Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

為什麼運動神經元會退化?又為何是從四肢開始?

研之有物│中央研究院_96
・2017/09/28 ・4053字 ・閱讀時間約 8 分鐘 ・SR值 552 ・八年級

-----廣告,請繼續往下閱讀-----

運動神經元研究

還記得「漸凍人冰桶考驗」嗎?金城武淋下冰水的瀟灑令人難以忘懷,但本文想將你的注意力轉移到漸凍症本身。中研院分子生物研究所的陳俊安助研究員,與團隊從發育生物學的角度,尋找「會退化」和「不會退化」的運動神經元在基因表現上哪裡不同,希望未來有助於漸凍症的精準醫療。

先來進行眼力考驗,下圖野生型小鼠胚胎、 類 ALS (漸凍症)模式小鼠胚胎,看得出「運動神經元」哪裡不同嗎?

兩種小鼠胚胎的運動神經元比較(中間長長、尾端伸出許多樹突的那一條)。 圖片來源/Crucial Cluster: MicroRNAs Keep Motor Neurons Alive

左圖的野生型小鼠,運動神經元軸突健康粗壯,可以牢牢抓住肌肉細胞,並控制四肢作出大腦命令的、或反射性的動作。但右圖的類 ALS 模式小鼠,運動神經下端的樹突變少了,無法牢牢抓住肌肉細胞,四肢也跟著萎縮、不聽使喚。

這個「運動神經元退化」的情況會發生在小鼠身上,也會發生在人類身上。「漸凍症」就是運動神經元退化導致的疾病,會從四肢開始無力,漸漸演進至全身肌肉萎縮、呼吸衰竭。

運動神經元疾病(motorneuron diseases)俗稱「漸凍症」,其特性與症狀發展。 資料來源/中華民國運動神經元疾病病友協會(漸凍人協會)。圖說重製/林婷嫻、張語辰

在運動神經元疾病的分類中,脊髓性肌肉萎縮症(SMA) 是遺傳性疾病,好發於嬰孩時期,致病機轉是因為爸爸媽媽同時帶了一套有缺陷的 SMN1 基因。當 SMN1 基因有缺陷時會讓運動神經元死亡,通常小朋友六個月大應該可以坐起來,但有些嬰兒的父母卻發現小寶貝沒辦法坐起時,檢查後才知道原來是脊髓性肌肉萎縮症(SMA)。

-----廣告,請繼續往下閱讀-----

而其他的運動神經元疾病,包含肌萎縮性脊髓側索硬化症(ALS) 等,雖然也是由於運動神經元退化死亡,但尚有九成病人發病的原因是不清楚的。

為什麼運動神經元會退化?為何從四肢開始?為何有些肌肉不受影響?科學家尚在理解中。

什麼使運動神經元退化?

在《愛的萬物論》電影中,主角霍金博士從四肢開始退化,初期是手部肌肉拿不穩茶杯,漸漸雙腿肌肉無力、跌倒。但泌尿生殖系統較不受影響,生下了可愛的孩子們,他對朋友笑說是「另一個全自動的系統」。直到最後,霍金博士控制眼球的肌肉仍能正常運作,讓他可以用眼球操控鍵盤說話、書寫。

《愛的萬物論》電影中,主角霍金博士從四肢運動神經開始退化,初期無法控制手部肌肉寫字。source:IMDb

中研院分子生物所的陳俊安團隊專精於發育生物學,閱讀運動神經元疾病的文獻、和醫生討論,發現脊髓運動神經元在發育時都是從同樣的前驅細胞分化而來,但「四肢」的運動神經元會先發病,而控制眼球和泌尿生殖系統的運動神經元仍能正常運作。

「是否不同的運動神經元亞型(subtype) ,會有不同基因表現的差異,導致這種發病程度的不等?」陳俊安團隊從這裡開始思考,並將小鼠胚胎幹細胞(ES cell)分化成各式的運動神經元亞型,再將各種亞型進行次世代定序,檢查基因表現哪裡不同。

-----廣告,請繼續往下閱讀-----
小鼠胚胎幹細胞(ES cell)在培養皿中,會根據外在訊號的濃度高低、生長因子的引導,演繹出不同的運動神經元前驅細胞,並進一步分化成不同的亞型(subtype)。 資料來源/陳俊安提供。圖說重製/林婷嫻、張語辰

若以前讀的生物課已忘得差不多,沒關係,本文從你我體內的 DNA、RNA 、蛋白質追本溯源,其中藏著可能影響運動神經元退化的開關:mir-17~92 和 PTEN 。

mir-17~92:阻止控制四肢的運動神經細胞凋零

生物體內的細胞核中,DNA 就像影印機中的正本,會複印出帶有相同基因訊息的 RNA 。 RNA 有兩種: 一種是負責製造蛋白質的 mRNA(messenger RNA),就像要把基因訊息傳給蛋白質的傳訊官;另一種是 ncRNA(non-coding RNA),不負責製造蛋白質,而是直接以 RNA 的身分來執行任務。

有一些 ncRNA 會待在細胞核裡,像是後勤單位補給前線作戰資源。另外有一些 ncRNA 像是 microRNA 會直接出核,就像親身到前線出任務的軍官。

細胞內 DNA、RNA、蛋白質的機制。圖說設計/林婷嫻、張語辰

直接到前線出任務的 ncRNA 要做些什麼? 可忙著呢!其中一種是幫忙「踩剎車」,控制 mRNA 製造蛋白質的速度和數量。負責這個任務的是一種小分子的 ncRNA,亦即 microRNA ,會藉由辨認基因序列相對應的標靶 mRNA ,並與之結合,進而抑制標靶 mRNA 製造蛋白質。

-----廣告,請繼續往下閱讀-----
mRNA 產生太多或太少蛋白質都不好,但又不能把產生的開關關掉。microRNA 就像煞車,讓 mRNA 適時停下來,是自然界找到的調控方式。圖說設計/林婷嫻、張語辰

在各種運動神經元亞型中,陳俊安團隊透過次世代定序和生化分析,發現「四肢運動神經元」中,有一群叫做 mir-17~92 的 microRNA 表現量特別高 ,且會抑制一種叫做 PTEN 的蛋白質、影響調控其進入細胞核的相關酵素表現,阻止 PTEN 進入運動神經元的細胞核中、造成運動神經元的細胞凋零。

野生型小鼠(左)由於有 mir-17~92 抑制 PTEN 蛋白質,維持運動神經細胞正常運作。但剔除 mir-17~92 的小鼠,PTEN 蛋白質變多,甚至進入運動神經細胞裡、造成細胞凋零。資料來源/Mir-17~92 Governs Motor Neuron Subtype Survival by Mediating Nuclear PTEN.。圖說重製/林婷嫻、張語辰

陳俊安團隊透過基因剃除小鼠進一步了解,發現若運動神經元中 mir-17~92 被剃除,這隻小鼠會變得很小隻、四肢萎縮不太能動,切片檢查看到控制手和腳的運動神經元幾乎都死掉,但控制肋骨、頭部、臉部的運動神經元都沒問題。仔細一看,這隻 mir-17~92 基因剃除小鼠四肢無法活動的狀況,和漸凍人有點類似——漸凍人也是四肢協調發生問題。

我們發現被剃除 mir-17~92 的小鼠和漸凍人相似,因此推論 mir-17~92 對於控制四肢運動神經元可能很重要,並思考其作為治療漸凍症的契機。

為了驗證推論,陳俊安團隊另外將 SOD1 基因缺陷漸凍鼠(漸凍症之一種模式小鼠)體內的 mir-17~92 表現量提高、做為治療的方式,發現其原本無力的四肢恢復得較為正常,且小鼠壽命也延長了 20 多天 。「 20 多天的壽命對 ALS 模式小鼠而言可能不算太長,大約是 1/6 ,但對漸凍人而言,延長 1/6 的壽命就是多了 將近 10 年」陳俊安說明。

正常小鼠、ALS(漸凍症之一種)模式小鼠、提高體內 mir-17~92 表現量的 ALS 模式小鼠,透過 X 光看見四肢正常/萎縮/復原的情況。資料來源/陳俊安 提供。圖說重製/林婷嫻、張語辰

mir-17~92:四肢運動神經的「電池」

陳俊安將人體比喻為台灣地圖,運動神經元像是從台北(脊髓中樞)出發、貫穿台灣(人體)的高速公路,各部位肌肉是各種運動神經元的終點站。臉部和舌頭比較近,像是台北到桃園的距離;腿部肌肉最遠,像是台北到墾丁的距離。

-----廣告,請繼續往下閱讀-----
將人體比喻為台灣地圖,到達不同目的地的「運動神經」樹突長度相差很多, mir-17~92 在各種運動神經元內的表現量也不同。 資料來源:陳俊安提供 圖說重製/林婷嫻、張語辰

一開始從脊髓出發,各種運動神經元所帶的能量都相同,就像每台車都加了容量相同的油箱,到了終點站肌肉會釋放另一種蛋白質給運動神經元,補充神經元的能量讓神經元不會力竭而亡。但運動神經元軸突在前往肌肉的途中就是靠這桶油,若到不了肌肉終點站,運動神經元就會死掉。

以這桶油量從台北跑到台中沒問題,但跑到墾丁太過勉強,可行的方式是換成「油電混合車」。而 mir-17~92 就像四肢運動神經元的「電池」,幫助抑制 PTEN 蛋白質的表現量,阻止 PTEN 讓運動神經元凋零,幫助四肢運動神經元順利延伸到遠遠的手臂和腿部,控制四肢肌肉正常運作。

油電混合車很經濟實惠,但最怕「電池」壞掉!漸凍症發生的機制,可能是 mir-17~92這群四肢運動神經元的「電池」不夠力,最終導致無法順利控制四肢肌肉。

運動神經元疾病(漸凍症)的致病原因,至今仍然不明朗,也缺乏治療藥物。陳俊安團隊將繼續透過漸凍症病人的 iPSC(誘導性多功能幹細胞)培養運動神經元,驗證目前的推論是否可行,並深入了解運動神經元發育與退化的分子機制。

若要使 mir-17~92 的類似物進入運動神經元,提升其保護作用,已知的瓶頸是 microRNA 並非可以服用的小分子,需要從中樞神經系統進行基因治療。另外,現階段雖能透過漸凍症病人的 iPSC (誘導性多功能幹細胞)培養運動神經元,但陳俊安團隊仍在尋找該用什麼樣的機制來模擬漸凍症的發病過程,再看看用什麼方式減緩運動神經細胞退化。

-----廣告,請繼續往下閱讀-----

為了持續前進下一步,陳俊安團隊期待能和台灣的醫院合作,以及借力基礎化學、生物化學、生物醫學等領域的專業團隊,一起討論努力的方向。

希望未來能為精準醫療提供更好的依據,了解不同運動神經元的亞型哪裡出了問題,並特別調整該運動神經元的基因表現。

在理性的生物學討論中,陳俊安流露著對漸凍症的關懷。 攝影/張語辰

延伸閱讀

CC 4.0

 

本著作由研之有物製作,以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3646 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
223 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
早診早治!台灣健保新規定拯救脊髓性肌肉萎縮症(SMA)患者未來
careonline_96
・2024/09/06 ・3147字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

圖/照護線上

脊髓性肌肉萎縮症(Spinal Muscular Atrophy)簡稱 SMA,台灣 SMA 發生率約為 1.7 萬分之 1。SMA 是一種體隱性遺傳退化性的罕見疾病,起因於第五對染色體的 SMN1(Survival motor neuron 1)基因變異,無法製造完整 SMN 蛋白,導致脊髓運動神經元退化,造成患者全身肌肉無力及萎縮,且漸進性失去全身自主運動、咳嗽、吞嚥等功能。SMA 患者常合併四肢關節攣縮或脊柱側彎等併發症,大都是重度或極重度肢體障礙患者。SMA 患者智力正常,自民國 90 年設立總統教育獎以來,共有33人次獲獎,表彰他們於逆境中仍能奮發向上、樂觀進取的毅力和精神。

SMA 及早治療有機會與一般人無異三種藥物補足 SMN 蛋白缺乏

「越早治療,效果越好!」雙和醫院小兒神經科郭雲鼎醫師說。SMA 若能在發病前或發病初期及早用藥,嬰幼兒時之發展可在接受治療後而有所改善,使運動功能不致於退化,進而阻止病情惡化,減少可能併發症而改變病程。因此,針對每位運動功能退化患者,可透過抽血做 SMN 基因檢測來診斷。同時,也建議每個新生兒都接受 SMN 基因篩檢,使之能夠透過早期診斷而獲得即時的治療。

臨床上,SMA 的嚴重程度根據發病年齡及運動功能障礙程度可分為四型,由 6 個月內發病最嚴重的第 1 型 ( 占60% ) 至 18 歲以上發病、症狀較輕的第4型(占1%)。大多數 ( 99% ) SMA 患者都在 18 歲前發病,過去,在 SMA 專屬的精準治療藥物未問世前,最為嚴重的第 1 型 SMA 患者幾乎無法活過 2 歲;但隨著醫療科技進步,目前可大幅翻轉這群孩子們的命運,他們已能快樂地上幼稚園、上小學。

三軍總醫院小兒神經科陳錫洲醫師表示 :「SMA 起因於無法製造完整 SMN 蛋白,所以治療方式就是想辦法讓 SMN 蛋白可以正常產生。目前機轉有二:包括透過基因治療,讓病毒載體攜帶正常 SMN1 基因,取代病患體內缺陷 SMN1 基因的功能,進而製造出完整 SMN 蛋白;或是經由改變、修正 SMN2 基因的剪接,增加製造完整 SMN 蛋白,從而控制病情。」上述取代 SMN1 基因的藥物就是一次性治療的諾健生(Zolgensma);而透過 SMN2 基因剪接調節補償性機制則有脊髓鞘內注射的脊瑞拉(Spinraza)以及口服的服脊立(Evrysdi)兩種。

-----廣告,請繼續往下閱讀-----

陳錫洲醫師進一步說明,諾健生(Zolgensma)在現今健保給付條件下,適用於 6 個月內的患嬰。

脊髓性肌肉萎縮症藥物選擇解析
圖/照護線上

113 年 8 月起 SMA 口服與脊髓鞘內注射雙雙放寬給付治療策略更彈性靈活

無法使用上述一次性治療的患者也無須灰心,郭雲鼎醫師強調,雖然目前並沒有直接比較 ( head-to-head comparison ) 口服與脊髓鞘內注射兩種 SMA 用藥的相關研究,但兩者擇一及早使用也可有效控制病程。其中,最早問世的脊髓鞘內注射脊瑞拉(Spinraza)可改善病患的運動功能,對患嬰的動作發展也有幫助。至於曾經施行過脊椎融合術、嚴重脊椎側彎、對於施行麻醉有困難及因脊髓鞘內注射引起嚴重頭痛患者可能需要特別注意。

口服用藥服脊立(Evrysdi)亦是 SMA 病患的另一種選擇,其療效依長期追蹤數據顯示可以避免運動、吞嚥、呼吸等功能繼續惡化,不過,每位病患運動功能的進步程度因人而異。此外,Evrysdi因有可能之胚胎毒性,具生育力之女性病人於治療期間應採取高效之避孕方式,直到投予最後一劑後1個月為止;男性病人則直到投予最後一劑後 4 個月為止。

-----廣告,請繼續往下閱讀-----

健保署於今年(113年)8 月起放寬上述兩種用藥給付條件,除調整發病年齡、轉換藥物等限制外,也同步放寬需經醫師判定無法使用脊髓鞘內注射藥物後,才可以給付口服藥物。此一給付新規定預估可以造福更多 SMA 病患,也讓醫師的用藥策略更加彈性、靈活。

(113年)8月起SMA藥物健保給付條件
圖/照護線上

健保署 113 年 7 月 15 日公告異動含 Rrisdiplam 成分藥品 Evrysdi powder for oral solution 暨 Nusinersen 成分藥品 Spinraza solution for injection 修訂其給付規定(自 113 年 8 月 1 日生效)

主要內容

1. 放寬藥物使用條件

        18歲以下發病確診並通過衛生福利部國民健康署 SMA 罕見疾病個案通報審查的 SMA 患者。

2. 放寬 SMA 患者對 Spinraza 暨 Evrysdi 的使用限制

      患者可以根據自己的需求與小兒神經科醫師或神經內科醫師說明討論後,作Spinraza暨Evrysdi兩種藥物的使用選擇。

-----廣告,請繼續往下閱讀-----

3. 使用 Nusinersen 或 Rrisdiplam 後出現嚴重不耐受反應,此兩種藥物得轉換,以一次為限。

Nusinersen 或 Risdiplam 或 Onasemnogene Abeparvovec 限擇一使用,且不得互換。惟使用 Nusinersen 或 Risdiplam 後出現嚴重不耐受反應,經特殊專案審查核准後,此兩種藥物得轉換,以一次為限。轉換時應考慮二者藥物動力學及半衰期之差異,注意替換後開始使用時間與前次最後使用日期。

4. 標準運動功能評估的再界定

標準運動功能評估:需由提供 Nusinersen 或 Risdiplam 治療之小兒神經專科、神經科醫師選擇下列適合療效評估工具並判定評估結果。須選擇治療前 >0 分之評估工具(若 RULM=0 建議使用CHOP INTEND, HFMSE, MFM32);有獨自行走能力的病人,須做 6 分鐘行走測試 ( 6 minutes walking test, 6MWT ) 暨其他兩項運動功能評估。除因不適合該年齡之評估工具外,不能轉換其他評估工具,以利後續評估。

5. 排除條件 ( 沒有改變 )

 SMA 病友在非急性住院期間,連續 30 天(含)以上呼吸器的使用且每天超過 12 小時。

6. 停藥時機 ( 沒有改變 )

下列評估需在 SMA 病友非急性住院期間執行:用藥後追蹤至少 2 項標準運動功能評估 ( CHOP INTEND、HINE section 2、HFMSE、RULM、WHO motor milestone、MFM32、6MWT),兩項評估分數每次均低於起始治療前該項標準運動功能之第 1 次評估分數。

-----廣告,請繼續往下閱讀-----

SMA 治療貼心小提醒

「越早治療 SMA,效果越好。如果能在症狀出現前治療,又比症狀出現後治療效果更好!」高雄醫學大學附設中和紀念醫院小兒神經科鐘育志醫師提醒,「透過新生兒篩檢,找出發病前的病患,對病人預後幫助最大。」

SMA 是一種影響全身的神經退化性疾病,因此醫療團隊會根據病患的狀況,擬定合適的精準藥物治療、運動、復健計畫以幫助其維持功能與生活品質。患童要記得接種政府規定的各類疫苗,青少年與成人也要接種包含流感或肺炎鏈球菌等疫苗,以降低感染的風險。在急性呼吸道感染與慢性呼吸照護時,咳痰機與非侵入性呼吸器對 SMA 患者的呼吸照護至關重要,正確的即時使用可有效清除痰液,並減少如:肺膨脹不全、肺炎或急性呼吸衰竭等併發症風險,並維護 SMA 患者的生活品質。

感謝各界專家學者的支持,更感謝政府及健保署用心修訂 SMA 用藥給付規定,使更多 SMA 患者得以免除全身運動功能日益退化的痛苦,且未來能夠如正常人一般進行長遠的人生規劃、享有健康優質的生活,並有機會盡己之力回饋社會。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

2
0

文字

分享

0
2
0
從遺傳學角度剖析:女性能在體育場上超越男性嗎?——《運動基因》
行路出版_96
・2024/08/10 ・3712字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

科學期刊的預言:女性能追趕甚至超越男性?

我在 2002 年還在讀大四時,第一次看到兩位 UCLA 生理學家的論文〈不用多久女性就會跑得比男性快?〉,當時我覺得這個標題很荒謬。在那之前我花了五個賽季,進行 800 公尺中距離跑步訓練,成績已經超越世界女子紀錄。而且我還不是自己接力隊上跑最快的。

但那篇論文發表在《自然》(Nature)期刊上,這是世上極具聲望的科學期刊,所以一定有些道理。大眾就是這麼認為的。《美國新聞與世界報導》雜誌在 1996 年亞特蘭大奧運之前,對一千個美國人做了調查,結果其中有三分之二認為,「終有一天頂尖女運動員會勝過頂尖男運動員」。

1996 年亞特蘭大奧運前,一千位美國人中有三分之二認為,「終有一天頂尖女運動員會勝過頂尖男運動員」。 圖/envato

《自然》期刊上那篇論文的作者,把男子組和女子組從 200 公尺短跑到馬拉松各項賽事歷年的世界紀錄畫成圖表,發現女子組紀錄進步得遠比男子組急速。他們用外推法從曲線的趨勢推斷未來,確定到 21 世紀前半葉,女性就會在各個賽跑項目擊敗男性。兩名作者寫道:「正因進步速度的差異實在非常大,而使(兩者)差距逐漸縮小。」

2004 年,趁著雅典奧運成為新聞焦點之際,《自然》又特別刊出一篇同類型的文章〈2156 年奧運會場上的重要衝刺?〉(Momentous Sprint at the 2156 Olympics?)──標題所指的,正是女子選手會在 100 公尺短跑比賽中,勝過男子選手的預計時間。

-----廣告,請繼續往下閱讀-----

2005 年,三名運動科學家在《英國運動醫學期刊》發表了一篇論文,省去問號開門見山在標題宣稱:〈女性終將做到〉(Women Will Do It in the Long Run.)。

難道男性主導世界紀錄的情況,始終是歧視女性、把女性排除於競技場外的結果?

20 世紀上半葉,文化規範與偽科學嚴重限制了女性參與運動競技的機會。在 1928 年阿姆斯特丹奧運期間,有媒體(捏造)報導指稱,女性選手在 800 公尺賽跑後筋疲力竭地躺在地上,這讓一些醫生和體育記者十分反感,使得他們認為這個比賽項目會危害女性健康。《紐約時報》上有篇文章就寫:「這種距離太消耗女性的體力了。」〔1〕那幾屆奧運之後,在接下來的三十二年間,距離超過 200 公尺的所有女子項目,都突然遭禁,直到 2008 年奧運,男女運動員的徑賽項目才終於完全相同。但《自然》期刊上的那幾篇論文指出,隨著女性參賽人數增多,看起來她們的運動成績到最後可能會與男性並駕齊驅,甚至比男性更好。

運動能力的基因密碼:性別差異的生物學根源

我去拜訪約克大學的運動心理學家喬.貝克時,我們談論到運動表現的男女差異,尤其是投擲項目的差異。在科學實驗裡證實過的所有性別差異中,投擲項目一直名列前茅。用統計學術語來說的話,男女運動員的平均投擲速度相差了三個標準差,大約是男女身高差距的兩倍。這代表如果你從街上拉一千個男子,其中 997 人擲球的力氣會比普通女性大。

-----廣告,請繼續往下閱讀-----

不過貝克提到,這種情形可能是反映女性缺乏訓練。他的太太是打棒球長大的,輕輕鬆鬆就能贏過他。他打趣說:「她會發出一束雷射光。」那麼這是生物學上的差異嗎?

男性和女性的 DNA 差異極小,僅限於在女性身上為X或男性為Y的那單一染色體。姊弟或兄妹從完全相同的來源取得基因,透過重組母親和父親的 DNA,確保兄弟姊妹絕對不會相近到變成複製人。

性別分化過程大部分要歸結到 Y 染色體上的「SRY 基因」,它的全名是「Y 染色體性別決定區基因」。若要說有「運動能力基因」,那就非 SRY 基因莫屬了。人類生物學的安排,就是讓同樣的雙親能夠同時生育出男性的兒子和女性的女兒,即使傳遞的是相同的基因。SRY 基因是一把 DNA 萬能鑰匙,會選擇性地啟動發育成男性的基因。

我們在生命初期都是女性──每個人類胚胎在形成的前六週都是女性。由於哺乳動物的胎兒會接觸到來自母親的大量雌激素,因此預設性別為女性是比較合算的。在男性身上,SRY 基因到第六週時會暗示睪丸及萊氏細胞(Leydig cell)該準備形成了;萊氏細胞是睪丸內負責合成睪固酮的細胞。睪固酮在一個月之內會不斷湧出,啟動特定基因,關閉其他基因,兩性投擲差距不用多久就會出現。

-----廣告,請繼續往下閱讀-----

男孩還在子宮時,就開始發育出比較長的前臂,這使得他們日後投擲時會做出更有力的揮臂動作。儘管男孩和女孩在投擲技能方面的差異,不如成年男性和女性之間那麼顯著,但這種差異在兩歲幼童身上已經很明顯了。

性別分化過程大部分要歸結到 Y 染色體上的「SRY 基因」,會選擇性地啟動發育成男性的基因。 圖/envato

文化與訓練的影響:投擲項目中的性別差距

為了確定孩童之間的投擲差距有多少與文化有關,北德州大學和西澳大學的科學家組成團隊,共同測試美國孩童與澳洲原住民孩童的投擲技能。澳洲原住民沒有發展出農業,仍過著狩獵採集生活,他們教導女孩丟擲戰鬥及狩獵用武器,就像教導男孩一樣。這項研究確實發現,美國男孩和女孩在投擲技能上的差異,比澳洲原住民男孩和女孩之間的差異顯著許多。不過儘管女孩因為較早發育長得較高較壯,男孩仍比女孩擲得更遠。

普遍來說,男孩不僅比女孩更善於投擲,視覺追蹤攔截飛行物的能力往往也出色許多;87% 的男孩在目標鎖定能力的測試上,表現得比一般女孩好。另外,導致差異的部分原因,至少看起來是因為在子宮的時期接觸到了睪固酮。由於先天性腎上腺增生症,而在子宮裡接觸到高濃度睪固酮的女孩,上述項目的表現會像男孩一樣,而不像女孩;患有這種遺傳疾病的胎兒,腎上腺會過度分泌男性荷爾蒙。

受過良好投擲訓練的女性,能輕易勝過未受訓練的男性,但受過良好訓練的男性,表現會大幅超越受過良好訓練的女性。男子奧運標槍選手擲出的距離,比女子奧運選手遠大約三成,儘管女子組使用的標槍比較輕。此外,女性投出的最快棒球球速的金氏世界紀錄是 65 mph(相當於時速 105 公里),表現不錯的高中男生的球速經常比這還要快,有些男子職業球員可以投出超過 100 mph(相當於時速 160 公里)的球速。

-----廣告,請繼續往下閱讀-----

在跑步方面,從 100 公尺到 1 萬公尺,經驗法則是把菁英級表現差距定在 11%。從短跑到超級馬拉松,不管任何距離的賽跑,男子組的前十名都比女子組的前十名快大約 11%。〔2〕在職業等級,那就是個鴻溝。女子組的 100 公尺世界紀錄,跟 2012 年奧運男子組的參賽資格還差了四分之一秒;而在一萬公尺長跑,女子組的世界紀錄成績,與達到奧運參賽資格最低標準的男選手相比落後了一圈。

不論距離,男子組前十名的跑步速度普遍比女子組快約 11%。圖/enavato

投擲項目與純爆發力型運動項目的差距更大。在跳遠方面,女子選手落後男子 19%。差距最小的是長距離游泳競賽;在 800 公尺自由式比賽中,排名前面的女子選手,與排名前面的男子選手差距不到 6%。

預言女性運動員將超越男性的那幾篇論文暗示,從 1950 年代到 1980 年代,女性表現的進展遵循一條會持續下去的穩定軌跡,但在現實中是有一段短暫爆發,隨後趨於平穩──這是女子運動員,而非男子運動員進入的平穩期。儘管到 1980 年代,女性在 100 公尺到 1 英里各項賽跑的最快速度,都開始趨於穩定,但男子運動員仍繼續緩慢進步,雖然只進步一點點。

數字很明確。菁英女子選手並未趕上菁英男子選手,也沒有保持住狀況,男性運動員則在非常慢地進步。生物學上的差距在擴大。但為什麼原本就有差距存在?

-----廣告,請繼續往下閱讀-----

註釋

  1.  各報上氣不接下氣地報導 800 公尺女子選手紛紛倒在跑道上。正如運動雜誌《跑步時代》(Running Times)2012 年的一篇文章指出的,實情是只有一個女子選手在終點線倒下,其餘三名都打破了先前的世界紀錄。據稱人在現場的《紐約郵報》記者寫道,「11 位淒慘的女性」當中有 5 人沒有跑完,5 人在跑過終點線後倒下。《跑步時代》報導說,參賽的女運動員只有 9 個,而且全部跑完。
  2. 過去普遍認為,隨著比賽距離拉長,女子賽跑選手會超越男子選手。這是克里斯多福.麥杜格(Christopher McDougall)在《天生就會跑》這本很吸引人的書裡談到的主題,但不完全正確。成績非常優秀的跑者之間的 11% 差距,在最長距離和最短距離同樣穩固存在。儘管如此,南非生理學家卻發現,當一男一女的馬拉松完賽時間不相上下,那個男士在距離短於馬拉松的比賽中通常會贏過那個女士,但如果競賽距離加長到 64 公里,女士就會跑贏。他們報告說,這是因為男性通常比較高又比較重,比賽距離越長,這就會變成很大的缺點。然而在世界頂尖超馬選手當中,男女體型差異比一般群體中的差異小,而 11% 的成績差距,也存在於超級長距離的最優秀男女選手之間。

——本文摘自 大衛・艾普斯坦(David Epstein)運動基因:頂尖運動表現背後的科學》,2020 年 12 月,行路出版,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

行路出版_96
21 篇文章 ・ 8 位粉絲
行路為「讀書共和國」出版集團旗下新創的出版社,出版知識類且富科普或哲普內涵的書籍,科學類中尤其將長期耕耘「心理學+腦科學」領域重要、具時代意義,足以當教材的出版品。 行路臉書專頁:https://www.facebook.com/WalkPublishing