Loading [MathJax]/extensions/tex2jax.js

1

1
0

文字

分享

1
1
0

有施打 mRNA疫苗,住院與死亡風險較低

台灣科技媒體中心_96
・2022/05/08 ・1007字 ・閱讀時間約 2 分鐘

圖/envato elements

2022 年 03 月 16 日,國際期刊《刺胳針》(Lancet)刊登一篇研究「Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study」,主要是想透過英國衛生安全局(UKHSA)的 COVID-19 國內確診數據,分別從就診、住院和死亡的數據上比較相對風險,了解 Omicron 相較於 Delta 的嚴重程度。

這篇研究,是由英國劍橋大學的湯米・尼伯格教授(Tommy Nyberg)團隊,收集 2021 年 11 月至 2022 年 1 月間,英國國內監測 COVID-19 感染後的確診數據,並比較 Omicron 和 Delta 對不同年齡階段、不同免疫狀態的人群感染的嚴重程度,包括就診、住院治療及死亡風險的變化。

mRNA 疫苗保護力強?

圖/envato elements

其中在比較 mRNA 疫苗施打的結果上,研究發現,施打 mRNA 疫苗加強免疫系統,對防止 Omicron 的住院和死亡,具有高度保護作用。

數據顯示,「有施打 mRNA 疫苗」發生住院與死亡的風險比值(HR)是「未施打疫苗」的 22%。(HR for hospital admission 8–11 weeks post-booster vs unvaccinated: 0·22 [0·20–0·24])也就是與「未施打疫苗」相比,「施打 mRNA 疫苗」的 8 到 11 週後,發生住院的風險下降了約 78%。

-----廣告,請繼續往下閱讀-----

解讀時,要注意!

該研究是在比較「施打 mRNA 疫苗」與「未施打疫苗」發生住院與死亡風險,使用的是風險比(Hazard Ratio, HR),是指在相同時間裡兩個風險率的比值。

針對 mRNA 疫苗的數據,解讀上需小心。圖/envato elements

如同前面提到,在 Omicron 的研究結果中,「有施打 mRNA 疫苗」會發生住院與死亡的風險,是「未施打疫苗」的 22%。意思是與「未施打疫苗」相比,「有施打 mRNA 疫苗」發生住院的風險下降了約78%。

這邊的 22%,是來自「有施打 mRNA 疫苗」 vs. 「未施打疫苗」兩個群體,發生住院狀況的風險比值,而不是指「未施打疫苗者」發生重症與死亡的發生率。也就是說:「400 萬人未施打疫苗,其中會有將近 80 萬人重症或死亡。」這是錯誤的歸納且與該研究觀察結果無關。

此外,我們也無法透過上述的風險比較,回推「未施打疫苗」群體,發生重症或死亡的比例。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
台灣科技媒體中心_96
46 篇文章 ・ 328 位粉絲
台灣科技媒體中心希望架構一個具跨領域溝通性質的科學新聞平台,提供正確的科學新聞素材與科學新聞專題探討。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
找回擁有食物的主導權?從零開始「菇類採集」!——《真菌大未來》
積木文化
・2024/02/25 ・4266字 ・閱讀時間約 8 分鐘

菇類採集

在新冠肺炎(COVID-19)大流行後,馬斯洛「需求層次理論」裡的食品與安全在眾目睽睽下被抽離出來,變成後疫情時代最重要的兩個元素。對食物的焦慮點燃人們大腦中所有生存意志,於是大家開始恐慌性地購買,讓原本就已經脆弱、易受攻擊的現代糧食系統更岌岌可危。

值得慶幸的是,我們的祖先以前就經歷過這一切,留下來的經驗值得借鏡。菇類採集的興趣在艱難時期達到顛峰,這反映了人類本能上對未來產生的恐懼。1 無論是否有意,我們意識到需要找回擁有食物的主導權,循著古老能力的引導來找尋、準備我們自己的食物,如此才能應付食物短缺所產生的焦慮。

在新冠肺炎大流行後,馬斯洛「需求層次理論」裡的食品與安全在眾目睽睽下被抽離出來,變成後疫情時代最重要的兩個元素。圖/pexels

我們看見越來越多人以城市採集者的身分對野生菇類有了新的品味,進而找到安全感並與大自然建立起連結。這並不是說菇類採集將成為主要的生存方式,而是找回重新獲得自給自足能力的安全感。此外,菇類採集的快感就足以讓任何人不斷回歸嘗試。

在這個數位時代,菇類採集是讓我們能與自然重新連結的獨特活動。我們早已遺忘,身體和本能,就是遺傳自世世代代與自然和諧相處的菇類採集者。走出現代牢籠、進入大自然從而獲得的心理和心靈滋養不容小不容小覷。森林和其他自然空間提醒著我們,這裡還存在另一個宇宙,且和那些由金錢、商業、政治與媒體統治的宇宙同樣重要(或更重要)。

-----廣告,請繼續往下閱讀-----
在這個數位時代,菇類採集是讓我們能與自然重新連結的獨特活動。圖/unsplash

只有願意撥開遮蓋的落葉並專注尋找,才能體認到菇類的多樣性和廣泛分布。一趟森林之旅能讓人與廣大的生態系統重新建立連結,另一方面也提醒我們,自己永遠屬於生命之網的一部分,從未被排除在外。

腐爛的樹幹不再讓人看了難受,而是一個充滿機遇的地方:多孔菌(Bracket Fungi)──這個外觀看起來像貨架的木材分解者,就在腐爛的樹幹上茁壯成長,規模雖小卻很常見。此外,枯葉中、倒下的樹上、草地裡或牛糞上,也都是菇類生長的地方。

菇類採集是一種社會的「反學習」(遺忘先前所學)。你不是被動地吸收資訊,而是主動且專注地在森林的每個角落尋找真菌。不過度採集、只拿自身所需,把剩下的留給別人。你不再感覺遲鈍,而是磨練出注意的技巧,只注意菇類、泥土的香氣,以及醒目的形狀、質地和顏色。

只有願意撥開遮蓋的落葉並專注尋找,才能體認到菇類的多樣性和廣泛分布。圖/unsplash

菇類採集喚醒身體的感官感受,讓心靈與身體重新建立連結。這是一種可以從中瞭解自然世界的感人冥想,每次的發現都振奮人心,運氣好的話還可以帶一些免費、美味又營養的食物回家。祝您採集愉快。

-----廣告,請繼續往下閱讀-----

計畫

菇類採集就像在生活中摸索一樣,很難照既定計畫執行,而且以前的經歷完全派不上用場。最好的方法就是放棄「非採集到什麼不可」的念頭,持開放心態走出戶外執行這項工作。菇類採集不僅是享受找到菇的滿足感,更重要的是體驗走過鬆脆的樹葉、聞著森林潮濕的有機氣味,並與手持手杖和柳條筐的友善採菇人相遇的過程。

菇類採集很難照既定計畫執行,最好的方法就是放棄「非採集到什麼不可」的念頭。採集過程幾乎就像玩捉迷藏,只不過你根本不確定自己在找什麼,甚至根本不知道要找的東西是否存在。圖/unsplash

你很快就會明白為什麼真菌會有「神秘的生物界」的稱號。真菌無所不在但又難以捉摸,採集過程幾乎就像玩捉迷藏,只不過你根本不確定自己在找什麼,甚至根本不知道要找的東西是否存在。但還是要有信心,只要循著樹木走、翻動一下原木、看看有落葉的地方,這個過程就會為你指路。一點點的計畫,將大大增加你獲得健康收益的機會。所以,讓我們開始吧。

去哪裡找?

林地和草原,是你將開始探索的兩個主要所在。林地底層提供真菌所需的有機物質,也為樹木提供菌根關係。橡樹、松樹、山毛櫸和白樺樹都是長期的菌根夥伴,所以循著樹種,就離找到目標菇類更近了。

林地底層提供真菌所需的有機物質,也為樹木提供菌根關係。圖/pexels

草原上也會有大量菇類,但由於這裡的樹木多樣性和環境條件不足,所以菇類種類會比林地少許多。如果這些地點選項對你來說都太遠了,那麼可以試著在自家花園或在地公園綠地當中尋找看看。這些也都是尋菇的好地方。

-----廣告,請繼續往下閱讀-----

澳洲新南威爾斯州奧伯倫

澳洲可以說是真菌天堂。與其他大陸隔絕的歷史、不斷變化的氣候以及營養豐富的森林,讓澳洲真菌擁有廣大的多樣性。澳洲新南威爾斯州(New South Wales)的奧伯倫(Oberon)就有一座超過四萬公頃的松樹林,是採集菇類的最佳地點之一。

在那裡,有廣受歡迎的可食用菌松乳菇(又稱紅松菌),據說這種真菌的菌絲體附著在一棵歐洲進口樹的根部,而意外被引進澳洲。 1821 年,英國真菌學家塞繆爾・弗里德里克・格雷(Samuel Frederick Gray)將這種胡蘿蔔色的菇命名為美味乳菇(Lactarius deliciosus),這的確名符其實,因為「Deliciosus」在拉丁語中意為「美味」。如果想要在奧伯倫找到這些菇類,秋天時就要開始計劃,在隔年二月下旬至五月的產季到訪。

位於澳洲新南威爾斯州的奧伯倫就有一座超過四萬公頃的松樹林,是採集菇類的絕佳地點。圖/unsplash

英國漢普郡新森林國家公園

在英國,漢普郡的新森林國家公園(Hampshire’s New Forest)距離倫敦有九十分鐘的火車車程。它由林地和草原組成,當中有種類繁多的植物群、動物群和真菌可供遊客觀賞,甚至還有野生馬匹在園區裡四處遊蕩。

這片森林擁有兩千五百多種真菌,其中包括會散發惡臭的臭角菌(Phallus impudicus),它的外觀和結構就如圖鑑中描述般,與男性生殖器相似且不常見。還有喜好生長於橡樹上,外觀像架子一樣層層堆疊的硫色絢孔菌(Laetiporus sulphureus ,又稱林中雞)。該國家公園不允許遊客採收這裡的菇,所以請把時間花在搜尋、鑑別與欣賞真菌上。如果幸運的話,該地區可能會有採集團體可以加入,但能做的也僅限於採集圖像鑑別菇類,而非採集食用。

-----廣告,請繼續往下閱讀-----
在英國,漢普郡的新森林國家公園由林地和草原組成,當中有種類繁多的植物群、動物群和真菌可供遊客觀賞。該國家公園不允許遊客採收這裡的菇,所以請把時間花在搜尋、鑑別與欣賞真菌上。圖/unsplash

美國紐約市中央公園

甚至紐約市的中央公園也有採集菇類的可能性。雖然在 1850 年代公園建造之時並未刻意引進菇類物種,但這個占地八百四十英畝的公園現已登錄了四百多種菇類,足以證明真菌孢子的影響之深遠。

加里・林科夫(Gary Lincoff)是一位自學成才、被稱作「菇類吹笛人」2 的真菌學家,他住在中央公園附近,並以紐約真菌學會的名義會定期舉辦菇類採集活動。林科夫是該學會的早期成員之一,該學會於 1962 年由前衛作曲家約翰・凱吉(John Cage)重新恢復運作。凱吉也是一位自學成才的業餘真菌學家,並靠自己的能力成為專家。

甚至紐約市的中央公園也有採集菇類的可能性。雖然在 1850 年代公園建造之時並未刻意引進菇類物種,但這個占地八百四十英畝的公園現已登錄了四百多種菇類。圖/wikipedia

進行菇類採集時,找瞭解特定物種及其棲息地的在地專家結伴同行,總是有幫助的。如果你需要一個採集嚮導,求助於所在地的真菌學會會是一個正確方向。

何時去找?

在適當的環境條件下(例如溫度、光照、濕度和二氧化碳濃度),菌絲體全年皆可生長。某些物種對環境條件較敏感,但平均理想溫度介於 15~24 ℃ 之間,通常是正要進入冬季或冬季剛過期間,因此秋季和春季會是為採集菇類作計畫的好季節。

-----廣告,請繼續往下閱讀-----
秋季和春季是為採集菇類作計畫的好季節,但因為菇類受溫度變化模式和降雨量的影響很大,所以每年採菇的旺季時間會略有不同。圖/unsplash

當菌絲體從周圍吸收水分時,會產生一股破裂性的力量,讓細胞充滿水分並開始出菇。這就是菇類通常會出現在雨後和一年中最潮濕月份的原因。牢記這些條件,就可以引導你找到寶藏。但也要記得,因為菇類受溫度變化模式和降雨量的影響很大,所以每年採菇的旺季時間會略有不同。

註解

  1. Sonya Sachdeva, Marla R Emery and Patrick T Hurley, ‘Depiction of wild food foraging practices in the media: Impact of the great recession’, Society & Natural Resources, vol. 31, issue 8, 2018, <doi.org/10.1080/08941920.2 018.1450914>. ↩︎
  2. 譯注:民間傳說人物。吹笛人消除了哈梅林鎮的所有老鼠,但鎮上官員拒絕給予承諾的報酬,於是他就吹奏著美麗的音樂,把所有孩子帶出哈梅林鎮。 ↩︎

——本文摘自《真菌大未來:不斷改變世界樣貌的全能生物,從食品、醫藥、建築、環保到迷幻》,2023 年 12 月,積木文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

2

3
2

文字

分享

2
3
2
【2023 諾貝爾生理醫學獎】mRNA 疫苗背後的辛酸血淚,為何 mRNA 研究不受待見?
PanSci_96
・2023/11/05 ・5173字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

mRNA?別浪費時間,不值得做!

天啊,你知道在實驗室搞 mRNA 有多麻煩嗎?連呼吸都要小心耶!

而且在細胞裡的 mRNA 一瞬間就會被分解成碎片,比廢柴還廢,哪可能生成需要的蛋白質?各位泛糰們好,2023 年的諾貝爾生理與醫學獎是由卡塔琳・考里科以及德魯・韋斯曼兩位科學家獲得,他們獲獎的研究,是許多人現在已經很熟悉的 mRNA 疫苗開發技術,但你可能不知道,其實當初 mRNA 打入實驗小鼠體內,引發非常嚴重的免疫風暴,甚至可能打一隻死一隻。

這這這……設計要來救人的藥物,反而致命? 生醫獎得主考里科的同事甚至認為 mRNA 只是個「笑話」,這怎麼回事?

-----廣告,請繼續往下閱讀-----

那個 mRNA 瘋女人來了?

你!渴望力量嗎?啊不,是想要合成 mRNA 嗎?我可以幫你喔!

由於屢屢爭奪印表機使用權僵持不下,故事的兩位主角就此破冰,當時是 1997 年,地點在美國賓州大學醫學院,此時身材高大、外向爽朗的女主角伸出了橄欖枝,正等待回答,男主角卻冷淡地說:「如果你成功了,我會試試。」難道故事就此結束嗎?當然沒有。

先回頭介紹一下考里科。她是匈牙利人,本來家境還不錯,但兩歲時,因為父親公開批評執政的共產黨政府,就此失去了工作,餘生只能打零工,全家住在沒自來水也沒電的磚房裡。遭遇這般變故的卡里科並沒有放棄自己,反而堅持鑽研科學,在匈牙利頂尖的塞格德大學取得了生物化學博士學位,並獲得博士後研究員的工作,投入 mRNA 研究。然而天要降大任,就有人要遭殃,大學的研究中心資金短缺,就把她給解聘了。

卡塔琳・卡里科。圖/wikimedia

為了能讓自己的研究對世界產生影響,1985 年,她決定出國深造,移民美國,但由於政府嚴控資金外流,她把所有積蓄 1,200 美元偷偷縫進女兒的玩具熊裡,才能讓一家人在人生地不熟的紐約暫時安頓。雖然幾乎不會講英文,幸運的考里科很快在天普大學蘇多尼教授的實驗室找到工作,等等,我剛剛說幸運嗎?

-----廣告,請繼續往下閱讀-----

對不起,我收回。她沒多久就被蘇多尼教授舉報為非法移民,只因她答應了約翰霍普金斯大學另一份薪水比較高的職位,要衰就衰到底,約翰霍普金斯大學隨即撤回了聘書,她跟先生還得花錢請律師來駁回引渡令,更別提因為蘇多尼繼續中傷她,她也找不到其他工作。

圖/giphy

幾經波折,她終於在賓州大學醫學院找到了研究助理教授的工作。但由於她不是醫生,也不是正規職員,無法取得終身職,其他同事根本不把她當同事看,對她投入的 mRNA 研究自然也沒興趣。加上考里科雖然外向開朗,但也口直心快,換句話說,根本就是白目。她只在乎研究,不顧他人顏面,總是直言批評同事研究中的錯誤。她既不能升等、申請研究經費也屢屢失敗,沒辦法從細胞跟生物體中藉由 mRNA 生成治療性蛋白質,獲得數據,那就更沒辦法申請經費。

這時幸運的考里科獲得了一位同事支持,總算做出了一點成果,透過把 mRNA 插入培養皿的細胞裡,使細胞製造出「尿激酶受體」蛋白質。等等,我剛剛又說幸運嗎?對不起,我再次收回。卡里科雖然做出成果,她的熱臉依舊貼上了同事們的冷屁股,即使她主動替許多同事合成 mRNA,也只獲得了「那個 mRNA 瘋女人」的評價。1995 年她的先生因為簽證問題困在匈牙利好幾個月,她則被驗出長了腫瘤,得開刀。這時賓州大學的主管卻要她選擇離開或是接受降級。

為了讓女兒能獲得賓州大學的學費優惠,她嚥下這口氣,接受降薪,職稱變成從來沒人擔任過的——「資深研究調查員」,為什麼沒人擔任過?因為沒人被開除現職之後還願意繼續留在賓州大學裡,她是第一個。

-----廣告,請繼續往下閱讀-----

越是山窮水盡,她越覺得解脫,就在這時她遇上了剛來到賓州大學的韋斯曼。

德魯・韋斯曼。圖/wikimedia

韋斯曼雖然冷淡,但他不是只對考里科冷淡,而是對所有人都很冷淡,他根本不聊八卦,只在乎研究,加上他才來不久,因此根本不知道考里科有多慘,也不在乎別人怎麼說考里科的壞話。韋斯曼早年曾當過安東尼佛奇實驗室的研究員,研究愛滋病,他目睹許多研究員因為無法獲得經費,而遷怒於不願幫忙的佛奇,藉由媒體傳播關於佛奇的負面消息,這讓他極為重視科學研究的誠信與純粹。

韋斯曼雖然對人冷淡,卻是個標準貓奴,他女兒會從收容所把病貓跟棄養貓帶回家,他還曾為了幫貧血的貓打針補充紅血球生成素,差點趕不上重要會議。他也是個偶爾會對同事亂講話的人,但不是因為他也白目,而是因為患有第一型糖尿病,血糖劇烈變化影響了他的認知功能,甚至會突然昏倒。

儘管對 mRNA 沒什麼興趣,正在研究愛滋病毒疫苗的韋斯曼的確用得上 mRNA,而考里科也真的很懂 mRNA。於是,韋斯曼跟考里科這兩支樹枝孤鳥竟然在 1998 年開始合作。幸運的考里科終於……等等?我剛剛說幸運嗎?

-----廣告,請繼續往下閱讀-----

COVID-19 疫情帶來的契機

在解釋 mRNA 如何應用前,我們複習一下分子生物學的重要概念:中心法則 (central dogma),也就是 DNA 轉錄成為 mRNA,再依據 mRNA 編碼,將對應的胺基酸組裝起來成為蛋白質。

分子生物學的中心法則。圖/learngenomics.dev

如果我們可以合成 mRNA,只要修改 mRNA 上的編碼,再將這些 mRNA 送入人體細胞內,直接將細胞當作生產蛋白質的工廠,使人體自己產生正確的蛋白質,不就可以治療遺傳疾病了嗎?!

另外,疫苗也是一個應用方向,mRNA 就像是傳令兵,它帶著敵軍病毒的情報交給如同將領的樹突細胞,產出帶有病毒特徵的蛋白質,進而刺激整個免疫系統備戰,並培養出有長期保護力的記憶型 B 或 T 細胞大軍。

剛剛說到,兩人一開始合作是針對愛滋病疫苗的研發,但是當韋斯曼將 mRNA 打入小鼠後,驚訝的發現這些小鼠會一直生病,甚至死亡,免疫反應強到把本體都幹掉了,如果 mRNA 注射會導致死亡,這故事要怎麼說下去?

-----廣告,請繼續往下閱讀-----
圖/giphy

講到這,我相信大家都明白了,這兩位科學家都不太幸運,但他們還有一個共通點,就是不知道放棄兩個字怎麼寫。

他們想,一般細胞每天也都會製造 mRNA,為什麼這些 mRNA 不會被免疫系統當成入侵者,引發嚴重的發炎反應,造成細胞死亡?

他們後來在實驗中發現注射 tRNA 的小鼠不會有這樣的免疫反應,而 tRNA 與其他 RNA 最大的差異就是有大量的鹼基修飾,難道說關鍵就是修飾?

卡里科擁有非常好的RNA修飾合成的技術,那有沒有可能透過修飾,找到不會引發嚴重免疫反應,卻同時可以順利轉譯出蛋白的 RNA 分子呢?最後他們發現將 RNA 分子中的尿嘧啶核苷「U」修改成為假尿嘧啶核苷分子「ψ」,就能夠躲過免疫反應又可以產生蛋白質,並且在 2005 年時,他們將這個方法應用在猴子身上,修改後的 mRNA 不僅可以躲過免疫系統的攻擊,也能夠有效產生蛋白質。

原來卡里科和韋斯曼找到的方法,其實就是免疫系統透過檢視 RNA 裡修飾的型式或比例,藉此判斷敵我的設計機制,因為通常病毒的 RNA 不會經過修飾,所以當體外合成的 mRNA 注射進入人體中,就會被免疫系統辨識成外來病毒,引發體內的免疫反應。

這時只要將外來的 mRNA 經過足量修飾,就可以「騙」過細胞,讓細胞正式成為你的蛋白質工廠。

雖然卡里科與韋斯曼確信自己已經攻克了 mRNA 應用的難題,但很多的科學家仍然對 mRNA 的應用感到疑慮,這些科學家認為這麼不穩定的分子,不容易量產和使用,2013 年,卡里科從日本參加完研討會回來,甚至發現連自己的研究室被清空,讓給了別的研究員,他們兩人的重大發現彷彿被全世界遺忘。

-----廣告,請繼續往下閱讀-----

不,他們的研究沒有被遺忘,在史丹佛大學的 Derrick Rossi 和 Luigi Warren 在幹細胞研究中,同樣遇到了 mRNA 應用的困難,直到 Rossi 和 Warren 得知了卡里科與韋斯曼的研究,才突破難關,成功透過加入特定 mRNA,將皮膚細胞轉變成多功能幹細胞,之後在 2010 年,Rossi 成立了世界第一家 mRNA 公司,也就是現在我們熟知的莫德納公司的前身。

而在得知莫德納將與英國的 AZ 合作開發血管內皮因子 mRNA 後,卡里科認為在大學繼續待下去也無法應用她在 mRNA 上的長才,於是前往德國,與 BNT 的創辦人烏爾.薩欣會面,並加入成為副總裁,保留兼任老師的資格。那年是 2013 年,BNT 還是個連網站都沒有的小生技公司,卡里科的決定也因此被學校的主管嘲笑。然而快轉到 2019 年,接下來的事大家都知道了。

烏爾.薩欣。圖/wikimedia

2019 年的 12 月 1 日,首例新冠病毒感染個案在中國武漢發生,隔年 1 月 5 日,新冠病毒全基因體解序完成,向全世界發布。2 月,新冠疫情開始往全球散播。

1 月 25 日莫德納公司的 Stephane Bancel 與美國國衛院國家過敏與傳染病研究所所長 Anthony Fauci 進行會議,2 月底莫德納完成 mRNA-1273 疫苗的動物試驗,同時,BNT 開發出二十多隻 mRNA 候選疫苗,從新冠病毒完成基因體解序後的第 66 天,3 月 16 日,世界上第一位 mRNA 疫苗臨床受試者開始施打,這是人類首次能夠在短時間內,製作出對抗新興傳染病的疫苗的時刻。

-----廣告,請繼續往下閱讀-----

而這一切,若不是當年卡里科與韋斯曼的努力不懈,突破 mRNA 的應用限制,使 mRNA 疫苗成為可能,那麼 COVID-19 所造成的死亡人數會遠遠高於現在統計的 695 萬人。

擇善固執還是冥頑不固

在科學研究中,我們常常看到戴著光環的成功案例,但不被失敗擊倒,其實才是科學的真實樣貌。

圖/wikimedia

相較過往,這次諾貝爾奬很「快」頒給了 mRNA 研究,為什麼說快呢?因為諾獎往往是在論文發表後幾十年才會頒布,慎重到必須是寫進教科書等級的實證研究,才有資格。所以研究者不僅研究厲害,也要活得到頒奬,這次能夠這麼快受到諾貝爾奬肯定,代表 mRNA 疫苗確實是終結疫情的重要功臣,有目共睹,實至名歸。

卡里科在獲獎的當下表示,儘管最近幾年得到很多肯定,但其實這一路上並不是一帆風順,所以說獲獎的瞬間還不太相信,甚至覺得這是不是個 Joke,根據法新社報導,卡里科說只有他母親對他很有信心,每年都會聆聽諾貝爾委員會宣布得主,卡里科 Karikó 回應說:「我當時只能苦笑一下,因為我從未得到過研究資助,也沒有一個固定的團隊。我甚至都不是一名正式的教授,因為我被降了職,所以我並不抱什麼期望。我回答她說,『這是不可能的』。」

很遺憾的,卡里科的母親在 5 年前離世,沒能看到她真的獲得諾貝爾獎。

聽完卡里科跟韋斯曼的故事,最後我想問問你,如果你轉生成卡里科,你覺得哪個時刻會讓你最想放棄呢?

  1. 當然是 2013 年,一回國竟然發現連研究室都被清空那時候。
  2. 應該是罹患腫瘤,丈夫又在匈牙利,學校還要開除我那時候。
  3. 光是出生在共產時期的匈牙利,我就想放棄了。

等等,要是你放棄,我們就沒有 mRNA 疫苗了耶,你想清楚啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 2
PanSci_96
1262 篇文章 ・ 2448 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。