Loading [MathJax]/extensions/tex2jax.js

0

1
1

文字

分享

0
1
1

發現能治療糖尿病的胰島素——胰島素與生技產業的誕生(上)

賴昭正_96
・2017/02/15 ・3994字 ・閱讀時間約 8 分鐘 ・SR值 546 ・八年級

-----廣告,請繼續往下閱讀-----

糖尿病(diabetes)似乎是有人類就有的疾病,早在西元前 1552 年埃及就有記載小便頻繁導致身體虛弱的現象。西元 200 年左右,希臘哲學家亞里斯多德首先使用 diabetes 來描述此一現象。在拉丁文裡,diabetes 是多尿的意思,與「糖」無關。1675 年威利斯(Thomas Willis)因病人尿中具甜味而加 mellitus(拉丁文意「甜」),稱為 diabetes mellitus;但現在均只簡稱為 diabetes。

在中國,西元前 200 年左右的醫學書《黃帝內經》中也載有頻尿、多渴、及身體虛弱的疾病,稱為「消渴」。西元 600 年左右,隋唐甄立言所著之《外台祕要》中謂「消渴小便至甜」應是中國有關糖尿病的最早記載。

儘管有如此淵源長久的歷史,但人類卻遲至 1920 年代才偶然地發現糖尿病的病因是胰臟內分泌胰島素不足所致;其醫治方法則只是不停地注射胰島素。當時胰島素的來源是豬、牛的胰臟。1970 年代初,生物科技技術「重組 DNA」(recombinant DNA)開始在大學裡萌芽之際,一位即將失業的麻省理工學院畢業生竟然看到了商機。他説服了「象牙塔」裡的一位教授,合組了世界第一家基因工程公司,在短短兩年內發展出了「人造」人類胰島素,率先敲響了到 2015 年已達 1330 億美元的生物科技產業革命之鐘!

胰臟。圖/By BruceBlaus, CC BY 3.0, wikimedia commons

胰臟位於胃後,長約 15 公分,為一消化與內分泌系統。內有由三百萬細胞組成的許多呈星卵圓形蘭氏小島,按照染色的性質不同可分為四種細胞:

-----廣告,請繼續往下閱讀-----

(1)α 細胞:分泌升糖素(glucagon)
(2)β 細胞:分泌胰島素(insulin)
(3)γ 細胞:分泌胰多肽(Pancreatic polypeptide, PP)
(4)δ 細胞:分泌生長抑制素(somatostatin)

患糖尿病者,診斷上以血糖升高及尿中含糖為特徵,一般分為二種:

(1)第一類糖尿病:胰島素分泌不足
(2)第二類糖尿病:不能充分利用胰島素;50% 的患者之 β 細胞在 5~10 年內均慢慢失去其功能

據世界衛生組織(WTO)2016 年 11 月的報導:

-----廣告,請繼續往下閱讀-----

(1)全世界糖尿病病人數從 1980 年的 1.08 億增加到 2014 年的 4.22 億;
(2)全世界 18 歲以上成人糖尿病患病率從 1980 年的 4.7% 增加到 2014 年的 8.5%;
(3)糖尿病是失明、腎衰竭、心臟病發作、中風和下肢截肢的主要病因。

胰島素的發現雖然不能根治糖尿病,但卻讓患者能過著幾乎完全與正常人一樣的生活;「人造」人類胰島素的發明,開創了製造藥物的新紀元:生長激素、溶血栓蛋白質、B 型肝炎疫苗、紅血球生成素等生物科技產物不斷地相繼出現……希望讀者能與筆者一起在此分享這一段可歌、但不可泣的「胰島素與生技產業誕生」的醫學故事吧!

從胰臟的蘭氏小島說起

1869 年 2 月,德國柏林病理學學院的一位博士班學生蘭格漢(Paul Langerhans)提出一篇題為〈胰臟顯微解剖學的新知〉(Contributions to the Microscopic Anatomy of Pancreases)的論文,說明他在胃下面的脆弱葉狀器官胰臟內,發現許多不同於周邊之細胞小島,這些細胞群後來被稱為「蘭氏小島」(islets of Langerhans)。只是此時他雖然注意到了看起來像是神經的細胞,廣佈在這些細胞群內,但卻完全不清楚它們的功能。

1889 年,為了瞭解胰臟的功能,法國兩位外科手術醫生梅倫(Joseph von Mering)及明考斯基(Oskar Minkowski)將狗的胰臟割除,發現這隻可憐狗整天口渴及隨地小便。數日後,一位助手覺得實驗室內的蒼蠅好像突然多了起來,尤其是在狗小便過的地板。分析狗尿及其血液後,梅倫及明考斯基很驚奇地發現裡面充滿了糖份!顯然地,胰臟具調解體內糖份代謝的功能,它一旦受損將導致糖尿病。就這樣,梅倫及明考斯基無意中發現了「困擾」人類三千多年之糖尿病的病源(不過人們真正因糖尿病造成「困擾」可能是在 21 世紀吧)。

1895 年,沙佩-沙爾(Edward Albert Sharpey-Schafer)爵士提出糖尿病是因缺少一種由胰臟之「蘭氏小島」所製造出來的物質所致。他後來建議稱這一物質為 insuline,後改稱為 insulin(此字源自拉丁文 insula,意為小島),中文譯為「胰島素」,指胰臟小島分泌出來的激素。

-----廣告,請繼續往下閱讀-----

胰島素的發現

可是這「胰島素」物質到底是什麼呢?由於胰臟也分泌蛋白質分解酶,可破壞胰島素,因此想從絞碎之胰臟中分離出胰島素的實驗,幾十年都沒什麼大進展。

1921 年初,加拿大多倫多大學講師班廷(Frederick Banting)醫生從巴倫(Moses Barron)文章中發現結紮胰臟管可悶死分泌蛋白分解酶的細跑,因此想到了一個可能分離出此物質的方法。但當時加拿大研究糖尿病的大師麥克勞德(John Macleod)教授卻不以為然,因此只答應給他一個實驗室、一些基本設備、十隻狗、及一位剛大學畢業的助理貝斯特(Charles Best)。同年 5 月 17 日,他們正式捲起袖子,在麥克勞德的「指導下」工作起來。7 月 30 日,他們將新方法所分離出來的物質注射到被割掉胰臟之狗的身體後,發現這些狗的血糖均大量下降!

班廷想出了可以分離出胰島素的方法。圖/By Arthur S. Goss, Public Domain, wikimedia commons

麥克勞德終於有點相信了,因此建議進行更廣泛的實驗。這一來班廷及貝斯特當然不能再以「殺狗取胰」為業了,因之只好求助於附近的屠宰場:沒想到竟然「因禍得福」,他們發現豬、牛的「胰島素」不但具相同的功能,且根本不須先經胰臟結紮,新鮮冷凍的胰臟即可直接用來萃取胰島素(低溫顯然遲緩了蛋白質的分解)!

為了希望能早日進行人體試驗,班廷甚至以自己當試驗品,將萃取物注射到自己體內:班廷只感覺疲倦及頭暈,但未「生病」。到了 12 月,馬克里歐特已深信無疑,再請訪問教授生化學家柯立普(James B. Collip)加入團隊,負責純化萃取物的工作,以便進行人體試驗。

-----廣告,請繼續往下閱讀-----

1922 年元月 11 日,他們將萃取物注射到患糖尿病、臨近死亡邊緣之 14 歲多倫多男孩湯姆生(J.Thompson)身上,很失望地發現竟然沒什麼改進。但他們並未灰心:在柯立普教授日以繼夜的純化工作下,12 天後他們再次將萃取物注射到該男孩身上時,不但發現他迅速恢復體力,食慾大幅提升、血液及尿中糖份恢復正常,一些糖尿病的症狀似乎也消失得無影無蹤!在此一發現之前,患了糖尿病等於判了死刑,是無藥可救的,只能靠飲食及運動來控制,一般大概都只能拖個一年左右而已。湯姆生靠著萃取物,一直活到 37 歲才因肺炎而病逝。此一成功的例子迅速地傳開,許多的自願者人體試驗也一樣有效,因此班廷不久就在多倫多開了一家專治糖尿病的診所。

諾貝爾醫學獎的爭議

圖/By Toronto Daily Star – Toronto Star archives, Public Domain, wikimedia commons.

這麼重大的發現當然躲不過諾貝爾獎委員們的耳目:他們很快地決定將 1923 年的諾貝爾醫學獎頒發給「因發現胰島素」的班廷及麥克勞德。才出道就得諾貝爾醫學獎,32 歲的班廷應該很高興才對(到 2016 年為止,他還是最年輕的醫學獎得主),沒想到他聽到諾貝爾獎委員的決定時,竟然火大地謂:怎麼不是他及貝斯特,而是他及麥克勞德?顯然又是一個有爭議性的諾貝爾獎[註 1]!為了聊以表達貝斯特的貢獻,他決定將他所得的現金與貝斯特平分;麥克勞德也因如果不是柯立普的純化技術,人體實驗是不可能成功的,而決定將他所得的現金與柯立波分享!

「貨惡其棄於地也,不必藏於己」,有這麼可賺大錢的發現,班廷的團隊卻在取得胰島素萃取的專利後,將其使用權完全免費地轉給加拿大多倫多大學[註 2]。1922 年,多倫多大學與製藥公司禮來(Eli Lilly)合作,在後者研發改進製程後,1923 年年底時,已能大量生產足夠供應整個北美洲所需、純度相當高的胰島素。胰島素是禮來歷史上最重要的藥物:禮來因它而成為世界主要製藥大廠之一!

解密胰島素的化學構造

桑格(Frederick Sanger)於 1936 年進入英國劍橋大學的聖約翰學院,準備攻讀自然科學。但因不善物理及數學,一年後即將物理改為生理,以第一名畢業於剛成立不久之生物化學系;1943 年以「動物體內之離胺基酸(Lysine)的新陳代謝」取得博士學位後,即加入奇布諾爾(Albert Chibnall)團隊工作。奇布諾爾早就在研究胰島素的胺基酸成份,因此當了系主任後建議桑格繼續其未完成的工作。胰島素是當時已知之非常少數的純化蛋白質,在一般藥店即可買到。桑格果然不失所望,於 1951 年及 1952 年分別確定了牛胰島素中 A、B 兩鏈的胺基酸序列定序(類似下圖的人類胰島素胺基酸序列)

-----廣告,請繼續往下閱讀-----
人類胰島素 A 鏈和 B 鏈。圖/賴昭正提供

以今日之技術來看,這或許不是什麼大成就,但不要忘了當時大部分的生化學家均認為蛋白質是一無定形或組成的物質!

事實上是桑格這一發現——蛋白質有固定的化學構造——以及他一系列的演講,使發現 DNA 雙螺旋結構的克里克(Francis Crick)於 1958 年提出了現今已為大眾所接受之理論:遺傳基因物質(DNA 或 RNA)的核酸序列(遺傳碼)決定了其「指導」合成之蛋白質的組成(胺基酸序列);而蛋白質的組成進而決定其立體結構及性質。反過來説,如果我們知道蛋白質的組成,我們也可推算出決定此蛋白質之基因的核酸序列[註 3]。

單獨的 A、B 兩鏈沒有胰島素的功能;在桑格團隊的不懈工作下,他們終於在 1955 年成功地確定了歷史上第一個蛋白質「胰島素」的化學構造:由 21 個胺基酸組成的 A 鏈與由 30 個胺基酸組成的 B 鏈是靠兩個雙硫鍵連在一起,而短的 A 鏈中間又靠另一雙硫鍵聯結彎曲。桑格也因此於 1958 年藉由「蛋白質(尤其是胰島素)的構造研究」,得了他的第一個諾貝爾化學獎。

德國化學家梅爾荷費(J. Meierhofer)等人於 1963 年首次在實驗室中(化學)合成人類胰島素。1966 年時在中國及美國也有人工合成胰島素的報導。1974 年 Ciba‑Geigy 製藥公司[註 4]曾嘗試以合成法製造人類胰島素,但因太複雜、產量太低等經濟因素而作罷。因此儘管 2,000 公斤的豬胰臟大約只能萃取 30 公克的胰島素,人造胰島素一直無法與萃取的動物胰島素抗衡!豬的胰島素與人類的胰島素最相近,只差一個胺基酸而已;而牛的胰島素則具三個異於人類的胺基酸。顯然在脊椎動物的進化過程中,胰島素尚未分岔太遠:我們的防禦系統竟不掀旗反抗外來的動物胰島素!

-----廣告,請繼續往下閱讀-----

(繼續接著看:〈人造胰島素開啟生技產業——胰島素與生技產業的誕生(下)〉)

註解:

  • 1. 賴昭正,〈諾貝爾獎的爭議性〉,《科學月刊》,2016 年 12 月號。
  • 2. 多麼高尚的情操。反觀國內,士林地檢署偵辦「浩鼎案」,元月 9 日偵結,認定前中研院院長翁啟惠及浩鼎董事長張念慈(在技轉)涉期約收受賄賂及行賄罪嫌,決定起訴。
  • 3. 賴昭正,〈左旋還是右旋?化學對稱跟你我的身體有關!〉,泛科學,2015/9/25。
  • 4. 於 1996 年與 Sandoz 合併成今日之瑞士的國際大藥廠 Novartis。
-----廣告,請繼續往下閱讀-----
文章難易度
賴昭正_96
46 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
喝糖比吃糖更肥?飲料慢慢喝比較不會胖!——《大自然就是要你胖!》
天下文化_96
・2024/06/25 ・1953字 ・閱讀時間約 4 分鐘

飲料中的添加糖和食物中的添加糖,造成的影響有所不同嗎?

如果生存開關的啟動只與熱量有關,無論是吃軟糖,還是喝汽水,高果糖玉米糖漿所產生的作用理當一樣。但事實並非如此,喝糖通常比吃糖更糟得多。為什麼會這樣?生存開關是由於肝臟中的 ATP 濃度下降所觸發,因此關鍵在於有多少果糖到達肝臟。如果肝臟接收到大量果糖,則 ATP 會大幅下降,刺激生存開關強烈反應。倘若只有少量果糖到達肝臟,果糖代謝效應會比較溫和。這意味著,儘管我們在談論生存開關時,一直將它簡化為一種按鈕,可控制為開或關,但實際狀況比較像是可調整強度的旋轉鈕,會根據狀況產生強弱不同的反應。

換句話說,肝臟的反應是依據接收到的果糖濃度,而不是果糖量。比起果糖一次全部進入的狀況,當果糖緩慢進入時,肝臟接觸到的果糖濃度會比較低。也因為如此,軟性飲料比固體糖類更容易啟動生存開關。軟性飲料含有大量的糖分(以 600 毫升的汽水為例,當中含有約 17 茶匙的高果糖玉米糖漿,其中約 9 茶匙是果糖),通常幾分鐘即可喝完,而且由於是液體,不需要消化,這會讓肝臟中迅速充滿果糖和葡萄糖。相較之下,固體食物必須經過消化,需要更長的時間才能到達肝臟。(這也是完整水果較不易啟動生存開關的原因,因為水果纖維有助於減緩吸收。)因此,固體食物中的果糖到達肝臟的速度較慢,不會讓生存開關一下子轉到最強狀態。

營養學家兼遺傳學家斯皮克曼(John Speakman)進行的實驗證實了這一點,他發現餵食液體糖的小鼠,比餵食固體糖的更肥胖。人體臨床研究也比較食用液體糖(來自軟性飲料或其他飲料)和固體糖(來自糖果和甜點)的差別,所有證據都指向同一個結果:液體糖導致肥胖和(或)糖尿病前期的可能性,比固體糖更高。在一項研究中,將年輕受試者隨機分成兩組,一組每天喝一杯 240 毫升的軟性飲料,一組吃下含糖量相等的軟糖,持續四週,然後恢復正常飲食,也持續四週,並在這段「淨化」期之後,讓兩組受試者交換,原本喝軟性飲料的改吃軟糖,反之亦然,再持續四週。試驗結束時,研究人員發現,受試者在「喝糖」期間攝取的總熱量,比「吃糖」期間多了約 17%。在喝了四週的軟性飲料後,受試者的體重增加,脂肪也增加。相較之下,吃軟糖的四週內,他們的體重並未增加。

液體糖導致肥胖和(或)糖尿病前期的可能性,比固體糖更高。圖/envato

液體糖比固體糖更容易導致肥胖,而且喝液體糖的速度也會造成影響。為了證明這一點,我們在伊斯坦堡科曲大學的合作夥伴坎貝,提供蘋果汁給志願的受試者,這些蘋果汁內的果糖含量與軟性飲料相似。坎貝讓一半的人在 5 分鐘內喝下 500 毫升果汁,另一半則是每隔 15 分鐘喝下 125 毫升,用一小時喝完 500 毫升的果汁。一小時結束時,雖然兩組人喝下的蘋果汁分量一樣,但兩組間的差異卻非常驚人。5 分鐘內喝完蘋果汁的人,體內的尿酸和血管加壓素(肥胖荷爾蒙)快速增加。相較之下,花一小時喝完蘋果汁的受試者,尿酸和血管加壓素的變化比較緩和。由於尿酸和血管加壓素升高相當於生存開關活化的證據,這表示如果一定要喝軟性飲料,慢慢享用會比大口豪飲來得安全。

-----廣告,請繼續往下閱讀-----
含糖飲料慢慢喝會比大口豪飲來得安全。圖/envato

幾年前,曾有人基於軟性飲料含糖量高,提議紐約市政府對軟性飲料課稅。軟性飲料業者指出其他食品也含有大量的糖,專挑軟性飲料課稅並不公平。基於這項爭議,再加上其他因素,飲料稅法案最後沒有通過。但根據前面提到的研究,軟性飲料業界的論點其實有誤。

根據液體糖和固體糖的研究,還可以得到一個結論:「魚與熊掌或許可以兼得」。也就是說,享用富含糖類的甜點時,如果吃得夠慢,或許可能避免觸發生存開關。這時蛋糕就只是熱量而已。問題是,要慢慢的吃甜點幾乎是不可能的事!

喝軟性飲料時不能大口暢飲,而得用一小時的時間慢慢啜飲完畢,也同樣不容易。另外,與其單獨飲用軟性飲料,不如在用餐之間慢慢喝,畢竟邊吃邊喝,讓液體中的糖與食物混合,可減慢吸收速度。

重點

液體糖比固體糖更有害,大口喝下軟性飲料是啟動生存開關最有效的方法。含糖軟性飲料、能量飲料、果汁、含糖的茶和咖啡,全都應該避免。如果偶爾想放縱一下,請放慢飲用速度,並一定要與食物搭配。

-----廣告,請繼續往下閱讀-----

——本文摘自《大自然就是要你胖!》,2024 年 06 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

0
0

文字

分享

0
0
0
縮短發炎期、促進癒合?健保給付糖尿病足潰瘍新式乳膏,遠離截肢風險!
careonline_96
・2024/05/31 ・2446字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

糖尿病足潰瘍治療對於經濟負擔極大,若患者未能及早發現、儘速治療將一步步走向截肢的結局。

「那是一位 50 多歲的糖尿病患者,走進診間一跛一跛地,相當吃力。」衛生福利部臺北醫院整形外科主任劉明偉醫師表示,「根據患者的描述,一開始是大腳趾頭上出現小傷口,但遲遲沒有癒合。由於缺乏良好的傷口照護,患者的腳便逐漸紅腫,傷口流出滲液,連走路都不方便。」

後續由於感染很嚴重,患者只好接受手術清創,並截掉兩根腳趾。劉明偉醫師表示:「其實,如果患者在發現傷口時便立刻就醫,好好接受治療,應該有機會讓傷口早點癒合,不用面臨截肢的狀況。」但因為患者是弱勢群體,加上步行不便,每一次的回診對於沒有家庭支持的患者來說真的是舉步艱難,後續即使有社工的介入,該名患者依舊未能有效控制傷口潰瘍的進程,往後更可能面臨再次截肢的命運。

在台灣,糖尿病是相當普遍的問題,劉明偉醫師說,糖尿病會造成血管病變與神經病變,而漸漸演變為糖尿病足,約有 25% 的糖尿病患者會有足部潰瘍問題。血管病變會使血管狹窄、阻塞,而影響足部血液循環,可能產生潰瘍、壞疽;神經病變會讓患者感覺遲鈍,容易在無意間受傷、燙傷,因為不覺得疼痛,患者常常會輕忽傷口,容易遭到感染,進展為蜂窩性組織炎、壞死性筋膜炎,而需要動手術清創,甚至截肢。

-----廣告,請繼續往下閱讀-----

「糖尿病足潰瘍患者常常會因為感染而反覆住院、接受清創手術,甚至截肢。」劉明偉醫師說,「研究指出,糖尿病足患者因為感染而再次住院的比例高達 40%,其中每 6 名患者就有 1 人在感染 1 年後死亡。若是不幸截肢,更有高達 5 成患者會在截肢後 5 年內死亡。」

導致糖尿病足患者面臨截肢的原因很多,劉明偉醫師說,常見原因包括傷口照護不良、誤信偏方、使用不明藥膏塗抹傷口,這些藥膏非但沒有治療效果,還可能加速傷口感染、惡化;患者可能完全不曉得足部有傷口,等到足部腫脹、滲液、化膿、發臭才發現;即使知道足部有傷口、潰瘍,患者可能因為不覺得疼痛,而延誤就醫。血糖控制不佳對糖尿病足潰瘍也有負面影響,除了讓足部血液循環惡化、傷口難以癒合、也會增加傷口感染的機會。

糖尿病的併發症相當多,倘若糖尿病足潰瘍惡化、截肢,可能導致行動不便,又會衍生出更多棘手的問題。劉明偉醫師說,糖尿病友平時要儘量避免足部出現潰瘍,而在出現潰瘍之後,一定要及早就醫,接受正確的治療,讓潰瘍儘快癒合。

清創後糖尿病足傷口新式乳膏助糖尿病足傷口早日癒合

在過去,糖尿病足潰瘍的照護大多使用抗生素藥膏。劉明偉醫師說,使用抗生素藥膏的主要目的是預防感染,避免進展為蜂窩性組織炎、骨髓炎等狀況。

-----廣告,請繼續往下閱讀-----

根據中華民國心臟學會與台灣整形外科醫學會於 2024 年公布的「糖尿病足潰瘍治療共識」中建議,若患者周邊血管變病與阻塞已處理完成、傷口也完成清創後,建議下一步可以使用糖尿病足傷口新式乳膏治療,可以幫助傷口快速癒合,降低截肢風險。劉明偉醫師補充,糖尿病足傷口新式乳膏的作用是調控影響傷口癒合的微環境,抑制傷口中會增加發炎的 M1 巨噬細胞,增加促進癒合的 M2 巨噬細胞,促使血管新生、傷口修復。幫助縮短傷口發炎期,進入增生期,促進傷口癒合。

糖尿病足傷口新式乳膏是照護患者傷口的利器,根據臨床使用經驗,確實有助於縮短傷口癒合的時間。劉明偉醫師補充,有些情況患者可能還會搭配高壓氧治療、手術,並利用各種醫材來幫助傷口癒合。

目前糖尿病足傷口新式乳膏已納入健保給付,只要符合條件,醫師便會協助申請使用,健保給付條件如下:

糖尿病足部潰瘍常見分級(Wagner System)為 2 級,清創後最大傷口面積 ≦ 5 平方公分,且符合以下所有條件:

-----廣告,請繼續往下閱讀-----
  1. 傷口深及肌肉層且經抗生素藥膏或燙傷藥膏治療及使用傷口敷料 12 週後,傷口癒合面積 < 50 %。
  2. 檢測糖化血色素 < 8.5 %、白蛋白 ≧ 3.0 g/dL。
  3. 治療前上下肢血壓比值ABI(Ankle Brachial Index)≧0.9。

「現在健保規定的使用條件比較嚴苛,清創後傷口面積要小於 5 平方公分,且需先治療 12 週,傷口癒合面積 < 50 %,還要搭配抽血檢查的數值。」由於目前現行健保給付條件下,患者要等候三個月進行傷口對照後,才能使用,對於是否可能影響患者截肢機率,劉明偉醫師分享,「如果能夠及早使用,對患者應該會有幫助。讓傷口早日癒合不但可以降低截肢風險、避免失能、維持生活品質,還可以節省後續回診、住院、手術的醫療花費。」

貼心小提醒

糖尿病足潰瘍問題很多,糖友們平時要穿著合腳的鞋襪,不可赤腳走路。劉明偉醫師說,請每天檢查雙腳,如果發現龜裂、擦傷、水泡、潰瘍等狀況,務必及早就醫,利用正確的方法照顧傷口。跨專科團隊會運用各種方法來穩定血糖、恢復血液循環、控制感染、促進傷口癒合,幫助患者維持生活品質,遠離截肢的威脅!

-----廣告,請繼續往下閱讀-----