiency. Noise & Health22(104), 19-27.

雅文兒童聽語文教基金會_96
207 篇文章 ・ 1122 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策