1

11
3

文字

分享

1
11
3

什麼是「造父變星」?標準燭光如何幫助人類量測天體距離?——天文學中的距離(四)

ntucase_96
・2021/10/22 ・3032字 ・閱讀時間約 6 分鐘

  • 撰文|許世穎

「造父」是周穆王的專屬司機,也是現在「趙」姓的始祖。以它為名的「造父變星」則是標準燭光的一種,讓我們可以量測外星系的距離。這幫助哈柏發現了宇宙膨脹,大大開拓了人們對宇宙的視野。然而發現這件事情的天文學家勒梅特卻沒有獲得她該有的榮譽。

宇宙中的距離指引:標準燭光

經過了三篇文章的鋪陳以後,我們終於要離開銀河系,開始量測銀河系以外的星系距離。在前作<天有多大?宇宙中的距離(3)—「人口普查」>中,介紹了距離和亮度的關係。想像一支燃燒中、正在發光的蠟燭。距離愈遠,發出來的光照射到的範圍就愈大,看起來就會愈暗。

我們把「所有發射出來的光」稱為「光度」,而用「亮度」來描述實際上看到的亮暗程度,而它們之間的關係就是平方反比。一旦我們知道一支蠟燭的光度,再搭配我們看到的亮度,很自然地就可以推算出這支蠟燭所在區域的距離。

舉例來說,我們可以在台北望遠鏡觀測金門上的某支路燈亮度。如果能夠找到那支路燈的規格書,得知這支路燈的光度,就可以用亮度、光度來得到這支路燈的距離。如果英國倫敦也安裝了這支路燈,那我們也可以用一樣的方法來得知倫敦離我們有多遠。

我們把「知道光度的天體」稱為「標準燭光(Standard Candle)」。可是下一個問題馬上就來了:我們哪知道誰是標準燭光啊?經過許多的研究、推論、歸納、計算等方法,我們還是可以去「猜」出一些標準燭光的候選。接下來,我們就來實際認識一個最著名的標準燭光吧!

-----廣告,請繼續往下閱讀-----

「造父」與「造父變星」

「造父」是中國的星官之一。傳說中,「造父」原本是五帝之一「顓頊」的後代。根據《史記‧本紀‧秦本紀》記載:造父很會駕車,因此當了西周天子周穆王的專屬司機。後來徐偃王叛亂,造父駕車載周穆王火速回城平亂。平亂後,周穆王把「趙城」(現在的中國山西省洪洞縣一帶)封給造父,而後造父就把他的姓氏就從本來的「嬴」改成了「趙」。因此,造父可是趙姓的始祖呢!(《史記‧本紀‧秦本紀》:造父以善御幸於周繆王……徐偃王作亂,造父為繆王御,長驅歸周,一日千里以救亂。繆王以趙城封造父,造父族由此為趙氏。)

圖一:危宿敦煌星圖。造父在最上方。圖片來源/參考資料 2

回到星官「造父」上。造父是「北方七宿」中「危宿」的一員(圖一),位於西洋星座中的「仙王座(Cepheus)」。一共有五顆恆星(造父一到造父五),清代的星表《儀象考成》又加了另外五顆(造父增一到造父增五)。[3]

英籍荷蘭裔天文學家約翰‧古德利克(John Goodricke,1764-1786)幼年因為發燒而失聰,也無法說話。1784 年古德利克(John Goodricke,1764-1786)發現「造父一」的光度會變化,代表它是一顆「變星(Variable)」。2 年後,年僅 22 歲的他就當選了英國皇家學會的會員。卻在 2 週後就就不幸因病去世。[4]

造父一這顆變星的星等在 3.48 至 4.73 間週期性地變化,變化週期大約是 5.36 天(圖二)。經由後人持續的觀測,發現了更多不同的變星。其中一群變星的性質(週期、光譜類型、質量……等)與造父一接近,因此將這一類變星統稱為「造父變星(Cepheid Variable)」。[5]

-----廣告,請繼續往下閱讀-----
圖二:造父一的亮度變化圖。橫軸可以看成時間,縱軸可以看成亮度。圖片來源:ThomasK Vbg [5]

勒維特定律:週光關係

時間接著來到 1893 年,年僅 25 歲的亨麗埃塔‧勒維特(Henrietta Leavitt,1868-1921)她在哈佛大學天文台的工作。當時的哈佛天文台台長愛德華‧皮克林(Edward Pickering,1846-1919)為了減少人事開銷,將負責計算的男性職員換成了女性(當時的薪資只有男性的一半)。[6]

這些「哈佛計算員(Harvard computers)」(圖三)的工作就是將已經拍攝好的感光板拿來分析、計算、紀錄等。這些計算員們在狹小的空間中分析龐大的天文數據,然而薪資卻比當時一般文書工作來的低。以勒維特來說,她的薪資是時薪 0.3 美元。順帶一提,這相當於現在時薪 9 美元左右,約略是台灣最低時薪的 1.5 倍。[6][7][8]

圖三:哈佛計算員。左三為勒維特。圖片來源:參考資料 9

勒維特接到的目標是「變星」,工作就是量測、記錄那些感光板上變星的亮度 。她在麥哲倫星雲中標示了上千個變星,包含了 47 顆造父變星。從這些造父變星的數據中她注意到:這些造父變星的亮度變化週期與它們的平均亮度有關!愈亮的造父變星,變化的週期就愈久。麥哲倫星雲離地球的距離並不遠,可以利用視差法量測出距離。用距離把亮度還原成光度以後,就能得到一個「光度與週期」的關係(圖四),稱為「週光關係(Period-luminosity relation)」,又稱為「勒維特定律(Leavitt’s Law)」。藉由週光關係,搭配觀測到的造父變星變化週期,就能得知它的平均光度,能把它當作一支標準燭光![6][8][10]

圖四:造父變星的週光關係。縱軸為平均光度,橫軸是週期。光度愈大,週期就愈久。圖片來源:NASA [11]

從「造父變星」與「宇宙膨脹」

發現造父變星的週光關係的數年後,埃德溫‧哈柏(Edwin Hubble,1889-1953)就在 M31 仙女座大星系中也發現了造父變星(圖五)。數個世紀以來,人們普遍認為 M31 只是銀河系中的一個天體。但在哈柏觀測造父變星之後才發現, M31 的距離遠遠遠遠超出銀河系的大小,最終確認了 M31 是一個獨立於銀河系之外的星系,也更進一步開拓了人類對宇宙尺度的想像。後來哈柏利用造父變星,得到了愈來愈多、愈來愈遠的星系距離。發現距離我們愈遠的星系,就以愈快的速度遠離我們。從中得到了「宇宙膨脹」的結論。[10]

-----廣告,請繼續往下閱讀-----
圖五:M31 仙女座大星系裡的造父變星亮度隨時間改變。圖片來源:NASA/ESA/STSci/AURA/Hubble Heritage Team [1]

造父變星作為量測銀河系外星系距離的重要工具,然而勒維特卻沒有獲得該有的榮耀與待遇。當時的週光關係甚至是時任天文台的台長自己掛名發表的,而勒維特只作為一個「負責準備工作」的角色出現在該論文的第一句話。哈柏自己曾數度表示勒維特應受頒諾貝爾獎。1925 年,諾貝爾獎的評選委員之一打算將她列入提名,才得知勒維特已經因為癌症逝世了三年,由於諾貝爾獎原則上不會頒給逝世的學者,勒維特再也無法獲得這個該屬於她的殊榮。[12]

本系列其它文章:

天有多大?宇宙中的距離(1)—從地球到太陽
天有多大?宇宙中的距離(2)—從太陽到鄰近恆星
天有多大?宇宙中的距離(3)—「人口普查」
天有多大?宇宙中的距離(4)—造父變星

參考資料:

[1] Astronomy / Meet Henrietta Leavitt, the woman who gave us a universal ruler
[2] wiki / 危宿敦煌星圖
[3] wiki / 造父 (星官)
[4] wiki / John Goodricke
[5] wiki / Classical Cepheid variable
[6] wiki / Henrietta Swan Leavitt
[7] Inflation Calculator
[8] aavso / Henrietta Leavitt – Celebrating the Forgotten Astronomer
[9] wiki / Harvard Computers
[10] wiki / Period-luminosity relation
[11] Universe Today / What are Cepheid Variables?
[12] Mile Markers to the Galaxies

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
ntucase_96
30 篇文章 ・ 1355 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。

0

11
4

文字

分享

0
11
4
暗能量是什麼?看不到也摸不著,我們該如何找到它?
PanSci_96
・2023/11/27 ・5683字 ・閱讀時間約 11 分鐘

愛因斯坦對於宇宙的理解錯了嗎?

愛因斯坦的廣義相對論重新改寫我們對於時間、空間、與質量的認知,也開啟我們對廣大宇宙研究的大門。

在宇宙物理學如同大霹靂快速發展之時,我們也發現愛因斯坦最早提出的宇宙模型,可能並不完全正確。

正確來說,我們發現我們過去對宇宙的理解,可能真的太少了。少到我們至今所觀測到的所有物質,可能仍不到整個宇宙組成的百分之五。並不是說這些能量或物質距離我們太過遙遠,而是他們可能就在附近,而我們卻全然不了解它。

-----廣告,請繼續往下閱讀-----

其中佔了將近宇宙組成七成的「暗能量」,到底是什麼來頭?我們能徹底了解它,同時能為我們宇宙的存在,提供一個正確的解釋模型嗎?又或者我們能掌握它,來改變宇宙的未來嗎?

暗能量(dark energy)到底是什麼?這聽起來有夠中二的名字,難道是暗影大人的新能力嗎?

其實暗能量的「暗」,指的是我們看不到也摸不到,用上各種波段的電磁波都察覺不到,甚至現今沒有任何儀器能偵測到它的存在。因為我們無法感受到它、不知道他們的型態,所以稱為暗能量。也就是說,如果暗影大人或是哪個最終 BOSS 的絕招是「暗能量波動」,當巨大的能量朝你襲來,不用擔心,站在原地就好,因為它只會穿過你的身體,打不中你的。同樣的,你可能聽過的「暗物質」,指的也是我們無法探知的未知物質。也就是說,暗物質並不是指某種特定物質叫做暗物質,任何我們現在還無法探測到的,都可能是暗物質的其中一種。題外話,近年某些暗物質面紗底下的容貌,已經逐漸能被我們窺見,例如微中子。這部分,之後我們介紹暗物質的節目中,再來好好討論,今天先來和大家聊聊佔了宇宙質能 7 成的暗能量。

矛盾大對決來了,既然我們摸不到,也看不到,我們怎麼知道暗能量存在,還是僅存在我們的中二想像中呢?我們得將時間回推到最早認為宇宙中有未知能量存在的那個人,他不是別人,就是鼎鼎大名的愛因斯坦。

-----廣告,請繼續往下閱讀-----

1916 年愛因斯坦推導出廣義相對論,解釋物質和能量如何影響時空的彎曲和演化。愛因斯坦當時認為,宇宙應該是靜態的,但是若宇宙中只有物質,宇宙應該會受重力吸引而塌縮,因此需要與反向的能量來平衡重力,這股能量平均地存在在空間當中。愛因斯坦當時引入了宇宙常數 Λ 來平衡他的靜態宇宙模型,而直到非常近期的 1998 年,暗能量 (dark energy) 這個詞才由物理學家麥可.特納提出。

在愛因斯坦之後,著名宇宙學家傅里德曼提出不同看法,他認為宇宙不一定是平衡的,也可能正在收縮或膨脹當中,並根據廣義相對論推導出 Fridemann 方程式,關於 Fridemann 方程式的故事,先前我們有好好介紹過。

暗能量不只存在於理論上的預測,同時期天文學家開始發現我們熟知的銀河系,並無法代表整個宇宙,原來夜空中很多像星雲的天體,其實是遙遠的星系!宇宙遠比以前認為得大的太多了!1929 年,哈伯進一步發現,這些星系竟然正在遠離我們而去,而且距離我們愈遠的星系,遠離的速度就愈快!宇宙竟然真的是以地球為中心,而地球利用強大的排斥力,將其他星系用力向外推開嗎?當然不是,想像一下,宇宙就像一個葡萄乾麵包,上面布滿的葡萄乾就是各種天體,當麵包發酵膨脹時,不論站在哪顆葡萄乾的視角,所有天體的距離都是互相拉遠,而且距離愈遠的天體,彼此遠離的速度就愈快。

也就是說,哈伯觀測到的結果顯示整個宇宙正在膨脹。但還有一個問題,就是這個宇宙的膨脹速度,是隨著時間經過越來越快的加速膨脹,還是膨脹速度正隨著時間在趨緩的減速膨脹呢?為什麼這個問題很重要?因為如果是減速膨脹,靠現有的重力理論就可以解釋,宇宙中天體所提供的重力,正在使宇宙減速膨脹,甚至宇宙的結局可能會是宇宙重新塌縮。但如果宇宙正在加速膨脹,那麼只考慮重力就不夠了,為了抵抗向內塌縮的重力,勢必要有一股力量要將宇宙向外加速推開。這時,就需要加入暗能量的存在了。

-----廣告,請繼續往下閱讀-----

宇宙真的正在加速膨脹?

為了確認宇宙正在減速或加速膨脹,好推算暗能量是否存在,科學家再次將目光投向宇宙深處。隨著觀測技術愈來愈進步,天文學家可以透過不同方式,觀測更早期的宇宙。

愈遠的天體發出的光,需要經過愈長的時間才能傳到地球。假設我們觀察離地球1億光年遠的星球,由於我們看到的影像是從星球出發後,經過 1 億年後才到達地球,因此在望遠鏡中看到的,其實是該星球一億年前的樣子。只要利用這點,如果我們將望遠鏡頭對向更加遙遠的宇宙深處,就能看到更早期的宇宙樣貌,幫助我們了解宇宙過去的樣子。

科學家主要透過三種方法,分別用來觀測晚期、中期、到早期的宇宙。第一種方法是觀測 Ia 型超新星爆炸,它指的是當一顆緻密白矮星到了生命末期,吸收大量鄰近伴星的氣體,使得內部重力超過某個極限,引發失控的核融合而形成的超新星爆炸。這個爆炸會在瞬間釋放出許多能量,亮度甚至可以媲美整個星系,因此即使是很遙遠的超新星也可以被地球觀測到。最受天文學家關注的是,因為每個 Ia 型超新星爆炸時產生的尖峰光度都相同,可以直接作為觀測或是亮度的比對參考點,又稱為標準燭光。當它離我們愈遠亮度就愈小,只要觀測亮度就可以得知它離我們的距離。

Ia 超新星殘骸。圖/wikimedia

接著,透過光譜分析,我們還能得到這個超新星遠離我的的速度。這就像是救護車在靠近和遠離我們的時候,警笛的聲音頻率會因為我們和救護車相對速度的改變而產生變化,同樣的道理放在電磁波上,當超新星遠離我們,電磁波頻譜的頻率會下降,我們稱為頻譜「紅移」。最後,只要我們同時觀測好幾顆超新星,並且量測每一顆的距離和遠離我們的速度,看看是不是真的離我們越遠的超新星離開的速度越快,就可以知道宇宙正在加速或是減速膨脹。

-----廣告,請繼續往下閱讀-----

第二種方法是觀測宇宙大尺度結構,宇宙中星系的分佈其實是不均勻的,有些地方有星系團,也有一些地方是孔洞,整個宇宙就像是網子一樣。這是因為宇宙在形成星系時,向內的重力以及向外的氣體與光壓力會彼此抗衡,就像我們在擠壓彈力球一樣,向內壓時內部壓力會增強,導致物質向外拋射,壓力減弱後又會停止拋射,這樣來回震盪的過程,就在宇宙中形成一個個震波漣漪,稱為重子聲學振盪(BAO,baryon acoustic oscillations)。有趣的是,當好幾個地方都在震盪,就會產生類似好幾個水波互相撞在一起的干涉現象。而這個宇宙規模的超大水波槽中,波腹部份聚集較多物質就會形成星系團,波節部份不足以形成星系就形成孔洞,是不是覺得我們的宇宙就像是一鍋湯,而我們只是裡面毫不起眼的一顆胡椒粒呢?不過即使是連一粒胡椒都不如的我們,透過觀測宇宙星系分布並透過理論計算,人類科學家還是可以得知這些結構的大小,並且推知這些結構上的星系距離我們多遠,最後再搭配紅移光譜,一樣可以算出宇宙膨脹的速度。今年七月升空,11 月 8 號從太空傳回第一張照片的歐幾里得太空望遠鏡,它的其中一項任務,就是專門觀測重子聲學振盪,來研究宇宙大尺度結構。歐幾里得太空望遠鏡有望帶給我們對宇宙的全新認知,關於這一部分,我們很快會再來深入介紹。

第三種方法是透過觀測宇宙微波背景輻射,它是宇宙的第一道曙光,在此以前,宇宙能量很高,光和電漿相互作用,不會走直線。但是到了宇宙三十八萬歲時,宇宙已經冷卻到足以讓電子與原子核結合,宇宙終於變得乾淨了,光也終於可以走直線。而三十八萬歲時的早期宇宙的畫面,至今仍不斷經過遙遙 137 億年的時間抵達地球,被我們觀測到,稱為宇宙微波背景輻射。有趣的是,根據這些照片,我們能發現早在 137 億年前,宇宙各處就不是均勻的。透過分析這些微波的分布,科學家能計算出當時宇宙的組成成份。這時我們發現,目前的已知物質,也就是元素週期表上看得到的原子,只佔所有能量的 4.93%,而看不到的暗物質,佔 27.17%,那還有 67.9%,將近七成的組成分是什麼?科學家認為就是暗能量。

宇宙微波背景輻射。圖/wikimedia

哇!暗能量佔的比例這麼高?那我們未來有機會從空間中汲取無限的能量嗎?先不要想的這麼美,其實暗能量在宇宙中的密度很低,依照質能等價公式,質量跟能量是可以互相換算的。換算下來暗能量每立方公分只有 10 的負 24 次方公克,相比之下,水的密度是立方公分 1 公克!真的微乎其微。之所以暗能量在宇宙中佔的能量比這麼大,是因為它均勻的存在在廣大無垠的宇宙中,不像一般的物質,只集中在一些星系和星體中。

現在我們知道暗能量存在,而且量也不少,但回到最關鍵問題,這些暗能量到底是怎麼來的呢?

-----廣告,請繼續往下閱讀-----

宇宙與暗能量的未來

科學家普遍認為暗能量是來自「真空能量」,根據量子力學,我們過往認為的真空,其實會不斷短暫的出現粒子並消失。而這些量子漲落便會產生真空能量。雖然這聽起來很玄,但各位看完我們的影片並按下訂閱之後,這些訂閱數就一定會是真的。都看到影片最後一段了,就拜託大家再多動一下手指吧!

而量子力學除了能在真空中產生真空能量以外,這個過程甚至可能幫助我們開啟蟲洞!關於真空能量與時空旅行的關係,可以參考我們的這一集哦(閃電俠)。

為了重新認識我們的宇宙,科學家此時再次拿出了宇宙常數 Λ 和 Fridemann 方程式,建立了一個可以完美解釋前面三種觀測結果的模型-ΛCDM 模型。

ΛCDM 是近代在解釋宇宙微波背景輻射、宇宙大爆炸時,最常被使用的理論。目前對於宇宙歷史與加速膨脹的圖像,也都基於此模型。

-----廣告,請繼續往下閱讀-----
ΛCDM模型,加速擴張的宇宙。圖/wikimedia

不過 ΛCDM 理論仍有兩個致命的問題待解決。第一個是理論中的宇宙常數 Λ,應該要與位置、時間無關,是一個不隨時間變化的常數。然而針對觀測早期和晚期宇宙所計算出來的宇宙常數數值卻不一樣,要如何解釋這個觀測差異?第二個問題是,假設暗能量是真空中的量子漲落所造成,依此推算出的宇宙常數數值,還跟觀測差了 120 個數量級!也就是 10 後面有 120 個零,整個宇宙中的原子數量也才 82 個數量級而已!

因此科學家也提出其他可能的暗物質理論。比如認為暗能量不是來自真空能量,而是由一種未知的粒子場所驅動,而這個場與時間有關,導致早期和晚期宇宙的觀測結果有差異。還有人認為根本沒有暗能量存在,宇宙會膨脹,是因為愛因斯坦的廣義相對論在宇宙學這種大尺度中是不適用的!就像牛頓的萬有引力公式在地球上管用,到了太陽系規模就會出現誤差。或許在宇宙規模還有比廣義相對論更完備的其他理論等待我們發現!另一派科學家也認為沒有暗能量,我們會看到加速膨脹,只是因為銀河系剛好位於宇宙大尺度結構的孔洞中,也就是葡萄乾麵包裡面空氣比較多,口感比較鬆的地方,由於這個地方總體重力比較小,天體也就是葡萄乾之間向外膨脹的速度比較快,但不代表整個葡萄乾麵包都在加速膨脹,宇宙加速膨脹只是局部觀測的假象。

這些理論或許可以解釋部份的問題,但沒有一個能解釋所有觀測數據,而且由於觀測的限制,這些理論都缺乏數據的佐證。因此目前我們只能說,暗能量的效應確實存在,但我們還不知道它確切是什麼。

有人可能想問,研究暗物質對我們真的那麼重要嗎?其實,它不只影響了宇宙過去演化的歷史,也影響著我們將來的命運。由於宇宙膨脹,物質的密度會因為膨脹被稀釋,但如果暗能量是常數,就代表密度不會改變,因此宇宙會膨脹的愈來愈快,導致遙遠的星系加速離我們遠去,最後暗能量會超過所有的基本作用力,包括重力、電磁力和核力,星系、太陽系、地球都將被拉開,甚至中子和質子都互相分離,使原子不復存在,進入大撕裂時期,也將是宇宙最孤獨的結局。不過這是一百多億年後的事情,在那之前地球會先被死去的太陽吞沒,我們應該要先煩惱的是要如何移民其他星球才是。

-----廣告,請繼續往下閱讀-----

最後總結一下,暗能量到底是什麼?很抱歉,經過了幾十年的努力,這個問題依舊是一個問號,但藉由宇宙學的研究,使我們更謙卑更加發覺自身的渺小,我們或許已經掌握許多物質運作的原理,也開發出許多高科技產品,但這些只是整個宇宙的 5% 仔,宇宙中還有許多未知等待我們去探索,而它深深關係到我們的過去和未來。

最後也想問問大家,你覺得當一切真相大白之時,我們會發現暗能量是什麼呢?

  1. 符合最直覺的 ΛCDM 理論,它就是宇宙加速膨脹的元凶!
  2. 它根本不存在,我們甚至需要比廣義相對論更強的理論來解釋!
  3. 依照人類這個物種的感知等級,可能永遠無法了解暗能量的真相!
  4. 我、我已經無法抑制我左手的暗能量了!啊啊啊~

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

討論功能關閉中。

PanSci_96
1219 篇文章 ・ 2199 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

12
3

文字

分享

1
12
3
思考的極限:宇宙創造出「空間」與「時間」? ——宇宙觀的發展史(下篇)|20 世紀後
賴昭正_96
・2023/05/17 ・6928字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

空間與時間都根本不存在:它們只是分別用來說明物體間之相對位置與事件間之前後秩序的「語言」而已。沒有物體就沒有空間的必要;沒有事件就沒有時間的必要。
——賴昭正(不可能得到諾貝爾獎的科普作者)

宇宙在十六世紀以前一直被認為是宗教與哲學的範圍。圖/Envato Elements

宇宙的起源、歷史、與結構,在十六世紀以前,一直以人及地球為中心,被認為是屬於宗教與哲學的範圍。1543 年,哥白尼(Nicolaus Copernicus)粉粹了地球為宇宙中心的幻想;約百年後,伽利略(Galileo Galilei)改進了望遠鏡,並將其鏡頭轉向天空,開啟了觀測天文(observational astronomy)之門,並大力支持哥白尼之地球繞日的理論。

慢慢地,科學家不再須要依靠信仰來解決、而是利用科學儀器去「看」宇宙像什麼樣子及如何演化。又再約百年後,牛頓(Isaac Newton)用萬有引力及距離平方反比定律,解釋了一系列以前不相關的天上人間現象,並且可以計算出行星繞太陽的週期,使得天文學正如其它科學訓練一樣,不再是信仰的爭論,而是證據與理論的問題。

當天文學家了解到了人不可能是宇宙的中心時,科學家再沒有任何理由認為我們所處在的地方在宇宙中佔了一個很獨特的地位;同樣地,也沒理由認為我們所處在的時刻是個很特殊的時刻——稱為「宇宙學原理(Cosmology principle)」。顯然地,宇宙應該永遠就是那樣地存在,它沒有開始,也不會有終結。

膨脹的宇宙

如果星星可以自由移動,那麼宇宙還是不是靜態?圖/Envato Elaments

牛頓的力學統領了三百多年的物理學及天文學發展,直到 1905-1915 年間,愛因斯坦(Albert Einstein, 1897-1955)相繼地發表了狹義相對論及廣義相對論後才被修正。

-----廣告,請繼續往下閱讀-----

愛因斯坦發表了他的重力場方程式後,當然也在思考著宇宙的問題;但卻發現他場方程式的解不可能是一個靜態的宇宙!為了符合當時的宇宙觀,二十世紀近代物理學革命先鋒的愛因斯坦竟然屈服於「共識」,修改其方程式來取得靜態解。

事實上早在 1718 年,英國天文學家哈雷(Edmond Halley,1656-1742)就發現了三顆明亮的恆星不再處於古代觀測所確定的位置,嚴重地質疑恆星固定位置的假設。而如果星星可以像正常的物理物體一樣地自由移動,那麼宇宙是不是靜態呢?

1922 年至 1924 年間,俄國數學家佛里曼(Alexander Friedmann,1888-1925)假設宇宙中物體的分佈是均勻(宇宙學原理),解廣義相對論場方程式,發現這些物質在空間的分佈只有三種可能:
從開始的一點,空間隨著時間增大而

  1. 慢慢趨近到一個定值;
  2. 永遠繼續膨脹增大;
  3. 膨脹一段時間後開始收縮。
圖/作者提供

1927 年,比利時魯汶天主教大學(Catholic University of Louvain)教授勒梅特(Georges Lemaître,1894-1966,麻省理工學院物理博士)神父也獨立地發現了佛里曼解;但因他對其物理意義比較感興趣,從中預測了真實的星系宇宙膨脹,得出距離我們越遠的星群後退速率應越快、但沒有人在意的革命性結論——愛因斯坦接受了他的數學,但拒絕了他的物理解釋。

-----廣告,請繼續往下閱讀-----

1929 年,美國天文學家哈柏(Edwin Hubble,1889-1953)分析了一些從遙遠星群傳來之光譜的測量結果,發現其頻率很有系統地往頻率較低之紅色位移(red shift),其位移值隨星球離我們之距離的增加而加大。顯然地,遙遠星群是依一定的規則在遠離我們:距離我們越遠,後退速率越快——稱為「哈柏—勒梅特定律」(Hubble-Lemaître law)。

這無可避免的結論是:宇宙正處於一膨脹狀態!此一完全出乎意外的發現,改變了宇宙論這一研究的整個面貌!可惜在哈柏去世前,天文學顯然還是被認為是屬於宗教與哲學的範圍,因此他從未得到諾貝爾獎。

宇宙的開始

一個膨脹的宇宙是一個在改變的宇宙,因此應該具有生命的歷史。1931 年,勒梅特開始追溯宇宙的足跡,得出了他所謂的「原始原子假說」(primeval atom),在《自然》雜誌上發表了一篇 457 字的短文謂:

「如果我們回到過去,我們必須找到越來越少的量子,直到我們發現宇宙的所有能量都包含在幾個——甚或是一個獨特的——量子中。……,如果世界始於一個單一的量子,那麼空間和時間的概念在開始時完全沒有任何意義。……,我們可以以一個獨特原子的形式設想宇宙的開始,其原子量是宇宙的總質量。」

-----廣告,請繼續往下閱讀-----

無神論宇宙學家霍伊爾(Fred Hoyle,1915-2001)因為不相信「原始原子假說」,在 1949 年諷刺地稱它為「大霹靂」(big bang),沒想到這一名詞竟然廣為科學家所接受的,稱勒梅特的宇宙觀為「大霹靂宇宙論」。

1979 年 12 月,麻省理工學院古士(Alan Guth,1947-)教授突然心血來潮,懷疑他的研究——超冷(supercooled)的希格斯場(Higgs field)——或許也適用於宇宙論。

美國理論物理學、宇宙學家 Alan Harvey Guth 亦是暴脹模型的創立者。圖/維基百科

古士的研究顯示,如果當初宇宙充滿了稱為急脹子(inflaton)的希格斯場,則在慢慢膨脹而冷卻下來時,這急脹子可能被困在一能量不為零的非常不穩定之超冷狀態。此狀態的急脹子因具負內壓,可以提供非常強大的排斥力,促成瞬間非常巨大的膨脹(「大霹靂」的原因)。

但因此一狀態非常不穩定,因此急脹只維持了大約 10-35 秒之久;但在這期間宇宙膨脹率隨著時間而急速加快的!在此之後,宇宙的膨脹率才因重力的關係又恢復到其越來越小的正常狀態!

-----廣告,請繼續往下閱讀-----

此一巨大迅速加速膨脹不但能解釋為何現今的宇宙是如此地均勻;它甚至還告訴了我們現今我們所觀測到的宇宙,事實上只是整個宇宙中非常小的一部份!這正又說明了為什麼我們現今觀測到的宇宙是平的——正如大球表面上的一個小面積看起來是平的一樣。此一偶然發現,一下子解決了宇宙大霹靂論的三大謎題(詳見愛因斯坦的最大錯誤——宇宙論常數)!在大約 10-35 秒後,此一大霹靂才停止,急脹子才放出其多餘的超冷能量,產生我們現今所看到的一般物質與能量。

科學家稱此一改良的大霹靂宇宙論為「急脹宇宙論」(inflationary cosmology),原來之大霹靂宇宙論為「標準大霹靂宇宙論」(standard cosmological Big Bang model)。

宇宙沒有邊緣

一個以獨特原子「大霹靂」出來的時空當然應該是有界限的,有界限的時空當然應該是有邊緣的。可是如果有邊緣,那應該有很獨特的中心點,這不違反了「宇宙學原理」嗎?還有,邊緣的外面是什麼?如果是空間,那應該是「大霹靂」造出來的,應該是宇宙的一部分,所以宇宙應該是沒有邊緣的。

沒有邊緣的宇宙不一定必須是無限大的:愛因斯坦 1917 年提出的宇宙就是一個沒有邊界的有限宇宙:生活在二度球面上的怪人,它們生活的球面是有限的,但卻沒有邊界。球面不平,故可以彎回形成一個封閉的無邊緣空間;但如果宇宙的幾何是平的,不能彎回來,那麼宇宙便應該是無限大的,沒有邊緣的;儘管如此,宇宙的膨脹還是在繼續製造空間的,所以空間隨著時間變成「更無限大」。

-----廣告,請繼續往下閱讀-----
圖/作者提供

時空的膨脹

我們對「膨脹」的了解都是置身事外、隔岸觀火的:像看正在膨脹的氣球,只見其體積越來越大。但是宇宙只有一個,我們不可能置身事外;而如果宇宙是無限大的,則不管我們在哪裡,都會覺得我們正處於膨脹中心點,正像球面上的任何一點,發現其它各點離我們之速率與其距離成正比(這正是哈柏的發現)。

還有,隔岸觀火讓我們可以看到氣球外的膨脹空間,我們可以量得在膨脹時氣球上任何一點對地球的「運動」速度;但如果我們置身正在膨脹的宇宙中,當然看不到宇宙外的膨脹空間。

不,等一等,宇宙是無限的,它怎麼還有「外面」讓它膨脹呢?當然沒有!所以現在的物理學家認為空間像氣球的表面一樣,是膨脹——不是運動——「製造」出來的!兩個物體的空間距離因膨脹——不是相對運動——而加大。

萊布尼茲(Gottfried Leibniz,1646-1716)終於戰勝了牛頓:沒有物質的地方就沒有空間,空間根本不存在,空間只是用說明物體之間的相對位置的「語言」而已。所以哈柏所測到的遙遠星群有系統地離開我們,並不是因為星群「運動」的結果——星群並沒有在牛頓之「絕對空間」中運動。

-----廣告,請繼續往下閱讀-----

如果空間是被製造出來的想法很難接受,相信時間就容易瞭解多了!想一想:「現在」根本沒有「明天」,「明天」是在明天的「現在」才出現的,所以「明天」是製造出來的;「時間」是在膨脹,往現在不存在之「明天」膨脹;「現在」與「明天」之間沒有界限,所以時間應該沒有邊緣;沒有邊緣就沒有邊緣外是啥的問題!

而沒有邊緣、又是「我的青春小鳥一去不回來」(註一)的時間不應是無限大嗎……,所以宇宙的膨脹事實上不止製造了空間,同時也製造了時間!

西漢(公元前 202 年-公元 8 年)《淮南子》的首篇《原道訓》謂上下四方為之「宇」,古往今來為之「宙」;這句話闡明了「宇」就是空間,「宙」就是時間;宇宙就是時空,宇宙歷史就是製造時空的歷史!

宇宙歷史就是製造時空的歷史!圖/Envato Elements

宇宙年齡與黑暗夜空

如果時間是因為大霹靂而製造出來的,那現在的宇宙到底都老了?精確測量的「遙遠星系的速度及其距離比」(稱為「哈柏常數」)估計現在的宇宙年齡為 138 ± 10 億年。

-----廣告,請繼續往下閱讀-----

2013 年,歐洲航天局的普朗克太空望遠鏡繪製了一張詳細的宇宙微波背景溫度之波動圖,估計宇宙的年齡為 138.2 ± 0.5 億年。去年 3 月 30 日,由約翰霍普金斯大學韋爾奇(Brian Welch)博士領導的一群天文學家宣布發現了有史以來最遠和最早的恆星:一個在 129 億年前(大霹靂之後 9 億年時)發出的光點。

哈柏對星系系統性紅外移的發現終於讓我們解決了牛頓之無限宇宙論與宗教之有限宇宙論間的衝突。

起初人們認為僅紅移效應就足以解釋為什麼夜晚的天空是黑暗的:來自遙遠星系中恆星的光會被紅移到可見光範圍之外的長波長。然而,現在共識是,宇宙的有限年齡是一個更重要的影響。即使宇宙在空間上是無限的,但由於光速及重力傳播速有限,來自遙遠星系的光子或重力根本還沒有足夠時間抵達到地球。

如果現在宇宙的年齡是 138 億年,那麼我們將感覺不到距離地球 138 億光年外的光或重力,而認為宇宙是有限的。我們稱這個半徑 138 億光年的球面內宇宙為「可觀測宇宙」(observable universe)。在這個宇宙視界內的星數大約 2 萬億個,太少了,無法使夜空明亮或將地球撕裂。

還有,如果牛頓當時知道宇宙是在膨脹,他根本不需要一種「無限而永恆」的神力來防止星雲被拉到一起。

獵戶座大星雲揭示了恆星與行星系統的形成過程。圖/維基百科

思想的貧乏

如果時空是大霹靂製造出來的,那在這之前根本沒有時空!沒有時空?那這大霹靂在什麼「地方」發生的?又為了解釋如果爆炸有中心點,那便違反了「宇宙學原理」,有些理論天文學家甚至提出大霹靂是「到處」同時發生的!可是「到處」不是空間嗎?……這不正是「先有雞還是先有蛋」的矛盾問題嗎?

儘管哲學家盧梭(Jean-Jacques Rousseau, 1712-1778)認為:「現實的世界是有止境的,幻想的世界則是無垠的」,但在寫這一節時,筆者還是一個頭兩個大!

紐約州立大學石溪分校的天體物理學家舒特兒(Paul Sutter)在去年 2 月 25 號的宇宙之外有什麼東西嗎?一篇文章結尾說:「如果這一切聽起來複雜而令人困惑,請不要擔心。……,這就是現代宇宙學的力量之一:它(數學)使我們能夠研究難以想像的事物。」

恐怕我們所能做的就是接受這些悖論並努力去適應它,就像前面提到之萬有引力,當初不是被認為是「魔法、神秘、非科學」嗎?但現在已經沒有人懷疑這種力之存在了。同樣地,近代的物理(相對論、量子力學)裡不也是充滿了很多違反我們日常生活邏輯的奇怪觀點嗎?

宇宙又再次加速膨脹

1998 年加州大學伯克萊分校(University of California, Berkeley)的波米特兒(Saul Perlmutter)及澳洲國立大學(Australia National University)的思密特(Brian Schmidt)相繼宣佈超級新星 la 型的數據顯示,在大霹靂後的 70 億年,宇宙的膨脹率又再次加速了!約翰霍普斯金大學(Johns Hopkins University)的雷斯(Adam Riess)於 2006 年再次肯定了這些觀查結果。

此一發現再次重寫了人類對宇宙演化的看法,因此諾貝爾獎委員會將 2011 年的物理獎發給這三位科學家。

真是一波剛平,一波又起!好不容易物理學家總算了解了大霹靂的原因,在它之後宇宙的膨脹因為萬有引力的關係應該逐漸慢下來,怎麼現在它的膨脹又加速了?牛頓重力只有相吸的作用,因此要解釋此一加速膨脹,看來只有求助於愛因斯坦那修改方程式內之「宇宙論常數」(cosmological constant)了。

不錯,波米特兒及思密特思考著:在大霹靂(急脹)後,宇宙靠大霹靂時的衝力(物理學上稱為慣性)而繼續膨脹,但因萬有引力的關係,膨脹速率將越來越慢;可是如果真有愛因斯坦的宇宙論常數,則因其排斥強度不會隨宇宙膨脹而降低(萬有引力則會因宇宙膨脹而降低),它總有一天它會強過萬有引力,使宇宙的膨脹率由減速再次變成加速!這一天顯然就發生在他們所發現之大霹靂後約 70 億年時!

可是愛因斯坦的宇宙論常數是啥東西呢?沒有人知道,但一定不是普通的物質,否則早就應該被發現了——因此科學家稱它為「暗能量」(dark energy)。物理學家及天文學家正努力地在尋找此一充滿了宇宙、及必須具有負內壓的怪物。

宇宙膨脹的藝術構想圖。 圖/維基百科

結論

今日大部分的天文學家都認為宇宙是平的(佛里曼解 1),是在膨脹、沒有界限、無限大的。黑洞及重力波的相繼發現鞏固了廣義相對論在現今宇宙研究的理論地位。我們現在所看到的宇宙只是整個宇宙之一小部分而已;138 億年前離我們最遠那些星群因為宇宙加速膨脹的關係,事實上現在都已經離我們 460 億光年了(因為不是運動造成的,它們可以以大於光速的速度遠離我們)。

很難想像一個沒有邊緣、無限大的空間是什麼樣子?在那裡又如何能不停地製造出空間來?……,這些無法理解的「矛盾」邏輯或許正是羅素(Bertrand Russel,1872-1970)所說的「認為事物必須有一個開始(邊緣、大小、結束、……)的想法,實際上是由於我們思想的貧乏」?或普朗克(Max Planck,1858-1947)所說的:「科學無法解開自然界的終極奧秘,因為歸根結底,我們自己是我們試圖解開的謎團的一部分」?

這使筆者想到:人工智慧是人類製造出來的,它能像我們一樣創造出牛頓力學、相對論、量子力學嗎[註2]?甚或超越人類創造出一個沒有「矛盾」的宇宙觀嗎?

筆者在「日常生活範式的轉變:從紙筆到 AI」一文裡最後提到:或許筆者下篇文章已經不是自己寫的了。讀者認為本文是人工智慧代寫的嗎?為什麼?

註解

  1. 黃駱賓:《青春舞曲》
  2. 筆者覺得不可能,因為筆者認為創造是屬於靈感和直覺的非理性活動,無法表達的;愛因斯坦曾謂:「我很少用語言思考。(雖然)一個想法出現了,我可能會嘗試用文字來表達它」。當我們無意識地思考時,邏輯及演繹推理就被拋在腦後;愛因斯坦曾謂:「我從來沒有通過理性思考的過程做出任何發現」。
    人工智慧有能夠有靈感、直覺、或無意識的思考嗎?還有,科學上不少大發現都是意外的,例如注意到胰臟被割除之狗,小便過的地板上蒼蠅特別多而發現了胰島素,忘了收拾細菌培養皿就去度假而發現了盤尼西林,錯誤的假設發現了量子統計力學等等。人工智慧如何「學習」或碰到這種運氣呢?

延伸閱讀

  1. 賴昭正:《我愛科學》(華騰文化有限公司,2017 年 12 月出版):「量子統計的先鋒——波思」(科學月刊,1971 年 4 月號),「牛頓的水桶」(科學月刊,2011 年 8 月號),「愛因斯坦的最大錯誤——宇宙論常數」(科學月刊,2011 年 12 月號) ,「暗物體與暗能量」(科學月刊,2014 年 6 月號),「愛因斯坦其實沒那麼神?」(泛科學,2016/03/16)。
  2. 50年的追尋-宇宙之演化(科學月刊,2019 年 8 月號)。
  3. 宇宙是靜態還是在膨脹?又是誰先發現宇宙微波背景輻射?(泛科學,2022/04/22) 。
  4. 從圓周率與無理數,談數學也有其無法理解、不精確、和不確定性(泛科學,2019/06/03)。
  5. 賴昭正譯(P.C.W. Davies 原著):《近代宇宙觀中的空間與時間》(新竹國興出版社,1981 年 8 月出版)。
所有討論 1
賴昭正_96
42 篇文章 ・ 51 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

28
3

文字

分享

1
28
3
從戰國時代到漢朝,宇宙論的先進與式微
劉律辰
・2023/03/22 ・3536字 ・閱讀時間約 7 分鐘

中國是四大古文明之一,有著一段輝煌的天文觀測史,帶來精密的曆法、博大的哲學與玄妙的星象文化。其中,戰國至漢代為中國宇宙論發展最為迅猛的時期,部份觀念甚能先進於中、近古的西洋。當我們回首這些朝代的興衰遞嬗,不僅補苴思想史與科學史的罅漏,更能以此反思漢代以後國人精神世界何以飽和、枯竭。

中國古代主要的宇宙論有三家:「蓋天」、「宣夜」與「渾天」。以現代觀點而言,宣夜描述宇宙本質,渾天解釋繁星運行,蓋天與渾天可參照西方地心說(天動說)。

蓋天說 穹頂下的大地

蓋天說」是中國最早的宇宙模型,認為「方屬地,圓屬天,天圓地方」註 1,即「天圓地方」、穹廬狀的天覆蓋方形的地

到了戰國時代,蓋天說開始受到質疑,如《大戴禮記》中就記載,曾子曾提到:

天之所生上首,地之所生下首,上首謂之圓,下首謂之方,如誠天圓而地方,則是四角之不揜也。註 2

意思是「圓天」與「方地」的形狀無法契合。

-----廣告,請繼續往下閱讀-----

到了戰國晚期,蓋天說被修正為「天似蓋笠,地法覆槃」註 3,即天與地為平行的拱面;另種說法是天與地是平行的平面,由八根「天柱」支撐。傳說中的水神共工,就是在與顓頊爭奪王位失敗以後怒撞了天柱之一的不周山,導致「天」傾斜,也就有了「女媧補天」的故事。

然而,無論「地」是什麼形狀,星體將永遠處在人類能看見的範圍,並不符合天體東升西落的觀測結果,「漢賦四大家」之一的揚雄寫的《難蓋天八事》就否定了蓋天的說法。儘管到了西晉時期,仍有虞聳的「穹天說」來繼承蓋天理論,但在愈發廣大而精確的觀測數據面前,蓋天說已是落日餘暉。

蓋天說的代表作《周髀算經》。圖/wiki

宣夜說 由「氣」推動的無邊宇宙

「宣夜說」,則認為宇宙無邊無際,而「氣」推動宇宙的運行。這樣的想法受道家宋鈃、尹文的影響,即「氣」為萬物本源。《莊子.逍遙遊》中寫道:

天之蒼蒼其正色邪?其遠而無所至極邪?

其中便隱含宣夜的概念。

-----廣告,請繼續往下閱讀-----

如今的我們認為宇宙雖非無限大,卻沒有邊界與固定形狀,這點與宣夜說相同,儘管這樣的理論在觀測實用上不如蓋天說與渾天說。

宣夜說對於天體生成的理論,也與今日意外巧合。《列子.天篇》就提到:

日月星宿亦積氣中之有光耀者。

而在現今的天文學概念中,恆星確實是由氣體聚集、壓縮而成。

現今的天文學認為,宇宙中充斥著塵埃和氣體。圖/envato

神秘的宣夜說在戰國以後逐漸失傳,到了東漢時只剩郄萌一家。還有西晉楊泉《物理論》寫道:

-----廣告,請繼續往下閱讀-----

發而升,精華上浮,宛轉隨流,名之曰「天河」,一曰「雲漢」,眾星出焉。

也繼承宣夜說。至於「氣」與宇宙論的建構工作,就由渾天說繼續發展。

渾天說 最接近真實宇宙面貌的一刻

「渾天說」主張宇宙是個完整的「球體」,而非蓋天說的「半球體」,而地球處於這個球體之中,這個說法較接近現代的天文學理論。同樣受道家的影響,渾天說的宇宙組成裡,「」與「」是重要的概念。

這個概念最早可見於戰國楚地竹書《太一生水》與《恆先》註 4、註 5,同期的魏人石申與齊人甘德也依渾天之說,設計出最早估算天象的「渾儀」。

漢武帝的年號「太初」顯然受到渾天說的影響,也正是於此前後,渾天說逐漸取代了蓋天說的地位。此後,仍有不少關於「氣」的零星論述,如西漢末年的《易緯》、東漢王充的《論衡》、《白虎通》。

-----廣告,請繼續往下閱讀-----

東漢科學家、「漢賦四大家」的張衡集渾天說之大成。他設計了以水為動力、並加入地平圈和子午線的「渾天儀」,其著作《渾天儀》與《靈憲》分別繼承了「水」與「氣」的學說。可惜《渾天儀》如今已失傳,只能從人的《渾天儀注》中略窺一二。

此外,《晉書.天文志》中寫到:

宣夜絕無師承,周髀多所違失,惟渾天得近其情。

而唐代的方炯也寫了《渾天論》來駁斥蓋天和宣夜的理論。由於哲學理論與文人的支持,渾天說力壓其他兩者,逐漸成為中國宇宙觀的主流。

天球儀(又名渾天儀、渾象),用以表現恆星和星座位置,並能演示天體的周日運動。圖/wiki

雖然未有數學化的觀念,但中國宇宙論卻如此接近事實。然而,為何在漢代以後就再也沒有巨大斬獲、進而造就西方那般的天文革命呢?

-----廣告,請繼續往下閱讀-----

農民曆的出現與天文觀測的式微

明代的顧炎武在《日知錄》中提到:

三代以上,人人皆知天文。「七月流火」,農夫之辭也;「三星在戶」,婦人之語也;「月離於畢」,戍卒之作也;「龍尾伏辰」,兒童之謠也。

此處的「三代」指的應該就是堯、舜、禹,其中不難見到:由於農耕需求,上古時代的天文學經驗迅速積累,如被認為可能是堯都平陽的山西陶寺遺址,就有著中國最古老的觀象臺(約建於西元前 2100 年)。

《尚書.堯典》也說道:

(堯)乃命羲和,欽若昊天,歷象日月星辰,敬授人時。

日中,星鳥,以殷仲春。

日永,星火,以正仲夏。

宵中,星虛,以殷仲秋。

日短,星昴,以正仲冬。

這些都可以看出,上古的四季是由「星宿」來定義;大火星(心宿二)也十分重要,用以判斷入秋的時間,《史記》就記載了堯曾封商人始祖契於商丘,任「火正」,負責觀測、祭祀大火星。

-----廣告,請繼續往下閱讀-----

由此可知,古代人由於生產勞動的需要,人們「時間」和「季節」的掌控非常重要,因此必須研究天文和曆法。然而,自從夏后氏制定《夏小正》開始,農民曆的出現,大大減少了觀星的必要。

此外,受到文化變遷的影響,漢代以後的天文學更開始攙入「讖緯之學註 6」,「宜」、「忌」觀念深植人心,造成西周的人文精神與東周的理性精神逐漸喪失。雖然漢代天文學仍有極高成就,但究其根本,仍是奠基於戰國天文哲學的實際觀測結果,宇宙論體系的成長已相對趨緩。

然而,這是中國宇宙學或天文觀測沒落的主因嗎?

知識份子的胸懷

事實上,王充的《論衡.譏日篇》批判了當時的迷信氛圍,就是理性精神未被「讖緯」的飛沙走石淹沒的中流砥柱。一種學說,或者一種學術風氣的興衰下,最重要的還是知識分子的胸懷,縱使國家學術風氣有了些許問題,只要那些文人持續發聲,那麼企圖尋求真知的風尚就能成為銅山鐵壁,所有挑戰相形之下悉如熒光單薄,被穆穆的清風飄颻殆盡。

-----廣告,請繼續往下閱讀-----

不幸的是,隨著朝代的遞嬗,「儒學」逐漸成為讀書人的唯一;唐代科舉猶有「明算」科,元、明以後的四書五經則已佔據了一切,清代更把僅存的儒學凍結為僵化的「樸學」。於是,讀書人的視野預漸狹隘,那片遙遠的星河漸行漸遠,把滋養科學革命的后土,拱手讓給了西洋。

註解

  1. 出自《周髀算經》卷上之五。
  2. 出自《大戴禮記》《曾子天圓》之一
  3. 出自《晉書》《志第一 天文上》之八。
  4. 張佑任(2021),郭店楚簡〈太一生水〉之宇宙論。《哲學論集》,53(p33 – 53)。
  5. 丁四新(2018),楚竹书《恒先》的三重宇宙生成论与气论思想。《中国哲学》,2018 年 01 期。
  6. 讖緯之學:一種政治預言。「讖」是假藉上天的預言來達到政治目的,通常會加上圖作配合,稱為「圖讖」。 「緯」則是假藉孔子的言論所偽造出來的典籍,是真正記載孔子言論的「經」相對,所以也稱為「緯書」。 「讖緯」是一種用來凸顯帝王政權合理化的工具,盛行於西漢末年。

所有討論 1
劉律辰
3 篇文章 ・ 0 位粉絲