2

103
4

文字

分享

2
103
4

【闢謠科普兩不誤】「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」這篇文到底有多少錯?下篇:文章內容有哪些資訊有誤或需要補充?文獻海洋在這裡!

Jamie Lin_96
・2022/09/18 ・13083字 ・閱讀時間約 27 分鐘

-----廣告,請繼續往下閱讀-----

在這篇文章中我會針對該科技新報文章所提及的內容進行闢謠科普,關於關於其引用的研究的闢謠科普詳見本文上篇:【闢謠科普兩不誤】「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」這篇文到底有多少錯?上篇:破解有疑慮的引用文獻及判斷文獻可信度小技巧分享

筆者目前研究領域跟工作狀態:免疫學博士候選人,預計於 2023 年 2 月正式取得博士學位,研究主題為愛滋疫苗與功能性抗體,具備在生物安全等級三級實驗室工作的資格與能力,最近在發表地獄中載浮載沉。

針對原始文章內錯誤的句子我會寫出是哪部分錯誤,並逐一科普,各段文字來自原始文章截圖;而跟那兩篇引用文獻有關的句子我用紅色底線標注,考量到文獻品質不佳在本篇中不多加討論(詳情請見本系列文上篇),在這篇中我也會分享一些跟疫苗副作用相關的發表,[]內的數字代表下方引用文獻reference列表對應到哪些學術發表,這篇文章很長,推薦抱持著輕鬆的心情慢慢看。

原文第一段。圖/科技新報
錯誤點:
  • 疫苗研發量產需要時間,跟不上病毒突變速度是正常的;已有完成臨床試驗的疫苗的病毒如HBV其實也還持續在開發效果更好的疫苗,總有天選之人打了疫苗沒效,有些疫苗則是要根據施打者過往病史來做選擇。
  • 疫苗的功效不只有防止感染,能降低感染後重症率、住院率、死亡率等也算是疫苗的功效。
  • 現在流行的病毒株跟當初開發疫苗時的病毒株差異極大,整體效果下降非常正常,並不是因為疫苗讓免疫系統變爛,而是病毒變厲害。
  • 號稱麻省理工的研究偏向文獻綜述,把一堆文獻抓在一起加上一些分析錯誤的數據,通篇沒有文獻或正確數據可以佐證其論點
  • 該荷蘭研究數據量與分析方式有疑慮,不應用其下定論

疫苗為什麼會跟不上病毒變種速度?為什麼疫苗防止感染能力變差?

要回答這些問題答案必須分為兩個面向:

1.哪些因素會影響病毒出現新變種的速度

-----廣告,請繼續往下閱讀-----
  • 病毒本身特性[1–3]
  • 感染人數人口密度[4]
  • 受感染者的免疫狀態[5–7]
  • 病毒突變後增強的能力[8][9]

新冠病毒的突變速度不是全部病毒中最快的,但也不慢,再加上其能夠在物品表面上存活時間長又有無症狀之帶原者[1][10],使其能快速傳播讓總感染人數上升,在人口密度較高的國家/區域確診病例數上升更為顯著,感染人數越多病毒傳遞越遠,在這過程中出現新變種的可能性就會跟著上升[4]

而病毒不會只感染特定族群,有些免疫力低下或是一些因為疾病免疫系統受到影響的人也會被感染,跟免疫力健全者相比這些人的免疫系統難以清除病毒[5–7],之前在南非就有一個案例是一位 HIV 感染的 22 歲女性持續被 beta 病毒株感染 9 個月,接受 HIV 治療約兩個月並從 covid 感染恢復後,其研究團隊發現該女子身上的病毒株已有超過 20 個新突變[6]

隨著病毒不斷傳播、突變、傳播、突變,目前主流病毒株 Omicron 家族其實具有比過往病毒株更好的免疫逃避性,能夠躲過免疫系統與感染/疫苗誘導出的抗體的追殺[8][9],同時也因為其免疫原性低,儘管確診後也無法產生足量有效的抗體對抗反覆感染,而病毒的免疫逃避性變好也代表可以逃過疫苗誘導出的抗體,疫苗保護力隨之下降[8][9]][11][12]

上述因素層層疊加,使我們三不五時就會聽到有新變種的消息,同樣這些因素也影響了疫苗開發與效果。

-----廣告,請繼續往下閱讀-----

2.疫苗開發與臨床試驗流程

疫苗開發到進入臨床試驗跑完整個流程其實非常曠日費時,近幾年順利通過三期臨床實驗的伊波拉疫苗(有獲歐盟批准)從研發到走完臨床實驗到正式上市也已經過了 20 多年[13][14]

臨床試驗相關細節與名詞解釋在科學月刊 2018 年 7 月的文章 — 臨床試驗「盲不盲」與台灣藥物臨床試驗資訊網中有詳細解釋[15][16],而臨床試驗相關資訊可以在 ClinicalTrials.gov 上查詢,那是一個國際級臨床實驗資訊的資料庫[17],但這邊需要特別解釋一個臨床實驗的特性:臨床實驗一定會有報告如期中報告等,絕對會提交給監督審核的機構,但其報告是否向大眾公開、最後是否整理發表至期刊上等則不一定!所以如果一般大眾查不到某臨床實驗的公開的報告跟發表是在合理範圍內,其臨床試驗過程中的數據並沒有強制一定要公開,而最後失敗與否則會公開。

我自己的研究範圍就包含愛滋病疫苗,從過往已經宣告失敗的臨床試驗中找出失敗原因去改進或是檢測正在進行中的臨床試驗效果如何都在我的工作範圍之內,我們在做研究分析的同時病毒仍在外造成疫情,研究人員這端能做的主要是設計並篩選出可能成為疫苗候選的成分,通過細胞、動物實驗等去分析毒性、效力及可能可以用在人類身上的劑量,這些主要是在臨床前階段就會完成。

-----廣告,請繼續往下閱讀-----

進入到第一階段臨床試驗時除了檢測疫苗在人類身上的安全性之外,我們也會測試不同疫苗濃度及施打方式等會不會效果更好,這時候會分非常多組,每組大概 10 幾人且有安慰劑組,將檢體寄送給不同專業的研究機構進行分析後最終會知道哪個配方跟施打方式是這些中最好的,如果安全性過關且在實驗室的實驗中有看到初步效果,在監督機關審核通過許可後會進到第二期臨床試驗,招募更多志願者並進一步分析疫苗有效性跟是否有潛在的不良反應(每個人身體狀況不同所以施打者越多就有機會觀察到更多不良反應),如果在此時發現效果不好、有過多嚴重不良反應等負面結果臨床試驗就會終止於此難以繼續進入第三期。

新藥研發的整個過程大致分為 4 大項。圖/科學月刊

許多臨床實驗都有非常長的追蹤期,一年三年五年七年不等,但誰都沒預料到 Covid-19 疫情的爆發,倘若針對突然爆發的全球性疫情的疫苗仍要有原先那樣長得追蹤期,對全球民眾健康所帶來的傷害會超出預期,但儘管因為特殊狀況縮短 Covid-19 臨床試驗時間,開發出來也需要極佳的運氣與一定的時間,要生產足夠的疫苗同樣需要時間,這些都不是馬上完成的。

在疫情爆發之初有不少人提倡透過感染獲得群體免疫這個論點,這也使不少質疑為何要施打疫苗甚至選擇讓自己被感染。但其實已有免疫學領域大佬明確指出:傳統群體免疫的觀念可能不適用於 COVID-19 [18] 。下方的簡報是我針對該發表做簡單的科普,有興趣可以看一看。

最初群體免疫這個術語是從獸醫界開始使用[18],非常多學者想要知道那在人類流行病上同樣的理論是否適用,但在 20 世紀初期許多學者便已得知因爲疾病差異、免疫力持續時間、人口流動、所接受醫療資源差異等,人類想要單純通過感染獲得針對 Covid-19 的群體免疫基本上是不可能,需要透過適當公衛手段與有效的預防措施來控制感染數,爭取研發更有效的疫苗的時間等多管齊下才可能達成[19]

-----廣告,請繼續往下閱讀-----

看完上述資訊後讓我們回到:疫苗為什麼會跟不上病毒變種速度?為什麼疫苗防止感染能力變差?這兩個問題上,答案便會好懂些:

  • 疫苗開發與產量都需要時間,但感染數量居高不下給病毒有出現新變種的機會,等疫苗上市時病毒已經突變無數次有新變種,自然追不上。
  • 病毒的免疫逃避性逃過疫苗誘導出的抗體,疫苗保護力隨之下降。

控制疫情還是需要以適當公衛手段與有效的預防措施來控制感染數,爭取研發更有效的疫苗的時間並讓能夠施打的族群施打,多管齊下才可能達成。

原文第二段。圖/科技新報
錯誤點:
  • 是先天性免疫“系統”,而非先天免疫細胞,他們成員很多
  • 先天性免疫系統不會活化後就變成適應性免疫系統,先天性免疫系統中的細胞不會活化後就變成適應性免疫系統的細胞(樹突細胞另提),吞噬細胞再怎麼被刺激也不會瞬間變身變成B細胞
  • T細胞與B細胞會不會產生記憶性、產生的記憶性多久跟病原體/抗原有關,不一定會在接受病原體/抗原刺激後出現。

人體的免疫系統分為先天性免疫系統與適應性免疫系統[20][21],而這兩者的區別為

先天性免疫系統:

  • 非特異性反應,會對所有病源有反應
  • 一接觸到病原馬上開始動工
  • 不是所有先天性免疫系統的成員都有記憶性
  • 包含發炎反應、補體系統與部分白血球(如吞噬細胞),部分成員會協助活化適應性免疫系統

適應性免疫系統:

  • 對特定病原與抗原起反應
  • 需要一點時間才會有強烈反應
  • 有記憶性(會記得敵人一段時間)
  • 淋巴球,T 細胞與 B 細胞屬於這裡!

先天免疫系統不會因為接觸到病原體就變成適應性免疫系統他們同時存在有時互相幫忙,並以不同的機制保護人體

-----廣告,請繼續往下閱讀-----

而常常聽到人提到的 B 細胞與 T 細胞他們的保護身體的機制簡單來說是

B 細胞:

  • 認識抗原(可能來自病原體或是疫苗)後大量製造能夠識別目標物的抗體
  • 有些抗體如中和性抗體需要特殊的B細胞製造且成熟時間長

T 細胞:

  • 識別受感染的細胞
  • 協助 B 細胞更好的認識病原體的抗原
  • 引導能夠清除的T細胞過來
  • 清除受感染的細胞
  • 殺死癌細胞[22]
抗體與 Fc 受體以及其可能誘導出的免疫反應。圖/參考資料 23

抗體、補體、抗體加上 T 細胞等組合產生多種機制,都是免疫中的一環缺一不可[23],但這些機轉中也有可能對身體造成危害的如抗體依賴增強作用Antibody-dependent enhancement (ADE),ADE能讓感染變嚴重[23][58]。倘若疫苗誘導出來的抗體做臨床前試驗或是第一期臨床試驗時發現有ADE,那該疫苗不會進到後續臨床試驗;而要觀察上市後的疫苗有沒有ADE可以從重症率死亡率是否激增來判斷,目前真實世界數據尚未看到Covid-19疫苗有ADE的問題,但有分析其可能機轉 [58][59],而在細胞實驗中感染Covid後部分誘導出的抗體有觀察到ADE [60]

-----廣告,請繼續往下閱讀-----

在癌症治療方面T細胞十分重要,其機轉非常複雜且需要不同細胞因子與受體協同合作[22]。B細胞與T細胞被活化後有些後代成員可能會成為具有免疫記憶的記憶B細胞與記憶T細胞等,未來如果碰到類似的抗原時可以有所反應,而能夠有多長的記憶時間則要看病源體/抗原特性來定,但這些被活化的免疫細胞不一定都能在未來提供有效的免疫反應。

在今年八月底發布於 medRxiv 上一篇尚未經通行審查但內容十分嚴謹(高機率已經投稿期刊正在進行審核)的論文指出:Covid 確診者(兩個月內)體內針對病毒抗原的特異性 B 細胞會使疫苗施打效果變差 [24],一分析確診者與未確診者施打 CoronaVac 疫苗後的免疫反應之研究指出過去有確診過的人施打疫苗後產生的中和抗體廣度較未確診者窄[25],這些研究其實揭示了因感染活化的免疫細胞甚至是記憶性免疫細胞並非在未來能成為我們對抗病源的好幫手,可能會成為讓疫苗效果變差的壞人[26]

今年六月刊登於頂級期刊 Nature 的一篇發表更是指出 Covid 病毒進化非常多並且能夠抑制針對自己的免疫反應,這有利於反覆感染外,過往感染所產生的免疫銘印(immune imprinting)對未來再次面對不同 covid 病毒時的免疫反應產生負面影響,讓你的免疫系統(尤其是 T 細胞)對於新變種的抵抗力大幅下降[12],但在沒確診只有施打疫苗的族群上,尚未看到上述這些負面影響。

原文第三段與第四段。圖/科技新報
錯誤點:
  • 訊號傳遞的關鍵不是只有干擾素,細胞激素非常重要
  • 細胞被感染後不一會分泌干擾素,要先識別出來是敵人
  • 三種類型的干擾素都很重要不分軒輊,在癌症治療的運用上不是只有第一型,第三型也有。
  • 那篇號稱MIT但不是MIT的發表中沒有研究數據可以證實他所說的mRNA疫苗會破壞第一型干擾素的訊號傳遞。

能夠刺激觸發免疫系統活動的關鍵除了抗原外,宿主所產生的各種細胞激素(cytokine),其中包含文中所提到的干擾素(Interferon),能給予免疫系統進行各種不同的免疫反應[27][28],而 Covid-19 確診導致的細胞激素風暴(cytokine storm)同樣有細胞激素跟干擾素的參與[29]

-----廣告,請繼續往下閱讀-----

下方圖片中的內容是一篇探討 Covid 確診後的細胞激素風暴相關路徑與參與的細胞激素、干擾素成員圖,非常精美可以當作參考,或是看一看漂亮的圖表心情好。

細胞激素風暴的機轉與參與成員其實非常繁雜。圖/參考資料 29

細胞激素參與身體中非常多的功能如:細胞訊息傳遞與調節免疫功能等,細胞激素家族非常龐大,而文中所提及的干擾素也是成員之一[27]。干擾素能夠影響病毒複製進而保護細胞不被感染與調節刺激一些免疫細胞,但病毒也不是毫無招架的餘地,有些病毒其實有拮抗干擾素的能力[28][30]。此外感染後的發燒、疼痛、發炎等症狀並非單純由干擾素引起,細胞激素也扮演了非常重要的角色[28]

而干擾素分成三型,功能不完全相同但都很重要:

  • 第一型:具影響病毒複製等功能,其成員有些被運用在治療肝炎,有些被用在治療多發性硬化症。[27][31]
  • 第二型:誘導刺激免疫反應。[32]
  • 第三型:較晚發現的成員,可能能夠影響病毒與真菌的感染。[33][34]

干擾素的確有跟其他療法如化療等一起運用在癌症治療上[35],其機轉與在治療上的運用也一直有在深入研究[36][37]

原文第五段。圖/科技新報
錯誤點:
  • 是細胞激素加上干擾素與其他被啟動的免疫機轉引起Covid-19確診後的最初症狀,不能說是由干擾素引起的
  • 免疫觀念是流動的,疫苗也不是只有預防感染的功能,降低住院率、死亡率、重症率、緩解症狀等都是疫苗會具有的功能,更別提還有治療性疫苗這個類別
  • 畫紅線的科學家表示的內容是錯的,疫苗接種對身體健康狀態有所要求,能接種疫苗者本身身體健康有一定水準,體內的免疫系統能夠清除病毒,打疫苗是讓免疫系統受到訓練後能更好的清除病毒,而施打疫苗後症狀輕微不代表身體沒抵抗
  • 就現有研究來說(免疫系統正常的成人)不論接種疫苗與否,病毒在人體停留的時間沒有統計上的顯著差異
  • 免疫系統功能低下者(如化療患者、愛滋病患者、特殊疾病患者等)被病毒感染後病毒可能揮之不去,但如果換作是普通人不論有沒有打疫苗免疫系統都有能力清除病毒,但能不能活到病毒被清除完又是另一回事。

Covid-19 確診後的症狀並非單純由干擾素引起,細胞激素也扮演了非常重要的角色[28],而疫苗功能其實不單純只有預防感染,減輕症狀與預防重症等也算是疫苗的功能[18]

據目前現有研究來看,確診 Omicron 的人施打疫苗者與未施打疫苗者其實病毒量沒有太大的差距[38][39],但施打疫苗者可能因為體內的抗體與有記憶性的免疫細胞辨識出敵人並開始清除病毒所以症狀出現的較早(可見下方引用推文中的圖片)。

倘若是身體健康的成年人,施打疫苗者確診後體內病毒不會停留更長的時間[39],免疫系統會有能力將病毒清除;但倘若為免疫功能低下的人,如:特殊疾病患者、化療病人、愛滋病患等,比起健康的成年人他們體內的免疫系統較虛弱難以將病毒清除且確診後演化為重症的可能性較高,所以我們必須要小心不要讓他們被感染[5–7]

而在這篇文章刊出不久候我收到一封信,信中說“ 如果長時間不清除疾病,可能會導致嚴重的疾病 ” 這段話可以用澳大利亞2022/06/11到2022/08/27的12週的感染新冠而住院(非加護病房)的確診案例數據去作佐證,之後我又收到一封信說我選用的數據錯誤,他給的數據只有New South Wales,不是澳洲全國。其實這兩封信中都犯了非常常見的數據分析錯誤,這樣的資訊也是假消息的愛用品,該如何破解呢?

筆者收到的信件。圖/作者
錯誤點:
  • 數據分析錯誤,分母取錯
  • 要討論像是疫苗會不會影響確診率這樣的現象或假說不能只用一個地區的數據,這不是在討論不同地區因為醫療資源、人口密度等帶來的影響或案例報告。先撇開最後統計結果不提,這樣要 “只用一個地區的數據來應證一個可能會發生在全世界各地的假設” 的行為恰恰就是學術領域中會被人詬病甚至退稿的 “挑數據說故事”
  1. 時間:數據是2022年6~8月的數據,已能獲得充沛疫苗資源的國家來說該國國民絕大多數都有接種疫苗,澳洲公布的數據來看16歲以上的澳洲人98%有接種一劑疫苗,兩劑為96.3%,三劑為71.7%,而New South Wales的人口數根據Population Australia這個網站上顯示在2022年6月底可能會達到 826萬人,而該地區16歲以上居民97%有接種一劑疫苗,兩劑為95.4%,三劑為69.6%(數據來源
澳洲全國疫苗接種狀態。圖/Australian Government Department of Health and Aged Care
New South Wales疫苗接種狀態。圖/NSW Health

2. 分母要選對:在做如該信提到的感染機率比較時,我們必須要有施打疫苗者跟有施打疫苗者比,沒施打疫苗者跟沒施打疫苗者比,為什麼?因為你要比的是施打疫苗者跟沒施打疫苗者各自的感染機率,而以澳洲數據來看16歲以上施打至少一劑疫苗者有98%(20,209,451人,換而言之沒施打疫苗者大約是2%(412,428人);而在New South Wales16歲以上施打至少一劑疫苗者有97%(約8,017,050人),未施打疫苗者大約3%(大約247,950人)如果沒選對分母,算出來的數據會大錯特錯。

3. 小心分子裡有詐:做數據分析前我們必須要看數據有沒有妥善處理,儘管現在資訊較為發達,還是有可能有些數據會被標記或應該表記為unknown,因為其實際狀況如何以現有資訊來說未知,舉例來說

  • 疫苗施打紀錄存疑需要額外查證
  • 有在其他地方打過疫苗但沒有證明文件
  • 在該系統中沒有出現有施打疫苗紀錄(可能其他地方有)等等

這些都會影響數據處理方式跟最終數據計算方式,這些unknown數據必須標示好並另外處理,不能跟其他數據混為一談更不能直接裁切掉忽視不理,更不能說為了讓數據量夠多我剔除unknown後多用幾週數據讓樣本數夠大,這已經能算惡意扭曲數據。

對於專業人士來說unknown這樣的數據的確是棘手,但相較於一般大眾我們有更多的權限去調取資料與做進一步數據清理分析,倘若真的處理不來我們也會如實告知,許多資訊因為涉及病人隱私絕對不會對外公開,所以問我們怎麼處理分類清理這些數據也沒用,更別提根據分析數據不同我們會用不同的統計方式,不是一般的加減乘除就可以理得清。

此外,在信中我有收到對方用來參考做計算的數據來源,而這張表一看問題就很大連拿來算的價值都沒有,爲什麼呢?

筆者收到的信件中所附的數據圖表。圖/作者

一位相關領域的博士去看原始數據後作出以下點評:

“ Unknown這群不管有沒有打疫苗也不能不理,而且光是8/20號的數據中unknown居然佔了27%(173/638住院數)的統計數,然後說當然不能分析? 他在開什麼玩笑? unknown只有幾種情形:

  • 沒打
  • 有打,沒有證明
  • 打了不是澳洲認為OK的疫苗(台灣人最愛講高端不能出國)
  • 有打的證明但不被認證

不把這些數據好好分類就直接當missing data處理,甚至在他提供的聯結中直接裁切不說明,就是惡意的扭曲數據的意義!”

對我來說他所用的數據還有另一個問題:年齡層資訊去哪了?病人是否有其他疾病呢?

讓我們再繼續使用2022年8月20日New South Wales的數據,住院者數量上升的年齡段集中在60歲以上的族群,詳情請見下圖:

2022年8月20日New South Wales的數據。圖/NSW Health

人類的免疫系統隨著年齡增長會有所影響,儘管都是16歲以上成年人,25歲的年輕人跟90歲的老人狀況不一樣,這就是為何在其他疫苗效力分析的文獻中會以10歲為一個年齡層區分開來分析,甚至連性別、種族等都是我們要考慮的因素,還要再考慮到施打了什麼疫苗;倘若取樣方式、思維邏輯錯誤,再怎麼計算最終結果也是錯的。

而且…儘管沒有權限去獲取所有數據細節,澳洲其實有數據庫已把寄件者想要知道的資訊算好了,New South Wales的數據與分析結果可點擊超連結查詢,在CovidBaseAU的網站上還有其他州與澳洲整體的數據相關分析可以查閱。

總而言之言而總之:

數據資訊充足沒有惡意處理、病人資訊明確並且數據量夠並且挑選適當的統計方式才可以進行數據分析,不是隨便加減乘除就會馬上得到真理

  • (選配)複習一下國中與高中數學在機率統計方面的內容:可能對於有些人來說國高中所學的內容有點模糊了,所以在看到數據時做分析時會搞混應該用哪些數據當分子,哪些數據當分母,可以稍微複習一下。

而在原始文章中那個號稱MIT但根本不是MIT的發表在數據統計上犯的一個極大錯誤也是分母選擇錯誤,如果要算該疫苗的不良事件比例分母應該為“總施打人數”,而不是拿別的疫苗的施打人數來做加減乘除;同理在計算施打疫苗後的突破性感染比例其母數應該是施打疫苗者的人數,而沒施打疫苗者的感染比例則應適用沒有施打疫苗者的人數,別搞混嘍!

原文第六段。圖/科技新報

錯誤點:

  • Covid-19 mRNA疫苗減弱適應性免疫反應方面沒看到有扎實實驗數據的發表,原文提到的根本不是MIT發表的發表也沒有相關數據可以佐證。
  • B細胞在癌症治療中如何發揮功用還在研究中,而且B細胞能分泌的抗體種類很多,不是只有中和病原體的功能。

在本文撰寫的當下我以 google scholar 與 pubmed 查關鍵字 covid-19、mRNA vaccine、T cell、B cell 看到的主要是探討疫苗如何誘導 T 細胞與 B 細胞免疫反應,而細胞受損方面文獻主要在討論 covid 透過哪些路徑感染免疫細胞,確診對於免疫系統的影響(如 T 細胞多樣性降低,B 細胞失調等)等[40 – 44]

在癌症治療方面 T 細胞的確有其一席之地,與不同細胞激素與細胞協調清除癌細胞[22][45][46],而近幾年的研究顯示 B 細胞與癌症治療與預後評估有所關聯,相關機制仍在研究[47][48]

原文第七段。圖/科技新報

錯誤點:

  • 先天免疫與適應性免疫缺一不可
  • 被誘導出來的適應性免疫不一定有益
  • 該荷蘭研究數據量與分析方式有疑慮,不應用其下定論

參與先天性免疫與適應性免疫的成員眾多且都很重要[27][28],但不一定所有機轉誘導出來的免疫反應都是你的好朋友[12][26]。而該荷蘭研究是否真的有顯著差異能夠證明疫苗施打後真的會影響 IFN-α 以其文章中的數據來看仍有疑慮,詳細討論在上篇中在此不多贅述。

原文第八段。圖/科技新報

錯誤點:

  • 中和性抗體不會在一次疫苗接種後幾週就出來
  • 有實際數據的研究與論文綜述指出疫苗可效刺激誘導T細胞而非活性下降

中和性抗體需要不短的成熟期,不可能在疫苗接種後幾週內產生[49][50],除非你已經是接種超過一劑疫苗,接著在第二或是第三劑疫苗施打後幾週內產生中和性抗體那可能還說得過去。而 mRNA 疫苗可以有效刺激與誘導 T 細胞與 B 細胞已在過往實驗中獲得證實[51],對於其導致心肌炎、心包炎與過敏等的可能機制也有不少研究團隊分析討論[52][53],並針對其安全性與哪些族群可能施打有較高的風險有所研究[52–54]

mRNA 疫苗研究多年但實際大量運用在人體上也是第一次[55][56],比起其他傳統疫苗技術來說他有一定的優點如可以快速製備,同樣也有缺點如存放難度高、目前已知副作用不少以及缺乏傳統疫苗臨床試驗的長期追蹤,這些都是需要更多研究與更多時間才能知道答案。

整體來說「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」文中部分內容正確,但更多的是似是而非跟描述方式不當,而構成這篇文章的兩篇引用文獻品質不佳甚至拿來當主打點的發表早已有國外文章分析其內容有多少問題[57],有興趣的人可以在 Reference 中找到連結查看。

引用文獻有誤、關於免疫學敘述有誤且偏頗,這是我對於「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」這篇文章的評價;而針對該文的兩篇闢謠文 Reference 超過 60 個,遠超過原始文章中的引用文獻的數量,從此也可以看出要澄清假消息需要付出的心力有多驚人。

結語

會將這系列文拆成上下篇主要是因為「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」是基於兩篇引用文獻再加上其他資料寫出來的,如果不將有標紅色底線的兩篇引用文獻相關內容先做闢謠科普這篇文章會很混亂很長。

沒有任何技術是完美的,隨著技術的發展、更多的研究與臨床觀察我們才能找到更適合的改進方向,進而讓不論是疫苗研發技術還是藥物療法開發等變得越來越好。但這世界上不會有任何事情是大家都接受的,總有攻擊的聲浪甚至有虛假資訊流竄,有些人儘管有高學歷,但那絕對不代表他們說的寫的是正確的,多的是這樣的人散播似是而非的資訊。

這系列文章的最後我想感謝在寫文章的過程中提供不同專業建議與見解的博士們(為了寫這篇文章我詢問了好幾位相關專業的博士),還有願意看到這行話的讀者,願這兩篇文章能夠讓沒有相關背景的大眾對於疫情相關的資訊判讀有些幫助,祝一切安好。

參考資料

  1. Amoutzias GD, Nikolaidis M, Tryfonopoulou E, Chlichlia K, Markoulatos P, Oliver SG. The remarkable evolutionary plasticity of coronaviruses by mutation and recombination: insights for the COVID-19 pandemic and the future evolutionary paths of SARS-CoV-2. Viruses. 2022 Jan 2;14(1):78.
  2. Schwarzendahl, F.J., Grauer, J., Liebchen, B. and Löwen, H., 2022. Mutation induced infection waves in diseases like COVID-19. Scientific Reports12(1), pp.1–11.
  3. Pathan, R.K., Biswas, M. and Khandaker, M.U., 2020. Time series prediction of COVID-19 by mutation rate analysis using recurrent neural network-based LSTM model. Chaos, Solitons & Fractals138, p.110018.
  4. Sharif, N. and Dey, S.K., 2021. Impact of population density and weather on COVID-19 pandemic and SARS-CoV-2 mutation frequency in Bangladesh. Epidemiology & Infection149.
  5. Mishra, M., Zahra, A., Chauhan, L.V., Thakkar, R., Ng, J., Joshi, S., Spitzer, E.D., Marcos, L.A., Lipkin, W.I. and Mishra, N., 2022. A Short Series of Case Reports of COVID-19 in Immunocompromised Patients. Viruses14(5), p.934.
  6. Maponga, T.G., Jeffries, M., Tegally, H., Sutherland, A.D., Wilkinson, E., Lessells, R., Msomi, N., van Zyl, G., de Oliveira, T. and Preiser, W., 2022. Persistent SARS-CoV-2 infection with accumulation of mutations in a patient with poorly controlled HIV infection. Available at SSRN 4014499.
  7. Hoffman, S.A., Costales, C., Sahoo, M.K., Palanisamy, S., Yamamoto, F., Huang, C., Verghese, M., Solis, D.A., Sibai, M., Subramanian, A. and Tompkins, L.S., 2021. SARS-CoV-2 neutralization resistance mutations in patient with HIV/AIDS, California, USA. Emerging Infectious Diseases27(10), p.2720.
  8. Focosi, D., Maggi, F., Franchini, M., McConnell, S. and Casadevall, A., 2021. Analysis of immune escape variants from antibody-based therapeutics against COVID-19: a systematic review. International journal of molecular sciences23(1), p.29.
  9. Nel, A.E. and Miller, J.F., 2021. Nano-enabled COVID-19 vaccines: meeting the challenges of durable antibody plus cellular immunity and immune escape. ACS nano15(4), pp.5793–5818.
  10. Riddell, S., Goldie, S., Hill, A., Eagles, D. and Drew, T.W., 2020. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virology journal17(1), pp.1–7.
  11. Pulliam, J.R., van Schalkwyk, C., Govender, N., von Gottberg, A., Cohen, C., Groome, M.J., Dushoff, J., Mlisana, K. and Moultrie, H., 2022. Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa. Science376(6593), p.eabn4947.
  12. Reynolds, C.J., Pade, C., Gibbons, J.M., Otter, A.D., Lin, K.M., Muñoz Sandoval, D., Pieper, F.P., Butler, D.K., Liu, S., Joy, G. and Forooghi, N., 2022. Immune boosting by B. 1.1. 529 (Omicron) depends on previous SARS-CoV-2 exposure. Science377(6603), p.eabq1841.
  13. https://www.jnj.com/johnson-johnson-announces-european-commission-approval-for-janssens-preventive-ebola-vaccine
  14. https://www.statnews.com/2020/01/07/inside-story-scientists-produced-world-first-ebola-vaccine/
  15. http://scimonth.blogspot.com/2018/07/blog-post_19.html
  16. https://www1.cde.org.tw/ct_taiwan/notes.html
  17. https://clinicaltrials.gov/
  18. Morens, D.M., Folkers, G.K. and Fauci, A.S., 2022. The concept of classical herd immunity may not apply to COVID-19. The Journal of Infectious Diseases.
  19. Eichhorn, Adolph. Contagious abortion of cattle. №790. US Department of Agriculture, 1917.
  20. Smith, A., 2000. Oxford dictionary of biochemistry and molecular biology: Revised Edition. Oxford University Press.
  21. Alberts, B., 2017. Molecular biology of the cell. WW Norton & Company.
  22. Waldman, A.D., Fritz, J.M. and Lenardo, M.J., 2020. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nature Reviews Immunology20(11), pp.651–668.
  23. Lin, L.Y., Carapito, R., Su, B. and Moog, C., 2022. Fc receptors and the diversity of antibody responses to HIV infection and vaccination. Genes & Immunity, pp.1–8.
  24. https://www.medrxiv.org/content/10.1101/2022.08.30.22279344v1
  25. Zhu, Y., Lu, Y., Tang, L., Zhou, C., Liang, R., Cui, M., Xu, Y., Zheng, Z., Cheng, Z. and Hong, P., 2022. Finite neutralisation breadth of omicron after repeated vaccination. The Lancet Microbe.
  26. Suryawanshi, R. and Ott, M., 2022. SARS-CoV-2 hybrid immunity: silver bullet or silver lining?. Nature Reviews Immunology, pp.1–2.
  27. Janeway, C.A., Travers, P., Walport, M. and Capra, D.J., 2001. Immunobiology (p. 600). UK: Garland Science: Taylor & Francis Group.
  28. De Andrea, M., Ravera, R., Gioia, D., Gariglio, M. and Landolfo, S., 2002. The interferon system: an overview. European Journal of Paediatric Neurology6, pp.A41-A46.
  29. Fajgenbaum, D.C. and June, C.H., 2020. Cytokine storm. New England Journal of Medicine383(23), pp.2255–2273.
  30. Elrefaey, A.M., Hollinghurst, P., Reitmayer, C.M., Alphey, L. and Maringer, K., 2021. Innate immune antagonism of mosquito-borne flaviviruses in humans and mosquitoes. Viruses13(11), p.2116.
  31. Ntita, M., Inoue, S.I., Jian, J.Y., Bayarsaikhan, G., Kimura, K., Kimura, D., Miyakoda, M., Nozaki, E., Sakurai, T., Fernandez-Ruiz, D. and Heath, W.R., 2022. Type I interferon production elicits differential CD4+ T-cell responses in mice infected with Plasmodium berghei ANKA and P. chabaudi. International Immunology34(1), pp.21–33.
  32. Kidd, P., 2003. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Alternative medicine review8(3), pp.223–246.
  33. Espinosa, V., Dutta, O., McElrath, C., Du, P., Chang, Y.J., Cicciarelli, B., Pitler, A., Whitehead, I., Obar, J.J., Durbin, J.E. and Kotenko, S.V., 2017. Type III interferon is a critical regulator of innate antifungal immunity. Science immunology2(16), p.eaan5357.
  34. Hermant, P. and Michiels, T., 2014. Interferon-λ in the context of viral infections: production, response and therapeutic implications. Journal of innate immunity6(5), pp.563–574.
  35. Goldstein, D. and Laszlo, J., 1988. The role of interferon in cancer therapy: a current perspective. CA: a cancer journal for clinicians38(5), pp.258–277.
  36. Zaidi, M.R., 2019. The interferon-gamma paradox in cancer. Journal of Interferon & Cytokine Research39(1), pp.30–38.
  37. Dunn, G.P., Ikeda, H., Bruce, A.T., Koebel, C., Uppaluri, R., Bui, J., Chan, R., Diamond, M., Michael White, J., Sheehan, K.C. and Schreiber, R.D., 2005. Interferon-γ and cancer immunoediting. Immunologic research32(1), pp.231–245.
  38. Regev-Yochay, G., Gonen, T., Gilboa, M., Mandelboim, M., Indenbaum, V., Amit, S., Meltzer, L., Asraf, K., Cohen, C., Fluss, R. and Biber, A., 2022. Efficacy of a fourth dose of COVID-19 mRNA vaccine against omicron. New England Journal of Medicine386(14), pp.1377–1380.
  39. Boucau, J., Marino, C., Regan, J., Uddin, R., Choudhary, M.C., Flynn, J.P., Chen, G., Stuckwisch, A.M., Mathews, J., Liew, M.Y. and Singh, A., 2022. Duration of Shedding of Culturable Virus in SARS-CoV-2 Omicron (BA. 1) Infection. New England Journal of Medicine387(3), pp.275–277.
  40. Junqueira, C., Crespo, Â., Ranjbar, S., de Lacerda, L.B., Lewandrowski, M., Ingber, J., Parry, B., Ravid, S., Clark, S., Schrimpf, M.R. and Ho, F., 2022. FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature, pp.1–9.
  41. Pontelli, M.C., Castro, I.A., Martins, R.B., La Serra, L., Veras, F.P., Nascimento, D.C., Silva, C.M., Cardoso, R.S., Rosales, R., Gomes, R. and Lima, T.M., 2022. SARS-CoV-2 productively infects primary human immune system cells in vitro and in COVID-19 patients. Journal of molecular cell biology14(4), p.mjac021.
  42. Joseph, M., Wu, Y., Dannebaum, R., Rubelt, F., Zlatareva, I., Lorenc, A., Du, Z.G., Davies, D., Kyle-Cezar, F., Das, A. and Gee, S., 2022. Global patterns of antigen receptor repertoire disruption across adaptive immune compartments in COVID-19. Proceedings of the National Academy of Sciences119(34), p.e2201541119.
  43. André, S., Picard, M., Cezar, R., Roux-Dalvai, F., Alleaume-Butaux, A., Soundaramourty, C., Cruz, A.S., Mendes-Frias, A., Gotti, C., Leclercq, M. and Nicolas, A., 2022. T cell apoptosis characterizes severe Covid-19 disease. Cell Death & Differentiation, pp.1–14.
  44. Woodruff, M.C., Ramonell, R.P., Haddad, N.S. et al. Dysregulated naïve B cells and de novo autoreactivity in severe COVID-19. Nature (2022). https://doi.org/10.1038/s41586-022-05273-0
  45. Feng, S. and De Carvalho, D.D., 2022. Clinical advances in targeting epigenetics for cancer therapy. The FEBS Journal289(5), pp.1214–1239.
  46. Abrantes, R., Duarte, H.O., Gomes, C., Wälchli, S. and Reis, C.A., 2022. CAR‐Ts: new perspectives in cancer therapy. FEBS letters596(4), pp.403–416.
  47. Petitprez, F., de Reyniès, A., Keung, E.Z., Chen, T.W.W., Sun, C.M., Calderaro, J., Jeng, Y.M., Hsiao, L.P., Lacroix, L., Bougoüin, A. and Moreira, M., 2020. B cells are associated with survival and immunotherapy response in sarcoma. Nature577(7791), pp.556–560.
  48. Helmink, B.A., Reddy, S.M., Gao, J., Zhang, S., Basar, R., Thakur, R., Yizhak, K., Sade-Feldman, M., Blando, J., Han, G. and Gopalakrishnan, V., 2020. B cells and tertiary lymphoid structures promote immunotherapy response. Nature577(7791), pp.549–555.
  49. Moore, P.L., Williamson, C. and Morris, L., 2015. Virological features associated with the development of broadly neutralizing antibodies to HIV-1. Trends in microbiology23(4), pp.204–211.
  50. Gray, E.S., Madiga, M.C., Hermanus, T., Moore, P.L., Wibmer, C.K., Tumba, N.L., Werner, L., Mlisana, K., Sibeko, S., Williamson, C. and Abdool Karim, S.S., 2011. The neutralization breadth of HIV-1 develops incrementally over four years and is associated with CD4+ T cell decline and high viral load during acute infection. Journal of virology85(10), pp.4828–4840.
  51. Hogan, M.J. and Pardi, N., 2022. mRNA Vaccines in the COVID-19 Pandemic and Beyond. Annual Review of Medicine73, pp.17–39.
  52. Heymans, S. and Cooper, L.T., 2021. Myocarditis after COVID-19 mRNA vaccination: clinical observations and potential mechanisms. Nature Reviews Cardiology, pp.1–3.
  53. Risma, K.A., Edwards, K.M., Hummell, D.S., Little, F.F., Norton, A.E., Stallings, A., Wood, R.A. and Milner, J.D., 2021. Potential mechanisms of anaphylaxis to COVID-19 mRNA vaccines. Journal of Allergy and Clinical Immunology147(6), pp.2075–2082.
  54. Anand, P. and Stahel, V.P., 2021. The safety of Covid-19 mRNA vaccines: A review. Patient safety in surgery15(1), pp.1–9.
  55. Park, K.S., Sun, X., Aikins, M.E. and Moon, J.J., 2021. Non-viral COVID-19 vaccine delivery systems. Advanced drug delivery reviews169, pp.137–151.
  56. Heiser, A., Coleman, D., Dannull, J., Yancey, D., Maurice, M.A., Lallas, C.D., Dahm, P., Niedzwiecki, D., Gilboa, E. and Vieweg, J., 2002. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. The Journal of clinical investigation, 109(3), pp.409–417.
  57. https://www.respectfulinsolence.com/2022/05/02/scientific-review-articles-as-disinformation/
  58. Halstead, S.B. and Katzelnick, L., 2020. COVID-19 vaccines: should we fear ADE?. The Journal of infectious diseases, 222(12), pp.1946–1950.
  59. Li, M., Wang, H., Tian, L., Pang, Z., Yang, Q., Huang, T., Fan, J., Song, L., Tong, Y. and Fan, H., 2022. COVID-19 vaccine development: milestones, lessons and prospects. Signal transduction and targeted therapy, 7(1), pp.1–32.
  60. Maemura, T., Kuroda, M., Armbrust, T., Yamayoshi, S., Halfmann, P.J. and Kawaoka, Y., 2021. Antibody-dependent enhancement of SARS-CoV-2 infection is mediated by the IgG receptors FcγRIIA and FcγRIIIA but does not contribute to aberrant cytokine production by macrophages. MBio, 12(5), pp.e01987–21.
文章難易度
所有討論 2
Jamie Lin_96
2 篇文章 ・ 3 位粉絲
正在發表地獄中載浮載沈的免疫學博士後,熱愛攝影、做手工藝且永遠管不住好動的手,不是在寫paper、部落格文章就是在推特上筆戰科普

0

1
0

文字

分享

0
1
0
如何找到肺癌對應基因?臨床實驗幫助病友翻轉病情!
careonline_96
・2024/04/24 ・2515字 ・閱讀時間約 5 分鐘

給 每一位剛踏上抗癌路上的鬥士與戰友

確診晚期肺癌的病友,在治療初期若是能與醫師密切配合,就有機會可以找到很好的治療方式,讓病情翻轉。進入治療前,首先會透過基因檢測,找出關鍵的基因突變,若是未發現常見基因突變,也可利用次世代基因定序,找出罕見基因。肺癌的治療已像慢性病一樣,只要妥善運用基因檢測與接續治療策略,就有機會延長病友的存活期,無論是帶有 EGFR、ALK、ROS1、BRAF、HER2、RET、MET、KRAS、NTRK 等基因突變,目前也都已經有很好的標靶藥物可治療,病友只要了解自己的疾病概況,與醫師充分溝通,一起把握每一次治療的機會!

大林慈濟醫院副院長賴俊良醫師

次世代基因定序助攻!揪出罕見肺癌改善病友預後

一名確診晚期肺癌的 50 多歲男性,在進行一般的基因檢測時並沒有找到突變基因,病程也加速惡化,且伴隨糖尿病、高血壓、腎功能衰退,全身嚴重浮腫。所幸,再接受次世代基因定序檢測後,很幸運地發現他是較罕見的 MET 基因。賴俊良醫師說,MET 基因分為不同的突變型,而該名病友屬於較少見的擴增型,後續在使用相對應的標靶藥物治療後,全身浮腫的狀況逐漸改善,病情也受到控制,且恢復到原本的工作與生活。

標靶藥物各有專攻 找到對應基因才能發揮效果

台灣的肺腺癌以 EGFR 基因突變為主,其他基因突變相對稀少,包含 ALK、KRAS、BRAF、ROS1、RET、NTRK 等。賴俊良醫師說,由於國人常見的致癌基因約佔一半以上,因此,通常會先檢測這些突變基因,若是找不到突變基因,則是會採取更先進的檢測方法找出突變基因,而次世代基因定序是目前肺癌精準治療的重要工具,可以更準確地找到驅動關鍵基因,醫師也可以從而制定精準的治療策略,進而大幅改變病友的預後。

晚期肺癌的治療藥物已有相當大的突破與進展,在過去不知道有這些基因突變時,部分病友的預後較差,但現在針對主要的驅動基因,幾乎都有相對應的藥物可以治療,賴俊良醫師說,有些病友知道標靶藥物治療成效佳,堅持只接受標靶治療,其實概念上並沒有這麼簡單,不同的驅動基因要使用不同的標靶藥物,才有辦法發揮治療效果。

臨床試驗安全性高 為病友帶來新契機

一般人聽到臨床試驗,常直覺是白老鼠,賴俊良醫師說,這樣的錯誤觀念仍有待匡正,其實所有藥物都必須先經過動物實驗,確認有明顯的治療成效,才會進到人體試驗,且第一期、二期、三期分別有不同的條件與目的,只有在第一期和第二期執行成果中,顯示其具有前景的試驗,才會進入第三期,在臺灣進行的臨床試驗都已具有相當完善的規範,也會在保護受試者的情況下進行。病友若是治療遇到瓶頸時或是可能需要自費或是參加臨床試驗,賴俊良醫師建議,若符合可以參加臨床試驗的條件,病友及家屬可以進一步與主治醫師討論了解,也有機會可以找到新契機,讓病情翻轉。

-----廣告,請繼續往下閱讀-----

他的故事 談面對恐懼

罹癌就像暴風雨 家人陪我度過每個關卡

曾經聽人家說「罹癌是上天給的禮物」,這個天上掉下來的禮物很痛苦、很折磨,也狠狠把我 K 醒!才 53 歲的我,去(2023)年 3 月起連續兩個月咳個不停,確診為肺腺癌第四期,我的腦子一團亂,醫師開始為我化療,治療期間我吃不下、甚至沒辦法走路,家人擔心再化療下去可能連命都沒了。

就像落水的人,拼命想抓住救生圈,經過不斷打聽,朋友介紹到大林慈濟賴副院長的門診。第一次住院待了 33 天,治療期間,好像一個人漂浮在汪洋中,害怕上不了岸,擔心得連呼吸都困難;沒想到最後可以出院,體力還變好,原本沒辦法行走,後來能夠走出醫院,過了這個坎,好像就沒有什麼好怕的了。

過去從事餐飲業,每天至少一包菸,加上廚房的油煙,破壞身體免疫力。以前認為跟家人除夕吃團圓飯很平常,罹癌住院 33 天的經驗,讓我知道這個「平常」代表「幸福」。治療中,太太、兒女一路陪我度過每個關卡,從身體不舒服的第一天,到住院、標靶藥物和門診追蹤,可靠又溫暖的陪在身旁。

我有十幾年糖尿病的歷史,罹癌後發現血壓、腎臟指數飆高,全身浮腫,醫院安排做次世代基因定序檢測,醫師說,我是 MET 基因中第二類比較少見的擴增型,從去年 5 月開始服用標靶藥物治療,全身浮腫的狀況改善了,病情也控制住,除了容易累,體力比較差,沒有影響到生活,我想老天爺在給我機會。

-----廣告,請繼續往下閱讀-----

癌症就像一場暴風雨,考驗自己的內心,生活變得很慌亂,遇到事情就去面對它、解決它,慢慢把腳步站穩後,暴風雨過去了,接下來的每一天都要好好過,或許癌症真的是一個生命的禮物,敦促著我們找回人生最重要的事,也提醒正在看這封信的學弟妹們,醫療這麼發達,穩定用藥就可以擁有好的生活品質,不要放棄;開心是一天,不開心也是一天未來每一天,我選擇開心地過。

0

0
0

文字

分享

0
0
0
癌症治療方法有哪些?臨床試驗有哪些評估面向?
careonline_96
・2024/04/19 ・2447字 ・閱讀時間約 5 分鐘

給 每一位剛踏上抗癌路上的鬥士與戰友

醫學中心的臨床試驗機會多,病友們也存在一些錯誤的迷思,我們需要了解,臨床試驗是依據現今最標準的治療方式進行,參加臨床試驗的對照組,也有機會可以使用到健保沒有給付的藥物。不過,現有的臨床試驗不一定都適合每一位病友,病友們一定要與主治醫師充分討論自己的治療計劃,即使是晚期肺癌,只要隨時掌握疾病的狀況,找到合適的治療方式,便能穩定控制,與癌共存!

台大醫院胸腔科廖唯昱醫師

臨床試驗增加用藥可近性 為病友延長生命

一名年約 82 歲女士,手術後確定是肺癌第三期,後續接受輔助性的化學治療,在追蹤一段時間後復發,由於當時沒有很好的基因檢測與標靶藥物,僅能接受放射線治療、化學治療控制。廖唯昱醫師說,病友面對治療仍相當樂觀,治療一至兩年後,幸運地找到適合的臨床試驗,便開始使用標靶藥物,其中有兩到三年的時間,只需單純使用標靶藥物即可控制病情,病友也因此延長生命到近 90 歲。

臨床試驗是醫療機構依據醫學的理論,於人體施行新的醫療技術、新的藥品或新的醫材。廖唯昱醫師說,最主要的目的是希望找到一個新的、更有效的治療方式,讓病友可以延長生命,甚至達到治癒。對於晚期肺癌病友而言,最佳的治療方式可能是標靶治療、免疫治療,或是化學治療,若是健保有給付,我們會選擇用健保的方式進行第一線治療;若是對病友最有利的治療方式健保未給付,我們即會想辦法協助病友尋找適合的臨床試驗。

罕見基因治療武器有限 先確定驅動基因再找合適的臨床試驗

面對臨床試驗,可以從兩個方面評估,廖唯昱醫師說,若是新發現的基因突變與新研發的藥物,病友可以先觀察第一期臨床試驗中,新藥物可以達到的治療效果,以及可能出現的副作用,等到狀況較成熟後再加入;假如已通過第一期、第二期臨床試驗,並且清楚知道新藥物的成效,即可考慮加入第三期,無論抽到實驗組或對照組,其實對整個治療都有一定的幫助。

此外,對於一些罕見基因型的肺癌,由於治療武器較有限,病友常期望可以加入臨床試驗,廖唯昱醫師說,在加入臨床試驗前,需要先確定肺癌的驅動基因突變,再去尋找適合的臨床試驗。然而,臨床試驗通常會設定一些條件,如藥物可能有已知的副作用,在臨床試驗開始前,便會需要作詳細檢查,確認病友的所有狀況符合條件後,才有機會加入。

-----廣告,請繼續往下閱讀-----

近年來,肺癌治療有大幅進展,標靶治療、免疫治療、化學治療都持續進步。廖唯昱醫師說,即使是晚期肺癌,只要隨時掌握疾病的狀況,找到合適的治療方式,便能穩定控制病情,而且在接受治療的同時,病友可以回復正常的生活,甚至恢復工作,也能保有良好的生活品質。

他的故事 談生活品質

踩穩自己的節奏 癌後體會慢下來哲學

村上春樹的小說《舞舞舞》,不論世界如何紛亂,你要踩穩自己的舞步和節奏。我在 70 歲確診第四期肺癌,剛開始是肋骨痛,那時剛巧有人推壞我的門,花了些時間把門拆下來再裝回去,第二天睡醒,肋骨開始痛,一直誤以為是修門太費力導致疼痛,就近在診所拿止痛藥,吃了七個月,也耽誤了黃金治療期。

我從事鐘錶業,累積非常多客戶,都是靠著口碑、耳傳而來,客戶群裡有很多醫師。那時有四、五位醫師朋友提醒檢查身體,台大醫院廖唯昱醫師是我 20 年的好友,要我去他的門診掛號,我一直推拖,隔了一年多才就醫。或許是身體在抗議,過去熬夜修錶、抽菸是生活的常態,也不太吃東西,一天大概吃一餐,工作與生活都失序。

加入臨床試驗,接受免疫治療兩年與服用標靶藥物四年,目前病況獲得穩定控制。我很幸運,藥物耐受力不錯,除了體重掉 10 公斤,沒有出現副作用,就是容易累,以前可以連續工作 12 小時等結案再離開桌子;現在工作兩個半小時就需要休息,等體力恢復後才能繼續,以前閒不下來,生病後把休息排到行程表中,做個慢下來的人。

-----廣告,請繼續往下閱讀-----

我過去是海陸步兵,曾經四個月背 30 公斤裝備行軍,磨了三年,十年沒有感冒過,因為有練過,體力一直很好,從來不覺得癌症這件事會找上我。客戶常來找我聊天,分享生活及心裡的感受,一個朋友後來也罹肺癌,他把我當模範,看到我不會埋怨也不會負面思考,讓他覺得安心也可以樂觀面對。

工作之餘,我會帶著狗兒子到公園玩,一拿出牽繩,狗狗就興奮得狂跳,台灣土狗體力好、運動量大,常常拉著我跑,增強健康也減少肌肉衰退。選擇適合自己的運動很重要,起床和睡前我會練啞鈴,各 20 分鐘,讓我維持好手力,現在還有 700 隻錶等著我,很多客戶勸我不要再收錶了,其實,「專注心之所向」可以釋放壓力及擁有成就感,反而能好好過生活。

生命自會找到出路!提醒學弟妹,接受已發生的事實,調整生活節奏,緩下腳步了解身體的需要,也不妨把罹癌當成一件事去鍛煉它、面對它,把生活重心放在自己喜歡的事物上,就不會被情緒左右。

careonline_96
456 篇文章 ・ 271 位粉絲
台灣最大醫療入口網站

2

3
0

文字

分享

2
3
0
【2023 諾貝爾生理醫學獎】mRNA 疫苗背後的辛酸血淚,為何 mRNA 研究不受待見?
PanSci_96
・2023/11/05 ・5173字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

mRNA?別浪費時間,不值得做!

天啊,你知道在實驗室搞 mRNA 有多麻煩嗎?連呼吸都要小心耶!

而且在細胞裡的 mRNA 一瞬間就會被分解成碎片,比廢柴還廢,哪可能生成需要的蛋白質?各位泛糰們好,2023 年的諾貝爾生理與醫學獎是由卡塔琳・考里科以及德魯・韋斯曼兩位科學家獲得,他們獲獎的研究,是許多人現在已經很熟悉的 mRNA 疫苗開發技術,但你可能不知道,其實當初 mRNA 打入實驗小鼠體內,引發非常嚴重的免疫風暴,甚至可能打一隻死一隻。

這這這……設計要來救人的藥物,反而致命? 生醫獎得主考里科的同事甚至認為 mRNA 只是個「笑話」,這怎麼回事?

-----廣告,請繼續往下閱讀-----

那個 mRNA 瘋女人來了?

你!渴望力量嗎?啊不,是想要合成 mRNA 嗎?我可以幫你喔!

由於屢屢爭奪印表機使用權僵持不下,故事的兩位主角就此破冰,當時是 1997 年,地點在美國賓州大學醫學院,此時身材高大、外向爽朗的女主角伸出了橄欖枝,正等待回答,男主角卻冷淡地說:「如果你成功了,我會試試。」難道故事就此結束嗎?當然沒有。

先回頭介紹一下考里科。她是匈牙利人,本來家境還不錯,但兩歲時,因為父親公開批評執政的共產黨政府,就此失去了工作,餘生只能打零工,全家住在沒自來水也沒電的磚房裡。遭遇這般變故的卡里科並沒有放棄自己,反而堅持鑽研科學,在匈牙利頂尖的塞格德大學取得了生物化學博士學位,並獲得博士後研究員的工作,投入 mRNA 研究。然而天要降大任,就有人要遭殃,大學的研究中心資金短缺,就把她給解聘了。

卡塔琳・卡里科。圖/wikimedia

為了能讓自己的研究對世界產生影響,1985 年,她決定出國深造,移民美國,但由於政府嚴控資金外流,她把所有積蓄 1,200 美元偷偷縫進女兒的玩具熊裡,才能讓一家人在人生地不熟的紐約暫時安頓。雖然幾乎不會講英文,幸運的考里科很快在天普大學蘇多尼教授的實驗室找到工作,等等,我剛剛說幸運嗎?

-----廣告,請繼續往下閱讀-----

對不起,我收回。她沒多久就被蘇多尼教授舉報為非法移民,只因她答應了約翰霍普金斯大學另一份薪水比較高的職位,要衰就衰到底,約翰霍普金斯大學隨即撤回了聘書,她跟先生還得花錢請律師來駁回引渡令,更別提因為蘇多尼繼續中傷她,她也找不到其他工作。

圖/giphy

幾經波折,她終於在賓州大學醫學院找到了研究助理教授的工作。但由於她不是醫生,也不是正規職員,無法取得終身職,其他同事根本不把她當同事看,對她投入的 mRNA 研究自然也沒興趣。加上考里科雖然外向開朗,但也口直心快,換句話說,根本就是白目。她只在乎研究,不顧他人顏面,總是直言批評同事研究中的錯誤。她既不能升等、申請研究經費也屢屢失敗,沒辦法從細胞跟生物體中藉由 mRNA 生成治療性蛋白質,獲得數據,那就更沒辦法申請經費。

這時幸運的考里科獲得了一位同事支持,總算做出了一點成果,透過把 mRNA 插入培養皿的細胞裡,使細胞製造出「尿激酶受體」蛋白質。等等,我剛剛又說幸運嗎?對不起,我再次收回。卡里科雖然做出成果,她的熱臉依舊貼上了同事們的冷屁股,即使她主動替許多同事合成 mRNA,也只獲得了「那個 mRNA 瘋女人」的評價。1995 年她的先生因為簽證問題困在匈牙利好幾個月,她則被驗出長了腫瘤,得開刀。這時賓州大學的主管卻要她選擇離開或是接受降級。

為了讓女兒能獲得賓州大學的學費優惠,她嚥下這口氣,接受降薪,職稱變成從來沒人擔任過的——「資深研究調查員」,為什麼沒人擔任過?因為沒人被開除現職之後還願意繼續留在賓州大學裡,她是第一個。

-----廣告,請繼續往下閱讀-----

越是山窮水盡,她越覺得解脫,就在這時她遇上了剛來到賓州大學的韋斯曼。

德魯・韋斯曼。圖/wikimedia

韋斯曼雖然冷淡,但他不是只對考里科冷淡,而是對所有人都很冷淡,他根本不聊八卦,只在乎研究,加上他才來不久,因此根本不知道考里科有多慘,也不在乎別人怎麼說考里科的壞話。韋斯曼早年曾當過安東尼佛奇實驗室的研究員,研究愛滋病,他目睹許多研究員因為無法獲得經費,而遷怒於不願幫忙的佛奇,藉由媒體傳播關於佛奇的負面消息,這讓他極為重視科學研究的誠信與純粹。

韋斯曼雖然對人冷淡,卻是個標準貓奴,他女兒會從收容所把病貓跟棄養貓帶回家,他還曾為了幫貧血的貓打針補充紅血球生成素,差點趕不上重要會議。他也是個偶爾會對同事亂講話的人,但不是因為他也白目,而是因為患有第一型糖尿病,血糖劇烈變化影響了他的認知功能,甚至會突然昏倒。

儘管對 mRNA 沒什麼興趣,正在研究愛滋病毒疫苗的韋斯曼的確用得上 mRNA,而考里科也真的很懂 mRNA。於是,韋斯曼跟考里科這兩支樹枝孤鳥竟然在 1998 年開始合作。幸運的考里科終於……等等?我剛剛說幸運嗎?

-----廣告,請繼續往下閱讀-----

COVID-19 疫情帶來的契機

在解釋 mRNA 如何應用前,我們複習一下分子生物學的重要概念:中心法則 (central dogma),也就是 DNA 轉錄成為 mRNA,再依據 mRNA 編碼,將對應的胺基酸組裝起來成為蛋白質。

分子生物學的中心法則。圖/learngenomics.dev

如果我們可以合成 mRNA,只要修改 mRNA 上的編碼,再將這些 mRNA 送入人體細胞內,直接將細胞當作生產蛋白質的工廠,使人體自己產生正確的蛋白質,不就可以治療遺傳疾病了嗎?!

另外,疫苗也是一個應用方向,mRNA 就像是傳令兵,它帶著敵軍病毒的情報交給如同將領的樹突細胞,產出帶有病毒特徵的蛋白質,進而刺激整個免疫系統備戰,並培養出有長期保護力的記憶型 B 或 T 細胞大軍。

剛剛說到,兩人一開始合作是針對愛滋病疫苗的研發,但是當韋斯曼將 mRNA 打入小鼠後,驚訝的發現這些小鼠會一直生病,甚至死亡,免疫反應強到把本體都幹掉了,如果 mRNA 注射會導致死亡,這故事要怎麼說下去?

-----廣告,請繼續往下閱讀-----
圖/giphy

講到這,我相信大家都明白了,這兩位科學家都不太幸運,但他們還有一個共通點,就是不知道放棄兩個字怎麼寫。

他們想,一般細胞每天也都會製造 mRNA,為什麼這些 mRNA 不會被免疫系統當成入侵者,引發嚴重的發炎反應,造成細胞死亡?

他們後來在實驗中發現注射 tRNA 的小鼠不會有這樣的免疫反應,而 tRNA 與其他 RNA 最大的差異就是有大量的鹼基修飾,難道說關鍵就是修飾?

卡里科擁有非常好的RNA修飾合成的技術,那有沒有可能透過修飾,找到不會引發嚴重免疫反應,卻同時可以順利轉譯出蛋白的 RNA 分子呢?最後他們發現將 RNA 分子中的尿嘧啶核苷「U」修改成為假尿嘧啶核苷分子「ψ」,就能夠躲過免疫反應又可以產生蛋白質,並且在 2005 年時,他們將這個方法應用在猴子身上,修改後的 mRNA 不僅可以躲過免疫系統的攻擊,也能夠有效產生蛋白質。

原來卡里科和韋斯曼找到的方法,其實就是免疫系統透過檢視 RNA 裡修飾的型式或比例,藉此判斷敵我的設計機制,因為通常病毒的 RNA 不會經過修飾,所以當體外合成的 mRNA 注射進入人體中,就會被免疫系統辨識成外來病毒,引發體內的免疫反應。

這時只要將外來的 mRNA 經過足量修飾,就可以「騙」過細胞,讓細胞正式成為你的蛋白質工廠。

雖然卡里科與韋斯曼確信自己已經攻克了 mRNA 應用的難題,但很多的科學家仍然對 mRNA 的應用感到疑慮,這些科學家認為這麼不穩定的分子,不容易量產和使用,2013 年,卡里科從日本參加完研討會回來,甚至發現連自己的研究室被清空,讓給了別的研究員,他們兩人的重大發現彷彿被全世界遺忘。

-----廣告,請繼續往下閱讀-----

不,他們的研究沒有被遺忘,在史丹佛大學的 Derrick Rossi 和 Luigi Warren 在幹細胞研究中,同樣遇到了 mRNA 應用的困難,直到 Rossi 和 Warren 得知了卡里科與韋斯曼的研究,才突破難關,成功透過加入特定 mRNA,將皮膚細胞轉變成多功能幹細胞,之後在 2010 年,Rossi 成立了世界第一家 mRNA 公司,也就是現在我們熟知的莫德納公司的前身。

而在得知莫德納將與英國的 AZ 合作開發血管內皮因子 mRNA 後,卡里科認為在大學繼續待下去也無法應用她在 mRNA 上的長才,於是前往德國,與 BNT 的創辦人烏爾.薩欣會面,並加入成為副總裁,保留兼任老師的資格。那年是 2013 年,BNT 還是個連網站都沒有的小生技公司,卡里科的決定也因此被學校的主管嘲笑。然而快轉到 2019 年,接下來的事大家都知道了。

烏爾.薩欣。圖/wikimedia

2019 年的 12 月 1 日,首例新冠病毒感染個案在中國武漢發生,隔年 1 月 5 日,新冠病毒全基因體解序完成,向全世界發布。2 月,新冠疫情開始往全球散播。

1 月 25 日莫德納公司的 Stephane Bancel 與美國國衛院國家過敏與傳染病研究所所長 Anthony Fauci 進行會議,2 月底莫德納完成 mRNA-1273 疫苗的動物試驗,同時,BNT 開發出二十多隻 mRNA 候選疫苗,從新冠病毒完成基因體解序後的第 66 天,3 月 16 日,世界上第一位 mRNA 疫苗臨床受試者開始施打,這是人類首次能夠在短時間內,製作出對抗新興傳染病的疫苗的時刻。

-----廣告,請繼續往下閱讀-----

而這一切,若不是當年卡里科與韋斯曼的努力不懈,突破 mRNA 的應用限制,使 mRNA 疫苗成為可能,那麼 COVID-19 所造成的死亡人數會遠遠高於現在統計的 695 萬人。

擇善固執還是冥頑不固

在科學研究中,我們常常看到戴著光環的成功案例,但不被失敗擊倒,其實才是科學的真實樣貌。

圖/wikimedia

相較過往,這次諾貝爾奬很「快」頒給了 mRNA 研究,為什麼說快呢?因為諾獎往往是在論文發表後幾十年才會頒布,慎重到必須是寫進教科書等級的實證研究,才有資格。所以研究者不僅研究厲害,也要活得到頒奬,這次能夠這麼快受到諾貝爾奬肯定,代表 mRNA 疫苗確實是終結疫情的重要功臣,有目共睹,實至名歸。

卡里科在獲獎的當下表示,儘管最近幾年得到很多肯定,但其實這一路上並不是一帆風順,所以說獲獎的瞬間還不太相信,甚至覺得這是不是個 Joke,根據法新社報導,卡里科說只有他母親對他很有信心,每年都會聆聽諾貝爾委員會宣布得主,卡里科 Karikó 回應說:「我當時只能苦笑一下,因為我從未得到過研究資助,也沒有一個固定的團隊。我甚至都不是一名正式的教授,因為我被降了職,所以我並不抱什麼期望。我回答她說,『這是不可能的』。」

很遺憾的,卡里科的母親在 5 年前離世,沒能看到她真的獲得諾貝爾獎。

聽完卡里科跟韋斯曼的故事,最後我想問問你,如果你轉生成卡里科,你覺得哪個時刻會讓你最想放棄呢?

  1. 當然是 2013 年,一回國竟然發現連研究室都被清空那時候。
  2. 應該是罹患腫瘤,丈夫又在匈牙利,學校還要開除我那時候。
  3. 光是出生在共產時期的匈牙利,我就想放棄了。

等等,要是你放棄,我們就沒有 mRNA 疫苗了耶,你想清楚啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

所有討論 2
PanSci_96
1219 篇文章 ・ 2199 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。