Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

考試當前先玩再說?你需要內疚學習法

黃誠熙(Sky Huang)
・2015/06/01 ・2563字 ・閱讀時間約 5 分鐘 ・SR值 478 ・五年級

文/黃誠熙(Sky Huang),目前為UCLA材料系博士候選人

我們都有這樣的經驗,在工作、學習的時候會一邊想著玩樂的事情;雖然身體還坐在桌前,心已經飛到窗外遊玩去了,非常沒有工作效率。又或者,有時受不了誘惑,跑出去玩樂了半天,一回到書桌前,內心感到無比內疚,反而激發起破表的效率,快速完成工作。

credit:wiki
credit:wiki

這是相當普遍的現象,有死線(deadlines)當前時會更為明顯,效率值無限上升。在心理學上也有相當多的研究,尤其在死線前的效率提升方面。例如說,有時候人們在面對deadline的時候,會為自己設置另一個「自己的死線」(self-imposed deadlines),以防止自己拖延而超過實際上的死線。心理學家發現,雖然這樣有助於提升在死線前的工作成效,但是增進效率的效果並沒有外部死線來得強烈(很可以理解,錯過外部的deadlines就要被炒魷魚拉,錯過自己設定的deadline只是有點沮喪而已)[1]。

然而,這邊想跟大家討論的不是心理學的部分,而是如何使用數學來增進工作效率!更精確地說,如何使用「內疚學習法」來增進工作效率。

-----廣告,請繼續往下閱讀-----

內疚學習法顧名思義表示當你學習的時候,是處在內疚的狀態,也就是說,為了增進學習效益,在學習之前先花一段時間玩樂,玩樂結束後會覺得很內疚,因此學習效果大增,比一邊念書一邊想著玩樂效果還要好。筆者自己本身在考升大學考試時發現了這個現象,但同時也發現,要是花太多時間玩樂,雖然內疚值會累積很高,效率非常好,但是因為玩樂佔去的時間太多,剩餘時間太少,無法將效率轉成實際效果。因此,內疚值累積和學習時間必須要取得良好的平衡,才能發揮內疚學習法的最大效益。

下面我們用數學來推論內疚學習的最佳解。首先,我們知道唸書的時間是隨著玩樂的時間線性的遞減,譬如說,假如我們總共可以唸書的時間是8小時,花了3小時玩樂,那就剩下5小時可以唸書。如果我們把總共唸書的時間等比縮放(rescale)變成1,而玩樂時間是t,則剩下可以唸書的時間就是(1-t)。

(編按:注意喔!以下是數學的推論,並非心理學研究)

接下來要知道的就是:讀書效率如何因玩樂時間的增加,內疚值的累積而增加。當我們知道效率隨玩樂時間的變化eff(t)之後,即可計算總學習成效,也就是f(t) * (1-t),事實上效率函數應該是兩個時間的函數,一個是玩樂花費的時間t,一個是當開始唸書之後效率隨時間T的變化,因此為f(t, T),而真正的讀書效率為積分。這邊假設開始唸書之後的效率為一定值,因此積分可以簡化為f(t) * (1-t)。

-----廣告,請繼續往下閱讀-----

效率成長的變化曲線沒有一定的樣子,因此必須使用假設的模型。下面使用兩個假設來計算最佳的玩樂時間。

讀書效率正比於玩樂時間(反比於剩餘讀書時間)

假設讀書效率 eff(t)= a + bt

(如下圖,綠線為剩餘學習時間,紅線為效率變化)

  • t為玩樂時間
  • a是基本的讀書效率(沒有使用內疚學習法)
  • b則是效率隨玩樂時間增加的斜率

1

由於(1-t) 為剩餘可以用來學習的時間,最後學習成效是時間 * 效率,即表示:

-----廣告,請繼續往下閱讀-----

學習成效f(t) = eff(t) * (1-t) = (a + bt) * (1-t)

在得到學習效率函數之後,我們只要求得f(t)的最大值,就可以知道最佳玩樂時間,可以得到最好的讀書成果。求最大值的方法之一為將f(t)對時間微分=0,即為:d f(t)/ dt =0

可以求得必須花多少時間玩樂學習效益才會最大化。這個方程式的解為:

t = 0.5 – a/2b

-----廣告,請繼續往下閱讀-----

a和b都必須是正數(a為沒有使用內疚學習法的學習效率,為正;b為使用內疚學習法時效率隨玩樂時間的上升斜率,為正。)

檢視這個式子,我們可以知道因為時間永遠為正數,若是t<0,表示內疚學習法為沒有效率的學習方式,因此只有當0.5 – a/2b大於零時,才可以使用內疚學習法,最終我們可以得到 b > a(小提醒:a為基本學習效率,表示沒有使用內疚學習法的學習效率;b為效率隨玩樂時間上升的斜率)。這表示如果花費所有唸書時間來玩樂時,在最後一瞬間準備要唸書時,念書效率可以提升為基本學習效率的兩倍時,則內疚學習法是有效的。

結論:先做一個實驗,假設你把所有時間拿來玩樂,你必須要保證在花掉幾乎所有時間玩樂之後,你的內疚值累積足夠讓讀書效率提升到原本的2倍,你才可以考慮使用內疚學習法。而內疚學習法的最佳化效率為:把0.5-a/2b的時間拿來玩樂,剩下的時間唸書,也因此若是玩樂的時間超過所有時間的一半,那一定不是有效率的內疚學習法。

當讀書效率的增加有極限值

在實際狀況下,效率是會受限於學習的人的學習能力、科目的難度…等等,因此,隨著玩樂時間上升,效率值的提升不會一直線性上升,而是有一個極限值,效率的增加就會慢慢趨於緩和並逼近最大效率值。下圖為在此假設下念書效率隨玩樂時間t的變化:

-----廣告,請繼續往下閱讀-----
2
綠線為剩餘學習時間,紅線為效率變化

我們可以用一樣的方法最大化eff(t) * (1-t)來求得最佳玩樂時間(可以使用exp函數來描述,eff(t)= A – a*exp(-bt),然後再次使用df(t)/dt=0 求解最佳玩樂時間。但是此數學處理有點複雜,有興趣的讀者可以自行研究。)。

結論:當有一效率最大值時,整體最佳玩樂時間會比上述第一種模型來得少(從圖形中觀察可得知)。而可實行內疚學習法的狀況會越來越嚴苛。最佳的玩樂時間長度將會大幅遠離整體時間一半的附近,而趨向更小的值(1/4或是更小)。

另外一個要考慮的因素是快樂指數。我們會發現,若是太過內疚,譬如說太接近deadline還沒有把作業做出來,會產生焦慮的心情,進而影響工作效率,並減低內疚學習法的效果;但是另一方面來說,玩樂也會帶來快樂,進而提升工作效率在考慮快樂指數後,最佳化變得更加困難唸書成效函數可以寫成:

f(t)= H(t) * G(t) * (1-t)

-----廣告,請繼續往下閱讀-----
  • H(t):快樂指數
  • G(t):內疚指數
  • (1-t):玩樂之後剩餘的唸書時間

三個函數分別作圖如下:

3

最終結論:

適當的玩樂對於學習成效是有好的幫助的;然而,過量的玩樂將導致學習成效低落(恩,或許大家早就知道了) 。而最佳的玩樂時間必須遠小於整體時間的一半,至於實際的最佳玩樂時間長度則決定於個體產生內疚的程度以及內疚心理造成效率提升的程度。

在心理學上,大致上還是視「拖延」為不好的行為,在此前提下研究人類為什麼會拖延,以及如何可以避免拖延行為發生。這邊筆者則是從數學模型提供另一個角度,讓大家思考拖延、玩樂行為對於整體成效的提升/降低,以及玩樂/學習的比例分配。

-----廣告,請繼續往下閱讀-----

參考資料:

  1. Dan Ariely and Klaus Wertenbroch, Psychological Science 13, 3 (2002) 
-----廣告,請繼續往下閱讀-----
文章難易度
黃誠熙(Sky Huang)
5 篇文章 ・ 0 位粉絲
黃誠熙(Sky Huang), 目前為UCLA博士候選人。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
只需幾個好問題,工作更有效率:如何用聊天機器人幫你收心與放鬆?
人機共生你我它_96
・2020/03/11 ・2502字 ・閱讀時間約 5 分鐘 ・SR值 509 ・六年級

  • 作者/楊期蘭(感謝沈奕超提供編輯建議)

「千萬不要低估職場中感受幸福的重要性:人一生中有很大一部分時間是在職場度過,那裡發生的事情對其他層面的生活有極大影響。」

— 《不公平的代價:破解階級對立的金權結構》—史迪格里茲

千萬不要低估職場中感受幸福的重要性。圖/Brooke Cagle@Unsplash

每天開工前都要在電腦前先滑一波 IG 或 FB 才能進入專注模式嗎?每天下班回到家後,腦海裡時不時還是閃過各種公事?關於怎麼在工作前快速進入狀況 (reattachment) 以及下班後脫離工作狀態 (detachment) 是許多人想追求的事。

相關研究指出這種讓大腦快速進入跟脫離工作模式的能力跟工作效率效率有關,越能在短時間收心進入專注模式以及工作後完全放鬆的人,工作表現也會提升2

有不少人會採取寫待辦清單的方式來讓自己開啟工作的一天,並且透過劃掉待辦清單清單上的項目來讓自己結束一天的時候感到有成就感。

-----廣告,請繼續往下閱讀-----

但除此之外,有沒有其他方式?

聊天機器人能幫我們收心跟放鬆?

聊天機器人除了像微軟小冰一樣陪我們閒聊、充當電商的客服回答客戶的問題或是擔任個人助理幫我們設定行事曆外,現在聊天機器人的業務範圍又更廣了。這篇發表在 2018 年人機互動研討會的研究想了解:

在工作場合中,聊天機器人會怎麼幫助上班族們上工前進入工作模式 (reattachment) 以及下班後脫離工作模式 (detachment)?

這篇來自 University of Waterloo, University of Michigan, University of California Irvine 以及微軟的研究團隊設計了一個聊天機器人,並邀請一家公司裡面的 34 位員工進行為期兩週的實驗。

第一週員工們就如同以往的工作,第二週開始,員工需要在每天上班工作前與下班前跟一個聊天機器人講話,而這個聊天機器人要做的事就是在大家開始工作前問員工:

-----廣告,請繼續往下閱讀-----

「你想要繼續做OOO(報告、分析、投影片)嗎?」

「第一步要做什麼才能幫助你完成這件事?」

「你想要繼續有OOO(振奮、放鬆、投入)的感覺嗎?」

「如果你想要繼續有這種感覺,第一步要做什麼事比較好呢?」

上班時間對話模擬圖

而在幫助員工放鬆方面,聊天機器人會在員工下班準備離開公司前問員工:

「你今天做了什麼事?」

「明天你想做哪些事?」

「今天你對所有工作項目的感覺是什麼?」

「明天工作的時候你想擁有什麼感覺?」

下班前對話模擬圖

聊天機器人讓員工更投入於工作!

研究人員分析了這些員工使用生產力工具軟體的時間,例如:使用 E-mail、Excel、Powerpoint、Word 等軟體的時間,並且請員工們時不時在工作期間回答他們當下的投入度、專注度以及放鬆程度,比較員工們第一週跟第二週的工作情況後。

-----廣告,請繼續往下閱讀-----

結果發現當員工在上班前跟語音助理對話後,感覺自己生產力更高也更加投入於工作中,特別是在上工的第一個小時內,這些專注的感受特別強烈。

跟語音助理對話後,員工感覺自己生產力更高也更加投入於工作中。圖/GIPHY

什麼……下班後還更能放鬆!?

接著,研究者分析員工下班後寄出的 E-mail 數量,發現下班前跟語音助理對話後,員工們在下班後寄出的 E-mail 數量比較少,表示員工們離開工作環境後比較不再想到與工作有關的事。

進一步分析也發現,如果參與實驗的部分員工本身就有一套想辦法讓自己脫離工作模式的方式的話,對這些人來說,聊天機器人幫助就不大;但針對那些先前沒有這些放鬆習慣的員工而言,跟聊天機器人對話就能幫助他們下班後更加放鬆。

-----廣告,請繼續往下閱讀-----

對那些先前沒有放鬆習慣的員工而言,跟聊天機器人對話能幫助他們下班後更加放鬆。圖/GIPHY

聊天機器人帶給我們的反思

在這個實驗中,聊天機器人扮演的角色就像是有個朋友在跟我們聊天的過程中幫助我們回顧一天做了哪些事、在一天開始前先設定好工作目標。

在這些簡短對話的過程中,我們會開始反思自己應該怎麼規劃工作、該怎麼開始進行第一步、帶我們回顧一整天的工作感受,讓我們思考目前工作氣氛如何、可以如何更舒適。

其實拿掉了聊天機器人,你我都還是可以靠自己做到這件事。

試著從今天開始對自己做個小實驗,開始做事前先問自己一、兩個問題:「我今天要完成哪些事?」「要達成這個目標我需要先做什麼事?」,然後在一天工作告一段落後,試著問自己:「今天我完成了什麼事?」「完成這些事帶給我什麼感受?」試試看這麼做之後,對於自己工作的狀態有沒有什麼不同於以往的變化。

-----廣告,請繼續往下閱讀-----

即便不是工作狂,我們每個人的一生中也有大半時間是在工作場合中度過,如何讓工作的過程更加有意義、有樂趣、更享受,應該能讓我們每天過得更充實愉快。

如何讓工作的過程更加有意義、有樂趣、更享受,能讓我們每天過得更充實愉快。圖/True Agency@Unslpash

讓聊天機器人成為工作上的好夥伴!

如果你是對聊天機器人有興趣的開發者或設計師,也許可以思考的是要如何針對不同的使用者客製化適合他們的收心跟放鬆對話,例如透過每個使用者不同的工作作息與習慣,設計不同的收心與放鬆策略。

另一方面,也可以思考要如何才能讓聊天機器人幫助使用者反思或提醒使用者工作中有趣的部分,像是讓機器人問使用者:「今天工作中有什麼有趣的部分嗎?」,帶領使用者思考這份工作對他的意義,幫助使用者反覆思考工作中每件事的意義與樂趣。

-----廣告,請繼續往下閱讀-----

註:本篇是擷取原始論文中部分內容搭配筆者想分享的概念所架構而成,部分研究細節與討論並未完全呈現,鼓勵有興趣的讀者直接參考原文深入了解細節。本篇目的在於讓讀者了解人機互動領域中如何設計語音助理。內文並非逐字翻譯,亦不能取代原文1

參考文獻

  1. Williams, A. C., Kaur, H., Mark, G., Thompson, A. L., Iqbal, S. T., & Teevan, J. (2018, April). Supporting workplace detachment and reattachment with conversational intelligence. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (p. 88). ACM.
  2. Volman, F. E., Bakker, A. B., & Xanthopoulou, D. (2013). Recovery at home and performance at work: A diary study on self–family facilitation. European Journal of Work and Organizational Psychology, 22(2), 218–234.

本文轉載自人機共生你我它

-----廣告,請繼續往下閱讀-----
人機共生你我它_96
12 篇文章 ・ 4 位粉絲
由致力於人機互動研究(HCI, Human-Computer Interaction)的研究者與實務工作者所創立,我們定期發表人機互動相關文章,與讀者一起思考科技對社會生活帶來的好處與限制。

0

0
1

文字

分享

0
0
1
人造的光合作用有可能成真嗎?以人造葉嘗試開啟的「氫經濟」——《drawdown 反轉地球暖化100招》
聯經出版_96
・2019/02/28 ・2095字 ・閱讀時間約 4 分鐘 ・SR值 533 ・七年級

-----廣告,請繼續往下閱讀-----

編按:此為《drawdown 反轉地球暖化100招》最終章,作者提出一些「明日新亮點」,期待可以減緩全球暖化的現象。

生質能源效率低落:高耗能的能量轉換過程

數十年來,一群科學家致力以人造樹葉取代自然光合作用並且直接從大氣之中創造燃料,能量則來自陽光。

收益很明顯。幾乎所有能源都來自太陽,其中大部分源自於光合作用。(我們取得能源的形式,包括由植物而來的食物,以及植物的衍生物,例如石油、瓦斯、泥炭、煤、木頭與乙醇)。

植物的光合作用。圖/pixabay

光合作用看似簡單:水、陽光、吸收二氧化碳並排出碳水化合物與氧氣。然而,單憑自然光合作用想要滿足世界對於能源日漸增長的需求,則是不可行的。

-----廣告,請繼續往下閱讀-----

為了生產生質燃料而種植玉米、白楊或是柳枝稷,就能源效率而言,不利條件顯而易見。植物能毫不費力地轉換陽光,但是如果要將光子轉化為可使用的儲存能源,效率值僅 1%

以玉米作為生質燃料效率並不佳。圖/pixabay

以玉米為例,農夫必須以石油供能的拖曳機犁地、使用除草劑抑制雜草、以打穀機收割作物,並以卡車將作物載運至好幾英里外加工。玉米在加工廠內被研磨成泥,與酶和阿摩尼亞混合,煮熟以殺死細菌,液化後放入酵母發酵數日,將糖分轉化為乙醇。接著蒸餾並且分離物質。固體被分離出來,液體進入分子篩。二氧化碳被截取並且出售給飲料製造商。添加變性劑使它無須被課稅且無法飲用,接著進入儲存槽,之後被放入油罐車載往精煉廠,然後加入汽油之中。

業界稱之為再生燃料,實際上是過度延伸再生燃料的定義。

因為整個過程相當依賴柴油、石油、汽油、電力與補助。計算下來,以玉米為基底的乙醇,生產的能源只比製造過程所需能源多出一些。如果把使用土地時產生的排放、地下水的耗費、生物多樣性的喪失以及氮肥的衝擊計算進去,對於大氣層是否有益,就有爭辯的空間了。玉米最符合效益的用途是作為人們飢餓時的主食,而不是作為推動跨界休旅車的乙醇

-----廣告,請繼續往下閱讀-----

試想如果可以略過農場、肥料、拖曳機、卡車、加工廠與補助,無論你與水源身處何方,都可以直接從水與二氧化碳中製造燃料。這就是丹尼爾.諾賽拉(Daniel Nocera)20 多年前發起人造葉計畫的目標。

擺脫能源效率不佳窘境:人造葉計畫

丹尼爾.諾賽拉(Daniel Nocera)致力研究將水分離為氫與氧。圖/聯經出版

諾賽拉是哈佛大學能源科學的教授。 1980 年代早期,身處加州理工學院研究所的他便致力研究將水分離為氫與氧。他的計畫是想促進氫經濟

該科技的原始版本使用矽片,其中一面鍍有鎳鈷催化劑,當矽片放入水中後,將在其中一面的表層產生氫,另一面產生氧。早期媒體讚揚並誇大該科技可能的影響。諾賽拉預言該科技將對窮人有益。他表示氫氣可以用來煮飯,或是藉由燃料電池轉化為電力。但是一罐氫氣對於窮人有什麼用?沒有⋯⋯除非他們有燃料電池,而這是一項昂貴的科技。科技上的突破卻在經濟上沒有可利用性。

-----廣告,請繼續往下閱讀-----

氫氣是世界上最輕的物質,如鬼火般稍縱即逝。雖然 1 磅氫蘊含的能量比汽油多 3 倍,但是要取得 1 磅氫的過程相當棘手,並且需要高壓槽與壓縮機等設備。要生產足夠 1 個家庭使用的能源,需要 1 個膠合板大小的矽片,以及 3 個浴缸大小的儲存槽。

諾賽拉專注於如何提供窮人平價的能源,卻很少想過窮人可以如何生產電力。儘管如此,他下定決心要想出一種人人都能享用的能源與科技,他將這個概念比喻為 1970 年代的「死忠粉絲」(Deadhead)。死之華樂團(e Gratefal Dead)在數十年前就提出音樂共享這個最終摧毀產業的概念。該樂團允許並且鼓勵人們錄製他們的演唱會,至今仍有網站致力分享與交換這些歌曲。這樣的概念有可能適用於能源科技嗎?

諾賽拉認為如此。

他相信專注於那些對最貧困之人有益的科技,受益最多的將是整個社會。許多年來,他回應質疑的方式,就是指出如果投入人工光合作用的金錢與投資於電池的一樣多,突破將來得更快。

-----廣告,請繼續往下閱讀-----

突破確實發生了。 2016 年 6 月 3日,諾賽拉與他的同事潘蜜拉.席爾瓦(Pamela Silver)宣布,他們結合了太陽能、水與二氧化碳,成功製造出蘊含高能量的燃料。他們採用兩種催化劑,從水中免費製造出氫,用於餵養能合成液態燃料的鉤蟲貪銅菌(Ralstonia eutropha)。用純二氧化碳餵養這種細菌,過程將比光合作用有效率 10 倍。如果二氧化碳取自空氣,效率也多出 3 至 4 倍。

諾賽拉與同事結合了太陽能、水與二氧化碳,成功製造出蘊含高能量的燃料。圖/聯經出版

直到最近,諾賽拉持續關注從無機化合物中產生氫氣。他與哈佛團隊不將氫視為提供給人類的能源,而是用來餵養細菌的能量原料,因此朝向原始目標邁進了一大步:利用太陽與水製造便宜的能源。對了,還有細菌。也許經濟上可行的人工光合作用,到頭來也不是完全人造的。

——本文摘錄自《drawdown 反轉地球暖化100招》,2019 年 1 月,聯經出版

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
聯經出版_96
27 篇文章 ・ 20 位粉絲
聯經出版公司創立於1974年5月4日,是一個綜合性的出版公司,為聯合報系關係企業之一。 三十多年來已經累積了近六千餘種圖書, 範圍包括人文、社會科學、科技以及小說、藝術、傳記、商業、工具書、保健、旅遊、兒童讀物等。