- 作者/楊期蘭(感謝沈奕超提供編輯建議)
「千萬不要低估職場中感受幸福的重要性:人一生中有很大一部分時間是在職場度過,那裡發生的事情對其他層面的生活有極大影響。」
— 《不公平的代價:破解階級對立的金權結構》—史迪格里茲
每天開工前都要在電腦前先滑一波 IG 或 FB 才能進入專注模式嗎?每天下班回到家後,腦海裡時不時還是閃過各種公事?關於怎麼在工作前快速進入狀況 (reattachment) 以及下班後脫離工作狀態 (detachment) 是許多人想追求的事。
相關研究指出這種讓大腦快速進入跟脫離工作模式的能力跟工作效率效率有關,越能在短時間收心進入專注模式以及工作後完全放鬆的人,工作表現也會提升2。
有不少人會採取寫待辦清單的方式來讓自己開啟工作的一天,並且透過劃掉待辦清單清單上的項目來讓自己結束一天的時候感到有成就感。
但除此之外,有沒有其他方式?
聊天機器人能幫我們收心跟放鬆?
聊天機器人除了像微軟小冰一樣陪我們閒聊、充當電商的客服回答客戶的問題或是擔任個人助理幫我們設定行事曆外,現在聊天機器人的業務範圍又更廣了。這篇發表在 2018 年人機互動研討會的研究想了解:
在工作場合中,聊天機器人會怎麼幫助上班族們上工前進入工作模式 (reattachment) 以及下班後脫離工作模式 (detachment)?
這篇來自 University of Waterloo, University of Michigan, University of California Irvine 以及微軟的研究團隊設計了一個聊天機器人,並邀請一家公司裡面的 34 位員工進行為期兩週的實驗。
第一週員工們就如同以往的工作,第二週開始,員工需要在每天上班工作前與下班前跟一個聊天機器人講話,而這個聊天機器人要做的事就是在大家開始工作前問員工:
「你想要繼續做OOO(報告、分析、投影片)嗎?」
「第一步要做什麼才能幫助你完成這件事?」
「你想要繼續有OOO(振奮、放鬆、投入)的感覺嗎?」
「如果你想要繼續有這種感覺,第一步要做什麼事比較好呢?」
而在幫助員工放鬆方面,聊天機器人會在員工下班準備離開公司前問員工:
「你今天做了什麼事?」
「明天你想做哪些事?」
「今天你對所有工作項目的感覺是什麼?」
「明天工作的時候你想擁有什麼感覺?」
聊天機器人讓員工更投入於工作!
研究人員分析了這些員工使用生產力工具軟體的時間,例如:使用 E-mail、Excel、Powerpoint、Word 等軟體的時間,並且請員工們時不時在工作期間回答他們當下的投入度、專注度以及放鬆程度,比較員工們第一週跟第二週的工作情況後。
結果發現當員工在上班前跟語音助理對話後,感覺自己生產力更高也更加投入於工作中,特別是在上工的第一個小時內,這些專注的感受特別強烈。
什麼……下班後還更能放鬆!?
接著,研究者分析員工下班後寄出的 E-mail 數量,發現下班前跟語音助理對話後,員工們在下班後寄出的 E-mail 數量比較少,表示員工們離開工作環境後比較不再想到與工作有關的事。
進一步分析也發現,如果參與實驗的部分員工本身就有一套想辦法讓自己脫離工作模式的方式的話,對這些人來說,聊天機器人幫助就不大;但針對那些先前沒有這些放鬆習慣的員工而言,跟聊天機器人對話就能幫助他們下班後更加放鬆。
聊天機器人帶給我們的反思
在這個實驗中,聊天機器人扮演的角色就像是有個朋友在跟我們聊天的過程中幫助我們回顧一天做了哪些事、在一天開始前先設定好工作目標。
在這些簡短對話的過程中,我們會開始反思自己應該怎麼規劃工作、該怎麼開始進行第一步、帶我們回顧一整天的工作感受,讓我們思考目前工作氣氛如何、可以如何更舒適。
其實拿掉了聊天機器人,你我都還是可以靠自己做到這件事。
試著從今天開始對自己做個小實驗,開始做事前先問自己一、兩個問題:「我今天要完成哪些事?」「要達成這個目標我需要先做什麼事?」,然後在一天工作告一段落後,試著問自己:「今天我完成了什麼事?」「完成這些事帶給我什麼感受?」試試看這麼做之後,對於自己工作的狀態有沒有什麼不同於以往的變化。
即便不是工作狂,我們每個人的一生中也有大半時間是在工作場合中度過,如何讓工作的過程更加有意義、有樂趣、更享受,應該能讓我們每天過得更充實愉快。
讓聊天機器人成為工作上的好夥伴!
如果你是對聊天機器人有興趣的開發者或設計師,也許可以思考的是要如何針對不同的使用者客製化適合他們的收心跟放鬆對話,例如透過每個使用者不同的工作作息與習慣,設計不同的收心與放鬆策略。
另一方面,也可以思考要如何才能讓聊天機器人幫助使用者反思或提醒使用者工作中有趣的部分,像是讓機器人問使用者:「今天工作中有什麼有趣的部分嗎?」,帶領使用者思考這份工作對他的意義,幫助使用者反覆思考工作中每件事的意義與樂趣。
註:本篇是擷取原始論文中部分內容搭配筆者想分享的概念所架構而成,部分研究細節與討論並未完全呈現,鼓勵有興趣的讀者直接參考原文深入了解細節。本篇目的在於讓讀者了解人機互動領域中如何設計語音助理。內文並非逐字翻譯,亦不能取代原文1。
參考文獻
- Williams, A. C., Kaur, H., Mark, G., Thompson, A. L., Iqbal, S. T., & Teevan, J. (2018, April). Supporting workplace detachment and reattachment with conversational intelligence. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (p. 88). ACM.
- Volman, F. E., Bakker, A. B., & Xanthopoulou, D. (2013). Recovery at home and performance at work: A diary study on self–family facilitation. European Journal of Work and Organizational Psychology, 22(2), 218–234.
本文轉載自人機共生你我它