0

2
3

文字

分享

0
2
3

大家都認為自己值得更多的薪水!給你更多錢會提升工作表現嗎?——《超越直覺》

一起來
・2024/05/02 ・1949字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

框架問題理應提醒我們,我們只要自動腦補就一定會犯錯。我們確實向來如此。不過「人類」這個對象不同於 AI 研究人員開發的機器人或電腦,並不會讓我們訝異到必須被迫改寫思考時的整個心智模式。相反地,一旦我們知道答案,就似乎總能找出先前被忽略、後來明顯相關的面向,就像拉扎斯菲爾德假想的《美國士兵》讀者——他們在事後發現,每一個對立的結果都同樣理所當然。

也許我們原本預期自己中了樂透之後會超級開心,結果中獎之後,卻發現自己很鬱悶,這個預測顯然很糟糕。但當我們意識到自己預測錯誤時,同時也獲得新的資訊,例如那些突然出現要借錢的親戚。於是我們會心想,如果早點知道這些資訊,就可以正確預測未來的幸福狀態,也許就不會去買樂透彩了。

因此,我們沒有質疑自己預測未來幸福程度的能力,反而只是認為我們漏掉了一些重要的東西,並且確保自己不再犯相同錯誤。然而我們卻一錯再錯。事實上,無論對於他人行為的預測失準了多少次,我們總是可以用當時未知的事情做為辯解。透過這種方式,我們掩蓋了框架問題,一再說服自己下次會做好,卻永遠都不明白我們真正錯在哪裡。

圖/envato

這種行為模式在動機與金錢報酬的關係中最為明顯,也最難消除。例如,實施金錢獎勵制度顯然能提升員工表現,而且數十年來,職場上大幅出現以績效為基礎的薪資制度,最具代表性的就是高階主管薪酬與股價掛鉤。

-----廣告,請繼續往下閱讀-----

當然,員工在意的顯然不只薪水,還有內在的愉悅感、認同感,以及在個人職涯上的成長與晉升等因素,這些都會影響工作表現。

在其他條件都相同的情況下,適當的金錢獎勵可以提升個人表現——這似乎理所當然。然而,多年來有多項研究顯示,薪酬與工作表現之間的關係,實際上的複雜程度讓人難以想像。

舉個例子,最近我跟雅虎(Yahoo!)的同事梅森(Winter Mason)進行了一系列網路實驗。我們給予受試者不同的薪資,並要求他們執行各種簡單的重複性工作,例如:按照正確的時間順序排列一組車流照片,或是在矩形網格上,找出隱藏在一堆英文字母中的英文單字。

所有受試者都是在亞馬遜土耳其機器人(Amazon’s Mechanical Turk)這個外包網站上招募而來,這個網站是亞馬遜公司於二○○五年推出,原先是用來找出重複的庫存商品。現在有數百家企業使用土耳其機器人進行「群眾外包」(crowd-source),處理五花八門的各種任務,像是標示圖片中的物品、描述新聞報導的觀點,或是判斷兩種說法中哪一個比較清楚。這個網站也是招募心理學實驗受試者的一個有效方法,就像心理學家多年來在大學校園裡張貼廣告那樣,不過土耳其機器人網站的「託客」(turkers)完成一件任務的報酬通常只需要幾美分,只占了研究經費的一小部分。

-----廣告,請繼續往下閱讀-----
圖/envato

我們的實驗總共納入數百位受試者,完成了數萬件任務。有些受試者完成一件任務只能得到 1 美分的酬勞,例如整理一組圖片、找出一個單字。但是,有些受試者完成相同任務卻會得到 5 美分或 10 美分。這在工資上是相當大的差異,要知道,美國電腦工程師的平均時薪只有聯邦最低工資的六倍,所以你可以預期這個工資差異會對受試者的行為產生強烈影響。

結果確實如此。我們付的錢越多,受試者離開實驗之前完成的任務就越多。我們還發現,不管工資多少,分配到「簡單」任務(每一組有兩張圖片需要歸類)的人,比分配到中等或困難任務(每一組有三至四張)的人完成更多任務。換句話說,這些都符合常理。

但接下來的問題是:雖然存在上述差異,我們發現這群受試者的工作品質,也就是歸類圖片的準確度,並不會因為工資不同而下降,即使只有正確完成才能拿到酬勞。

該如何解釋這個結果?我們並不十分確定。在受試者完成任務之後,我們問了一些問題,包括他們認為自己的工作該得到多少報酬。有趣的是,他們的回答與工作難度無關,而是取決於獲得的工資。平均而言,每件任務得到 1 美分的受試者,認為自己該得到 5 美分。得到 5 美分的認為自己該得到 8 美分,而得到 10 美分的則認為自己該得到 13 美分。

-----廣告,請繼續往下閱讀-----

換句話說,不論他們實際上得到多少(還記得有些受試者的工資是別人的十倍嗎),每個人都覺得工資過低。大家在直覺上會認為,給予金錢獎勵就能夠提升員工的動機,但這個實驗告訴我們,即使是非常簡單的工作,工作動機也會因爲員工的權利意識提升而大幅減弱。

——本文摘自《超越直覺》,2024 年 01 月,一起來出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

一起來
5 篇文章 ・ 2 位粉絲

0

0
0

文字

分享

0
0
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3286字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
242 篇文章 ・ 318 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
預測市場?預測股票?如何讓預測有更高的準確率?——《超越直覺》
一起來
・2024/05/04 ・1635字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

我們發現在足球賽中,只要知道一個簡單的訊息(主隊過去的獲勝機率超過一半),預測力就會明顯好過隨便亂猜。如果再加上第二個簡單的訊息(勝負紀錄較佳的隊伍會略占優勢),可以再進一步提升預測力。除此之外,你可能還想收集其他訊息,像是四分衛最近的表現、球隊有沒有傷兵、明星跑衛的花邊新聞,但這些資訊對預測的幫助不大。換句話說,預測複雜系統這件事依循著「收益遞減定律」:第一個訊息很有幫助,但很快就找不到有幫助的其他訊息。

對於某些事件,我們當然會非常計較預測的準確性,像是投放線上廣告或投資高頻交易(HFT),可能一天內就要預測數百萬、數十億次,而且金額相當龐大。投入極大心力與費用、運用最精細的運算模型來開發複雜的預測方式,在那種情況下或許值得。但在其他商業領域,例如製作電影、出版書籍到發展新技術,只需要一年預測數十次、頂多數百次,而且這不過是整個決策過程中的一部分。這時,我們只要借助相對簡單的方式,就可以讓預測臻至完善。

預測時,不該只根據一人的意見就做決定——尤其是你自己的意見。雖然人們善於察覺與特定問題相關的因素,卻往往不會評估因素之間的相對重要性。譬如,預測電影的首映週末票房時,你可能會認為一些變項都是高度相關,例如製作費、宣傳費、上映廳數、試映會評價。沒錯。但我們要如何權衡「評價不優」與「額外行銷預算:一千萬美元」之間的比重?這沒有一定答案。同樣,在決定分配行銷預算的方法時,要如何判斷多少人會受到網路或雜誌廣告影響,又有多少人會從親朋好友那邊聽到產品訊息?我們也不清楚。唯一知道的是,這些因素都可能相關。

圖/envato

你可能會以為,精準判斷應該是專家的強項。但正如泰特洛克的試驗結果,專家在量化預測上的表現,其實跟普通人一樣糟糕,甚至可能更糟。然而,我們依賴專家之所以會成效不彰,不是因為專家的預測力跟一般人沒兩樣。問題在於,我們通常一次只會諮詢一位專家(否則何必找專家)。但我們應該要綜合多人的意見(無論是專家或非專家)再取平均值。至於要如何達成?這其實沒那麼重要。

-----廣告,請繼續往下閱讀-----

儘管預測市場有各種花俏的噱頭與技術,表現也比民調這類簡單方式好一點,但這種微小差異,還不如採用某種方式簡單綜合許多觀點再取平均。或者,我們也可以直接根據歷史數據,評估各項因素的相對重要性——這實際上就是統計模型在做的事。我必須再強調一次,雖然複雜模型可能會比簡單模型好一點,但兩者的差異小到幾乎沒有差別。到頭來,模型跟群眾所能達到的預測目的都一樣。第一,這兩種預測方式都要靠人為判斷,確認哪些因素與預測相關。第二,兩者皆需要估計、權衡那些因素的相對重要性。正如心理學家羅賓.道斯所言:「訣竅在於,找到要注意的變項,然後知道如何加入它們。」

只要一直使用這個訣竅,一段時間後,就會知道哪一些預測的失誤率較小,哪一些較大。舉例來說,當你要預測一個事件的結果,假如其他條件都相同,那越早做預測的失誤率就越大。不管你用什麼方法預測電影票房,在「剛開拍」時會比「上映前幾週」時要難得多。同樣,如果你想預測尚未上市的新產品銷量,那準確度可能不會高過預測已上市的產品。

你無法解決這個問題,唯一能做的只有:使用其中一種方式,或甚至結合幾種方式,就像我們研究預測市場時的方法,然後隨時觀察、記錄預測的表現。我在第 6 章開頭也提過,一般人通常不習慣追蹤自己的預測。我們做了大量預測,卻很少回頭檢視自己對了幾次。然而,留意並記錄預測成效或許才是最重要的事,唯有如此,你才能知道準確度是多少,進而知道自己預測的可信度。

——本文摘自《超越直覺》,2024 年 01 月,一起來出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

一起來
5 篇文章 ・ 2 位粉絲

0

2
2

文字

分享

0
2
2
你被暗示了嗎?是什麼偷偷影響了我們決策?——《超越直覺》
一起來
・2024/04/30 ・2133字 ・閱讀時間約 4 分鐘

數十年來,多數心理學家和新興的行為經濟學家在可控制的實驗情境中,不斷研究人類的決策過程。這些研究結果不僅動搖關於人類理性的基本假設,甚至迫使大家用一種截然不同的觀點來思考人類行為。

例如,心理學家已經藉由無數個實驗證明,人的選擇和行為會受到特定字詞、聲音等刺激的「促發」(priming)所影響。受試者若在實驗中念到「老」和「虛弱」等字詞,他們離開實驗室在走廊上行走的速度就會變慢。在酒坊裡,如果店家播放的背景音樂是德國音樂,消費者更有可能購買德國葡萄酒,如果是法國音樂,則會傾向購買法國葡萄酒。受訪者在填寫跟運動飲料有關的調查問卷時,如果是用綠色的筆,則更可能會選擇開特力運動飲料(Gatorade)。購物網站的背景圖案如果是蓬鬆的白雲,網路購物者更有可能選擇昂貴、舒適的沙發,如果背景圖案是錢幣,則購物者傾向買較硬、較便宜的沙發。

圖/envato

我們的反應也可能被無關的數字給影響。有一項實驗,要求參與葡萄酒拍賣會的人在競價之前寫下自己社會保險號碼的末兩位數字。儘管數字基本上是隨機的,且絕對與買家對酒的估價無關,但研究人員發現數字越大,買家就更願意出價。心理學家稱這種現象為「錨定效應」。不論是估計非洲聯盟的會員國數量,或是我們認為合理的小費或捐款金額,都可能受到錨定效應的影響。

事實上,當慈善機構的募款單上附有「建議」捐款金額,或帳單上預先寫出小費的比率,你都該懷疑這是利用錨定效應技巧,因為提出一個較高的金額,其實是在錨定你對「公平」的初步估計。就算你覺得 25% 的小費似乎太高了,所以調降你的估計值,但最後給出去的小費或許還是高於沒有被暗示時的金額。

-----廣告,請繼續往下閱讀-----

改變情境呈現的方式也可能強烈影響個人偏好。比方說,在同一個賭局,如果強調輸錢的可能性,就會讓人傾向規避風險,但如果強調贏錢的可能性,則會造成相反的結果。更讓人困惑的是,加入第三種選項,竟然可以逆轉一個人對先前兩種選項的偏好。

舉例來說,A 是一款品質好、價錢昂貴的相機,B 是品質較差,但較便宜的相機。光這樣看可能很難比較與選擇。但假設如下圖所示,加入第三個選項 C1,雖然品質差不多,但顯然比 A 貴。這時要選擇 A 或是 C1 就變得很明確了。三者中選擇 A 的占大多數,這似乎非常合理。但假設加入的第三個選項是價錢跟 B 差不多,但品質較差的 C2,那大家又會如何選擇?這種情況當然會選擇 B。換句話說,即使選項 A 和 B 都沒有改變,只要加入一個不同的選項,就能夠有效逆轉對 A 和 B 的偏好。更奇怪的是,決策者永遠都不會選擇引起偏好逆轉的第三個選項。

心理學家藉由研究這一系列非理性的行為發現,提取或回憶不同類型訊息時,其難易度通常會影響人類的決策與判斷。以搭飛機為例,與其他任何致命因素相比,人們通常會高估死於恐怖攻擊的可能性。因為人們對恐怖攻擊的印象非常鮮明,即便它發生的機率明顯低於任何其他事故。

還有一個矛盾的情況,當人們被要求回憶自己果斷行動的經驗時,通常會認為自己沒那麼果斷。並不是因為這個問題和他們對自己的看法有衝突,而是因為回想的時候很費力。相較於真實情形,人們也傾向於認為自己現在的行為、信念都跟過去差不多。

-----廣告,請繼續往下閱讀-----

此外,在閱讀一份手寫聲明稿時,如果字體容易閱讀,或者之前曾經看過,那這份聲明就會更容易被取信。就算人們上次看這份聲明時,已經明確知道那是假的,結果依然如此。

圖/envato

最後,人們消化新訊息的方式,往往會增強他們既有的想法。某種程度上,這是因為我們偏愛注意「更能證實自己既有信念」的訊息,並忽略不符合自己信念的訊息。

另一方面,我們對於那些不符合自己信念的訊息,也傾向加以質疑或嚴格檢查。這兩種密切相關的傾向,分別稱作「確認偏誤」(confirmation bias)和「動機性推論」(motivated reasoning),會嚴重阻礙我們解決爭端的能力。從家事上的小分歧,到北愛爾蘭或以巴衝突都深受其害。在這些爭端當中,各持己見的雙方看待的明明是同一套「事實」,但對實情的印象卻完全不同。

即便是在科學領域,確認偏誤與動機性推論也時常扮演有害的角色。基本上,科學家應該遵循基於證據的真相,即使該證據與自己既有的信念或理論相抵觸,但是更多時候,科學家反而質疑證據。

-----廣告,請繼續往下閱讀-----

結果正如量子力學創始者馬克斯.普朗克(Max Planck)的至理名言:「一個新的科學真理之所以能勝出,不是因為它說服了反對者,讓那些人接受——而是因為反對者死光了。」

——本文摘自《超越直覺》,2024 年 01 月,一起來出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

一起來
5 篇文章 ・ 2 位粉絲