1

11
3

文字

分享

1
11
3

什麼是「造父變星」?標準燭光如何幫助人類量測天體距離?——天文學中的距離(四)

ntucase_96
・2021/10/22 ・3032字 ・閱讀時間約 6 分鐘

  • 撰文|許世穎

「造父」是周穆王的專屬司機,也是現在「趙」姓的始祖。以它為名的「造父變星」則是標準燭光的一種,讓我們可以量測外星系的距離。這幫助哈柏發現了宇宙膨脹,大大開拓了人們對宇宙的視野。然而發現這件事情的天文學家勒梅特卻沒有獲得她該有的榮譽。

宇宙中的距離指引:標準燭光

經過了三篇文章的鋪陳以後,我們終於要離開銀河系,開始量測銀河系以外的星系距離。在前作<天有多大?宇宙中的距離(3)—「人口普查」>中,介紹了距離和亮度的關係。想像一支燃燒中、正在發光的蠟燭。距離愈遠,發出來的光照射到的範圍就愈大,看起來就會愈暗。

我們把「所有發射出來的光」稱為「光度」,而用「亮度」來描述實際上看到的亮暗程度,而它們之間的關係就是平方反比。一旦我們知道一支蠟燭的光度,再搭配我們看到的亮度,很自然地就可以推算出這支蠟燭所在區域的距離。

舉例來說,我們可以在台北望遠鏡觀測金門上的某支路燈亮度。如果能夠找到那支路燈的規格書,得知這支路燈的光度,就可以用亮度、光度來得到這支路燈的距離。如果英國倫敦也安裝了這支路燈,那我們也可以用一樣的方法來得知倫敦離我們有多遠。

我們把「知道光度的天體」稱為「標準燭光(Standard Candle)」。可是下一個問題馬上就來了:我們哪知道誰是標準燭光啊?經過許多的研究、推論、歸納、計算等方法,我們還是可以去「猜」出一些標準燭光的候選。接下來,我們就來實際認識一個最著名的標準燭光吧!

-----廣告,請繼續往下閱讀-----

「造父」與「造父變星」

「造父」是中國的星官之一。傳說中,「造父」原本是五帝之一「顓頊」的後代。根據《史記‧本紀‧秦本紀》記載:造父很會駕車,因此當了西周天子周穆王的專屬司機。後來徐偃王叛亂,造父駕車載周穆王火速回城平亂。平亂後,周穆王把「趙城」(現在的中國山西省洪洞縣一帶)封給造父,而後造父就把他的姓氏就從本來的「嬴」改成了「趙」。因此,造父可是趙姓的始祖呢!(《史記‧本紀‧秦本紀》:造父以善御幸於周繆王……徐偃王作亂,造父為繆王御,長驅歸周,一日千里以救亂。繆王以趙城封造父,造父族由此為趙氏。)

圖一:危宿敦煌星圖。造父在最上方。圖片來源/參考資料 2

回到星官「造父」上。造父是「北方七宿」中「危宿」的一員(圖一),位於西洋星座中的「仙王座(Cepheus)」。一共有五顆恆星(造父一到造父五),清代的星表《儀象考成》又加了另外五顆(造父增一到造父增五)。[3]

英籍荷蘭裔天文學家約翰‧古德利克(John Goodricke,1764-1786)幼年因為發燒而失聰,也無法說話。1784 年古德利克(John Goodricke,1764-1786)發現「造父一」的光度會變化,代表它是一顆「變星(Variable)」。2 年後,年僅 22 歲的他就當選了英國皇家學會的會員。卻在 2 週後就就不幸因病去世。[4]

造父一這顆變星的星等在 3.48 至 4.73 間週期性地變化,變化週期大約是 5.36 天(圖二)。經由後人持續的觀測,發現了更多不同的變星。其中一群變星的性質(週期、光譜類型、質量……等)與造父一接近,因此將這一類變星統稱為「造父變星(Cepheid Variable)」。[5]

-----廣告,請繼續往下閱讀-----
圖二:造父一的亮度變化圖。橫軸可以看成時間,縱軸可以看成亮度。圖片來源:ThomasK Vbg [5]

勒維特定律:週光關係

時間接著來到 1893 年,年僅 25 歲的亨麗埃塔‧勒維特(Henrietta Leavitt,1868-1921)她在哈佛大學天文台的工作。當時的哈佛天文台台長愛德華‧皮克林(Edward Pickering,1846-1919)為了減少人事開銷,將負責計算的男性職員換成了女性(當時的薪資只有男性的一半)。[6]

這些「哈佛計算員(Harvard computers)」(圖三)的工作就是將已經拍攝好的感光板拿來分析、計算、紀錄等。這些計算員們在狹小的空間中分析龐大的天文數據,然而薪資卻比當時一般文書工作來的低。以勒維特來說,她的薪資是時薪 0.3 美元。順帶一提,這相當於現在時薪 9 美元左右,約略是台灣最低時薪的 1.5 倍。[6][7][8]

圖三:哈佛計算員。左三為勒維特。圖片來源:參考資料 9

勒維特接到的目標是「變星」,工作就是量測、記錄那些感光板上變星的亮度 。她在麥哲倫星雲中標示了上千個變星,包含了 47 顆造父變星。從這些造父變星的數據中她注意到:這些造父變星的亮度變化週期與它們的平均亮度有關!愈亮的造父變星,變化的週期就愈久。麥哲倫星雲離地球的距離並不遠,可以利用視差法量測出距離。用距離把亮度還原成光度以後,就能得到一個「光度與週期」的關係(圖四),稱為「週光關係(Period-luminosity relation)」,又稱為「勒維特定律(Leavitt’s Law)」。藉由週光關係,搭配觀測到的造父變星變化週期,就能得知它的平均光度,能把它當作一支標準燭光![6][8][10]

圖四:造父變星的週光關係。縱軸為平均光度,橫軸是週期。光度愈大,週期就愈久。圖片來源:NASA [11]

從「造父變星」與「宇宙膨脹」

發現造父變星的週光關係的數年後,埃德溫‧哈柏(Edwin Hubble,1889-1953)就在 M31 仙女座大星系中也發現了造父變星(圖五)。數個世紀以來,人們普遍認為 M31 只是銀河系中的一個天體。但在哈柏觀測造父變星之後才發現, M31 的距離遠遠遠遠超出銀河系的大小,最終確認了 M31 是一個獨立於銀河系之外的星系,也更進一步開拓了人類對宇宙尺度的想像。後來哈柏利用造父變星,得到了愈來愈多、愈來愈遠的星系距離。發現距離我們愈遠的星系,就以愈快的速度遠離我們。從中得到了「宇宙膨脹」的結論。[10]

-----廣告,請繼續往下閱讀-----
圖五:M31 仙女座大星系裡的造父變星亮度隨時間改變。圖片來源:NASA/ESA/STSci/AURA/Hubble Heritage Team [1]

造父變星作為量測銀河系外星系距離的重要工具,然而勒維特卻沒有獲得該有的榮耀與待遇。當時的週光關係甚至是時任天文台的台長自己掛名發表的,而勒維特只作為一個「負責準備工作」的角色出現在該論文的第一句話。哈柏自己曾數度表示勒維特應受頒諾貝爾獎。1925 年,諾貝爾獎的評選委員之一打算將她列入提名,才得知勒維特已經因為癌症逝世了三年,由於諾貝爾獎原則上不會頒給逝世的學者,勒維特再也無法獲得這個該屬於她的殊榮。[12]

本系列其它文章:

天有多大?宇宙中的距離(1)—從地球到太陽
天有多大?宇宙中的距離(2)—從太陽到鄰近恆星
天有多大?宇宙中的距離(3)—「人口普查」
天有多大?宇宙中的距離(4)—造父變星

參考資料:

[1] Astronomy / Meet Henrietta Leavitt, the woman who gave us a universal ruler
[2] wiki / 危宿敦煌星圖
[3] wiki / 造父 (星官)
[4] wiki / John Goodricke
[5] wiki / Classical Cepheid variable
[6] wiki / Henrietta Swan Leavitt
[7] Inflation Calculator
[8] aavso / Henrietta Leavitt – Celebrating the Forgotten Astronomer
[9] wiki / Harvard Computers
[10] wiki / Period-luminosity relation
[11] Universe Today / What are Cepheid Variables?
[12] Mile Markers to the Galaxies

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
ntucase_96
30 篇文章 ・ 1570 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

21
6

文字

分享

0
21
6
暗能量是什麼?看不到也摸不著,我們該如何找到它?
PanSci_96
・2023/11/27 ・5683字 ・閱讀時間約 11 分鐘

愛因斯坦對於宇宙的理解錯了嗎?

愛因斯坦的廣義相對論重新改寫我們對於時間、空間、與質量的認知,也開啟我們對廣大宇宙研究的大門。

在宇宙物理學如同大霹靂快速發展之時,我們也發現愛因斯坦最早提出的宇宙模型,可能並不完全正確。

正確來說,我們發現我們過去對宇宙的理解,可能真的太少了。少到我們至今所觀測到的所有物質,可能仍不到整個宇宙組成的百分之五。並不是說這些能量或物質距離我們太過遙遠,而是他們可能就在附近,而我們卻全然不了解它。

-----廣告,請繼續往下閱讀-----

其中佔了將近宇宙組成七成的「暗能量」,到底是什麼來頭?我們能徹底了解它,同時能為我們宇宙的存在,提供一個正確的解釋模型嗎?又或者我們能掌握它,來改變宇宙的未來嗎?

暗能量(dark energy)到底是什麼?這聽起來有夠中二的名字,難道是暗影大人的新能力嗎?

其實暗能量的「暗」,指的是我們看不到也摸不到,用上各種波段的電磁波都察覺不到,甚至現今沒有任何儀器能偵測到它的存在。因為我們無法感受到它、不知道他們的型態,所以稱為暗能量。也就是說,如果暗影大人或是哪個最終 BOSS 的絕招是「暗能量波動」,當巨大的能量朝你襲來,不用擔心,站在原地就好,因為它只會穿過你的身體,打不中你的。同樣的,你可能聽過的「暗物質」,指的也是我們無法探知的未知物質。也就是說,暗物質並不是指某種特定物質叫做暗物質,任何我們現在還無法探測到的,都可能是暗物質的其中一種。題外話,近年某些暗物質面紗底下的容貌,已經逐漸能被我們窺見,例如微中子。這部分,之後我們介紹暗物質的節目中,再來好好討論,今天先來和大家聊聊佔了宇宙質能 7 成的暗能量。

矛盾大對決來了,既然我們摸不到,也看不到,我們怎麼知道暗能量存在,還是僅存在我們的中二想像中呢?我們得將時間回推到最早認為宇宙中有未知能量存在的那個人,他不是別人,就是鼎鼎大名的愛因斯坦。

-----廣告,請繼續往下閱讀-----

1916 年愛因斯坦推導出廣義相對論,解釋物質和能量如何影響時空的彎曲和演化。愛因斯坦當時認為,宇宙應該是靜態的,但是若宇宙中只有物質,宇宙應該會受重力吸引而塌縮,因此需要與反向的能量來平衡重力,這股能量平均地存在在空間當中。愛因斯坦當時引入了宇宙常數 Λ 來平衡他的靜態宇宙模型,而直到非常近期的 1998 年,暗能量 (dark energy) 這個詞才由物理學家麥可.特納提出。

在愛因斯坦之後,著名宇宙學家傅里德曼提出不同看法,他認為宇宙不一定是平衡的,也可能正在收縮或膨脹當中,並根據廣義相對論推導出 Fridemann 方程式,關於 Fridemann 方程式的故事,先前我們有好好介紹過。

暗能量不只存在於理論上的預測,同時期天文學家開始發現我們熟知的銀河系,並無法代表整個宇宙,原來夜空中很多像星雲的天體,其實是遙遠的星系!宇宙遠比以前認為得大的太多了!1929 年,哈伯進一步發現,這些星系竟然正在遠離我們而去,而且距離我們愈遠的星系,遠離的速度就愈快!宇宙竟然真的是以地球為中心,而地球利用強大的排斥力,將其他星系用力向外推開嗎?當然不是,想像一下,宇宙就像一個葡萄乾麵包,上面布滿的葡萄乾就是各種天體,當麵包發酵膨脹時,不論站在哪顆葡萄乾的視角,所有天體的距離都是互相拉遠,而且距離愈遠的天體,彼此遠離的速度就愈快。

也就是說,哈伯觀測到的結果顯示整個宇宙正在膨脹。但還有一個問題,就是這個宇宙的膨脹速度,是隨著時間經過越來越快的加速膨脹,還是膨脹速度正隨著時間在趨緩的減速膨脹呢?為什麼這個問題很重要?因為如果是減速膨脹,靠現有的重力理論就可以解釋,宇宙中天體所提供的重力,正在使宇宙減速膨脹,甚至宇宙的結局可能會是宇宙重新塌縮。但如果宇宙正在加速膨脹,那麼只考慮重力就不夠了,為了抵抗向內塌縮的重力,勢必要有一股力量要將宇宙向外加速推開。這時,就需要加入暗能量的存在了。

-----廣告,請繼續往下閱讀-----

宇宙真的正在加速膨脹?

為了確認宇宙正在減速或加速膨脹,好推算暗能量是否存在,科學家再次將目光投向宇宙深處。隨著觀測技術愈來愈進步,天文學家可以透過不同方式,觀測更早期的宇宙。

愈遠的天體發出的光,需要經過愈長的時間才能傳到地球。假設我們觀察離地球1億光年遠的星球,由於我們看到的影像是從星球出發後,經過 1 億年後才到達地球,因此在望遠鏡中看到的,其實是該星球一億年前的樣子。只要利用這點,如果我們將望遠鏡頭對向更加遙遠的宇宙深處,就能看到更早期的宇宙樣貌,幫助我們了解宇宙過去的樣子。

科學家主要透過三種方法,分別用來觀測晚期、中期、到早期的宇宙。第一種方法是觀測 Ia 型超新星爆炸,它指的是當一顆緻密白矮星到了生命末期,吸收大量鄰近伴星的氣體,使得內部重力超過某個極限,引發失控的核融合而形成的超新星爆炸。這個爆炸會在瞬間釋放出許多能量,亮度甚至可以媲美整個星系,因此即使是很遙遠的超新星也可以被地球觀測到。最受天文學家關注的是,因為每個 Ia 型超新星爆炸時產生的尖峰光度都相同,可以直接作為觀測或是亮度的比對參考點,又稱為標準燭光。當它離我們愈遠亮度就愈小,只要觀測亮度就可以得知它離我們的距離。

Ia 超新星殘骸。圖/wikimedia

接著,透過光譜分析,我們還能得到這個超新星遠離我的的速度。這就像是救護車在靠近和遠離我們的時候,警笛的聲音頻率會因為我們和救護車相對速度的改變而產生變化,同樣的道理放在電磁波上,當超新星遠離我們,電磁波頻譜的頻率會下降,我們稱為頻譜「紅移」。最後,只要我們同時觀測好幾顆超新星,並且量測每一顆的距離和遠離我們的速度,看看是不是真的離我們越遠的超新星離開的速度越快,就可以知道宇宙正在加速或是減速膨脹。

-----廣告,請繼續往下閱讀-----

第二種方法是觀測宇宙大尺度結構,宇宙中星系的分佈其實是不均勻的,有些地方有星系團,也有一些地方是孔洞,整個宇宙就像是網子一樣。這是因為宇宙在形成星系時,向內的重力以及向外的氣體與光壓力會彼此抗衡,就像我們在擠壓彈力球一樣,向內壓時內部壓力會增強,導致物質向外拋射,壓力減弱後又會停止拋射,這樣來回震盪的過程,就在宇宙中形成一個個震波漣漪,稱為重子聲學振盪(BAO,baryon acoustic oscillations)。有趣的是,當好幾個地方都在震盪,就會產生類似好幾個水波互相撞在一起的干涉現象。而這個宇宙規模的超大水波槽中,波腹部份聚集較多物質就會形成星系團,波節部份不足以形成星系就形成孔洞,是不是覺得我們的宇宙就像是一鍋湯,而我們只是裡面毫不起眼的一顆胡椒粒呢?不過即使是連一粒胡椒都不如的我們,透過觀測宇宙星系分布並透過理論計算,人類科學家還是可以得知這些結構的大小,並且推知這些結構上的星系距離我們多遠,最後再搭配紅移光譜,一樣可以算出宇宙膨脹的速度。今年七月升空,11 月 8 號從太空傳回第一張照片的歐幾里得太空望遠鏡,它的其中一項任務,就是專門觀測重子聲學振盪,來研究宇宙大尺度結構。歐幾里得太空望遠鏡有望帶給我們對宇宙的全新認知,關於這一部分,我們很快會再來深入介紹。

第三種方法是透過觀測宇宙微波背景輻射,它是宇宙的第一道曙光,在此以前,宇宙能量很高,光和電漿相互作用,不會走直線。但是到了宇宙三十八萬歲時,宇宙已經冷卻到足以讓電子與原子核結合,宇宙終於變得乾淨了,光也終於可以走直線。而三十八萬歲時的早期宇宙的畫面,至今仍不斷經過遙遙 137 億年的時間抵達地球,被我們觀測到,稱為宇宙微波背景輻射。有趣的是,根據這些照片,我們能發現早在 137 億年前,宇宙各處就不是均勻的。透過分析這些微波的分布,科學家能計算出當時宇宙的組成成份。這時我們發現,目前的已知物質,也就是元素週期表上看得到的原子,只佔所有能量的 4.93%,而看不到的暗物質,佔 27.17%,那還有 67.9%,將近七成的組成分是什麼?科學家認為就是暗能量。

宇宙微波背景輻射。圖/wikimedia

哇!暗能量佔的比例這麼高?那我們未來有機會從空間中汲取無限的能量嗎?先不要想的這麼美,其實暗能量在宇宙中的密度很低,依照質能等價公式,質量跟能量是可以互相換算的。換算下來暗能量每立方公分只有 10 的負 24 次方公克,相比之下,水的密度是立方公分 1 公克!真的微乎其微。之所以暗能量在宇宙中佔的能量比這麼大,是因為它均勻的存在在廣大無垠的宇宙中,不像一般的物質,只集中在一些星系和星體中。

現在我們知道暗能量存在,而且量也不少,但回到最關鍵問題,這些暗能量到底是怎麼來的呢?

-----廣告,請繼續往下閱讀-----

宇宙與暗能量的未來

科學家普遍認為暗能量是來自「真空能量」,根據量子力學,我們過往認為的真空,其實會不斷短暫的出現粒子並消失。而這些量子漲落便會產生真空能量。雖然這聽起來很玄,但各位看完我們的影片並按下訂閱之後,這些訂閱數就一定會是真的。都看到影片最後一段了,就拜託大家再多動一下手指吧!

而量子力學除了能在真空中產生真空能量以外,這個過程甚至可能幫助我們開啟蟲洞!關於真空能量與時空旅行的關係,可以參考我們的這一集哦(閃電俠)。

為了重新認識我們的宇宙,科學家此時再次拿出了宇宙常數 Λ 和 Fridemann 方程式,建立了一個可以完美解釋前面三種觀測結果的模型-ΛCDM 模型。

ΛCDM 是近代在解釋宇宙微波背景輻射、宇宙大爆炸時,最常被使用的理論。目前對於宇宙歷史與加速膨脹的圖像,也都基於此模型。

-----廣告,請繼續往下閱讀-----
ΛCDM模型,加速擴張的宇宙。圖/wikimedia

不過 ΛCDM 理論仍有兩個致命的問題待解決。第一個是理論中的宇宙常數 Λ,應該要與位置、時間無關,是一個不隨時間變化的常數。然而針對觀測早期和晚期宇宙所計算出來的宇宙常數數值卻不一樣,要如何解釋這個觀測差異?第二個問題是,假設暗能量是真空中的量子漲落所造成,依此推算出的宇宙常數數值,還跟觀測差了 120 個數量級!也就是 10 後面有 120 個零,整個宇宙中的原子數量也才 82 個數量級而已!

因此科學家也提出其他可能的暗物質理論。比如認為暗能量不是來自真空能量,而是由一種未知的粒子場所驅動,而這個場與時間有關,導致早期和晚期宇宙的觀測結果有差異。還有人認為根本沒有暗能量存在,宇宙會膨脹,是因為愛因斯坦的廣義相對論在宇宙學這種大尺度中是不適用的!就像牛頓的萬有引力公式在地球上管用,到了太陽系規模就會出現誤差。或許在宇宙規模還有比廣義相對論更完備的其他理論等待我們發現!另一派科學家也認為沒有暗能量,我們會看到加速膨脹,只是因為銀河系剛好位於宇宙大尺度結構的孔洞中,也就是葡萄乾麵包裡面空氣比較多,口感比較鬆的地方,由於這個地方總體重力比較小,天體也就是葡萄乾之間向外膨脹的速度比較快,但不代表整個葡萄乾麵包都在加速膨脹,宇宙加速膨脹只是局部觀測的假象。

這些理論或許可以解釋部份的問題,但沒有一個能解釋所有觀測數據,而且由於觀測的限制,這些理論都缺乏數據的佐證。因此目前我們只能說,暗能量的效應確實存在,但我們還不知道它確切是什麼。

有人可能想問,研究暗物質對我們真的那麼重要嗎?其實,它不只影響了宇宙過去演化的歷史,也影響著我們將來的命運。由於宇宙膨脹,物質的密度會因為膨脹被稀釋,但如果暗能量是常數,就代表密度不會改變,因此宇宙會膨脹的愈來愈快,導致遙遠的星系加速離我們遠去,最後暗能量會超過所有的基本作用力,包括重力、電磁力和核力,星系、太陽系、地球都將被拉開,甚至中子和質子都互相分離,使原子不復存在,進入大撕裂時期,也將是宇宙最孤獨的結局。不過這是一百多億年後的事情,在那之前地球會先被死去的太陽吞沒,我們應該要先煩惱的是要如何移民其他星球才是。

-----廣告,請繼續往下閱讀-----

最後總結一下,暗能量到底是什麼?很抱歉,經過了幾十年的努力,這個問題依舊是一個問號,但藉由宇宙學的研究,使我們更謙卑更加發覺自身的渺小,我們或許已經掌握許多物質運作的原理,也開發出許多高科技產品,但這些只是整個宇宙的 5% 仔,宇宙中還有許多未知等待我們去探索,而它深深關係到我們的過去和未來。

最後也想問問大家,你覺得當一切真相大白之時,我們會發現暗能量是什麼呢?

  1. 符合最直覺的 ΛCDM 理論,它就是宇宙加速膨脹的元凶!
  2. 它根本不存在,我們甚至需要比廣義相對論更強的理論來解釋!
  3. 依照人類這個物種的感知等級,可能永遠無法了解暗能量的真相!
  4. 我、我已經無法抑制我左手的暗能量了!啊啊啊~

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----

討論功能關閉中。