0

1
1

文字

分享

0
1
1

發現能治療糖尿病的胰島素——胰島素與生技產業的誕生(上)

賴昭正_96
・2017/02/15 ・3994字 ・閱讀時間約 8 分鐘 ・SR值 546 ・八年級

糖尿病(diabetes)似乎是有人類就有的疾病,早在西元前 1552 年埃及就有記載小便頻繁導致身體虛弱的現象。西元 200 年左右,希臘哲學家亞里斯多德首先使用 diabetes 來描述此一現象。在拉丁文裡,diabetes 是多尿的意思,與「糖」無關。1675 年威利斯(Thomas Willis)因病人尿中具甜味而加 mellitus(拉丁文意「甜」),稱為 diabetes mellitus;但現在均只簡稱為 diabetes。

在中國,西元前 200 年左右的醫學書《黃帝內經》中也載有頻尿、多渴、及身體虛弱的疾病,稱為「消渴」。西元 600 年左右,隋唐甄立言所著之《外台祕要》中謂「消渴小便至甜」應是中國有關糖尿病的最早記載。

儘管有如此淵源長久的歷史,但人類卻遲至 1920 年代才偶然地發現糖尿病的病因是胰臟內分泌胰島素不足所致;其醫治方法則只是不停地注射胰島素。當時胰島素的來源是豬、牛的胰臟。1970 年代初,生物科技技術「重組 DNA」(recombinant DNA)開始在大學裡萌芽之際,一位即將失業的麻省理工學院畢業生竟然看到了商機。他説服了「象牙塔」裡的一位教授,合組了世界第一家基因工程公司,在短短兩年內發展出了「人造」人類胰島素,率先敲響了到 2015 年已達 1330 億美元的生物科技產業革命之鐘!

胰臟。圖/By BruceBlaus, CC BY 3.0, wikimedia commons

胰臟位於胃後,長約 15 公分,為一消化與內分泌系統。內有由三百萬細胞組成的許多呈星卵圓形蘭氏小島,按照染色的性質不同可分為四種細胞:

-----廣告,請繼續往下閱讀-----

(1)α 細胞:分泌升糖素(glucagon)
(2)β 細胞:分泌胰島素(insulin)
(3)γ 細胞:分泌胰多肽(Pancreatic polypeptide, PP)
(4)δ 細胞:分泌生長抑制素(somatostatin)

患糖尿病者,診斷上以血糖升高及尿中含糖為特徵,一般分為二種:

(1)第一類糖尿病:胰島素分泌不足
(2)第二類糖尿病:不能充分利用胰島素;50% 的患者之 β 細胞在 5~10 年內均慢慢失去其功能

據世界衛生組織(WTO)2016 年 11 月的報導:

-----廣告,請繼續往下閱讀-----

(1)全世界糖尿病病人數從 1980 年的 1.08 億增加到 2014 年的 4.22 億;
(2)全世界 18 歲以上成人糖尿病患病率從 1980 年的 4.7% 增加到 2014 年的 8.5%;
(3)糖尿病是失明、腎衰竭、心臟病發作、中風和下肢截肢的主要病因。

胰島素的發現雖然不能根治糖尿病,但卻讓患者能過著幾乎完全與正常人一樣的生活;「人造」人類胰島素的發明,開創了製造藥物的新紀元:生長激素、溶血栓蛋白質、B 型肝炎疫苗、紅血球生成素等生物科技產物不斷地相繼出現……希望讀者能與筆者一起在此分享這一段可歌、但不可泣的「胰島素與生技產業誕生」的醫學故事吧!

從胰臟的蘭氏小島說起

1869 年 2 月,德國柏林病理學學院的一位博士班學生蘭格漢(Paul Langerhans)提出一篇題為〈胰臟顯微解剖學的新知〉(Contributions to the Microscopic Anatomy of Pancreases)的論文,說明他在胃下面的脆弱葉狀器官胰臟內,發現許多不同於周邊之細胞小島,這些細胞群後來被稱為「蘭氏小島」(islets of Langerhans)。只是此時他雖然注意到了看起來像是神經的細胞,廣佈在這些細胞群內,但卻完全不清楚它們的功能。

1889 年,為了瞭解胰臟的功能,法國兩位外科手術醫生梅倫(Joseph von Mering)及明考斯基(Oskar Minkowski)將狗的胰臟割除,發現這隻可憐狗整天口渴及隨地小便。數日後,一位助手覺得實驗室內的蒼蠅好像突然多了起來,尤其是在狗小便過的地板。分析狗尿及其血液後,梅倫及明考斯基很驚奇地發現裡面充滿了糖份!顯然地,胰臟具調解體內糖份代謝的功能,它一旦受損將導致糖尿病。就這樣,梅倫及明考斯基無意中發現了「困擾」人類三千多年之糖尿病的病源(不過人們真正因糖尿病造成「困擾」可能是在 21 世紀吧)。

1895 年,沙佩-沙爾(Edward Albert Sharpey-Schafer)爵士提出糖尿病是因缺少一種由胰臟之「蘭氏小島」所製造出來的物質所致。他後來建議稱這一物質為 insuline,後改稱為 insulin(此字源自拉丁文 insula,意為小島),中文譯為「胰島素」,指胰臟小島分泌出來的激素。

-----廣告,請繼續往下閱讀-----

胰島素的發現

可是這「胰島素」物質到底是什麼呢?由於胰臟也分泌蛋白質分解酶,可破壞胰島素,因此想從絞碎之胰臟中分離出胰島素的實驗,幾十年都沒什麼大進展。

1921 年初,加拿大多倫多大學講師班廷(Frederick Banting)醫生從巴倫(Moses Barron)文章中發現結紮胰臟管可悶死分泌蛋白分解酶的細跑,因此想到了一個可能分離出此物質的方法。但當時加拿大研究糖尿病的大師麥克勞德(John Macleod)教授卻不以為然,因此只答應給他一個實驗室、一些基本設備、十隻狗、及一位剛大學畢業的助理貝斯特(Charles Best)。同年 5 月 17 日,他們正式捲起袖子,在麥克勞德的「指導下」工作起來。7 月 30 日,他們將新方法所分離出來的物質注射到被割掉胰臟之狗的身體後,發現這些狗的血糖均大量下降!

班廷想出了可以分離出胰島素的方法。圖/By Arthur S. Goss, Public Domain, wikimedia commons

麥克勞德終於有點相信了,因此建議進行更廣泛的實驗。這一來班廷及貝斯特當然不能再以「殺狗取胰」為業了,因之只好求助於附近的屠宰場:沒想到竟然「因禍得福」,他們發現豬、牛的「胰島素」不但具相同的功能,且根本不須先經胰臟結紮,新鮮冷凍的胰臟即可直接用來萃取胰島素(低溫顯然遲緩了蛋白質的分解)!

為了希望能早日進行人體試驗,班廷甚至以自己當試驗品,將萃取物注射到自己體內:班廷只感覺疲倦及頭暈,但未「生病」。到了 12 月,馬克里歐特已深信無疑,再請訪問教授生化學家柯立普(James B. Collip)加入團隊,負責純化萃取物的工作,以便進行人體試驗。

-----廣告,請繼續往下閱讀-----

1922 年元月 11 日,他們將萃取物注射到患糖尿病、臨近死亡邊緣之 14 歲多倫多男孩湯姆生(J.Thompson)身上,很失望地發現竟然沒什麼改進。但他們並未灰心:在柯立普教授日以繼夜的純化工作下,12 天後他們再次將萃取物注射到該男孩身上時,不但發現他迅速恢復體力,食慾大幅提升、血液及尿中糖份恢復正常,一些糖尿病的症狀似乎也消失得無影無蹤!在此一發現之前,患了糖尿病等於判了死刑,是無藥可救的,只能靠飲食及運動來控制,一般大概都只能拖個一年左右而已。湯姆生靠著萃取物,一直活到 37 歲才因肺炎而病逝。此一成功的例子迅速地傳開,許多的自願者人體試驗也一樣有效,因此班廷不久就在多倫多開了一家專治糖尿病的診所。

諾貝爾醫學獎的爭議

圖/By Toronto Daily Star – Toronto Star archives, Public Domain, wikimedia commons.

這麼重大的發現當然躲不過諾貝爾獎委員們的耳目:他們很快地決定將 1923 年的諾貝爾醫學獎頒發給「因發現胰島素」的班廷及麥克勞德。才出道就得諾貝爾醫學獎,32 歲的班廷應該很高興才對(到 2016 年為止,他還是最年輕的醫學獎得主),沒想到他聽到諾貝爾獎委員的決定時,竟然火大地謂:怎麼不是他及貝斯特,而是他及麥克勞德?顯然又是一個有爭議性的諾貝爾獎[註 1]!為了聊以表達貝斯特的貢獻,他決定將他所得的現金與貝斯特平分;麥克勞德也因如果不是柯立普的純化技術,人體實驗是不可能成功的,而決定將他所得的現金與柯立波分享!

「貨惡其棄於地也,不必藏於己」,有這麼可賺大錢的發現,班廷的團隊卻在取得胰島素萃取的專利後,將其使用權完全免費地轉給加拿大多倫多大學[註 2]。1922 年,多倫多大學與製藥公司禮來(Eli Lilly)合作,在後者研發改進製程後,1923 年年底時,已能大量生產足夠供應整個北美洲所需、純度相當高的胰島素。胰島素是禮來歷史上最重要的藥物:禮來因它而成為世界主要製藥大廠之一!

解密胰島素的化學構造

桑格(Frederick Sanger)於 1936 年進入英國劍橋大學的聖約翰學院,準備攻讀自然科學。但因不善物理及數學,一年後即將物理改為生理,以第一名畢業於剛成立不久之生物化學系;1943 年以「動物體內之離胺基酸(Lysine)的新陳代謝」取得博士學位後,即加入奇布諾爾(Albert Chibnall)團隊工作。奇布諾爾早就在研究胰島素的胺基酸成份,因此當了系主任後建議桑格繼續其未完成的工作。胰島素是當時已知之非常少數的純化蛋白質,在一般藥店即可買到。桑格果然不失所望,於 1951 年及 1952 年分別確定了牛胰島素中 A、B 兩鏈的胺基酸序列定序(類似下圖的人類胰島素胺基酸序列)

-----廣告,請繼續往下閱讀-----
人類胰島素 A 鏈和 B 鏈。圖/賴昭正提供

以今日之技術來看,這或許不是什麼大成就,但不要忘了當時大部分的生化學家均認為蛋白質是一無定形或組成的物質!

事實上是桑格這一發現——蛋白質有固定的化學構造——以及他一系列的演講,使發現 DNA 雙螺旋結構的克里克(Francis Crick)於 1958 年提出了現今已為大眾所接受之理論:遺傳基因物質(DNA 或 RNA)的核酸序列(遺傳碼)決定了其「指導」合成之蛋白質的組成(胺基酸序列);而蛋白質的組成進而決定其立體結構及性質。反過來説,如果我們知道蛋白質的組成,我們也可推算出決定此蛋白質之基因的核酸序列[註 3]。

單獨的 A、B 兩鏈沒有胰島素的功能;在桑格團隊的不懈工作下,他們終於在 1955 年成功地確定了歷史上第一個蛋白質「胰島素」的化學構造:由 21 個胺基酸組成的 A 鏈與由 30 個胺基酸組成的 B 鏈是靠兩個雙硫鍵連在一起,而短的 A 鏈中間又靠另一雙硫鍵聯結彎曲。桑格也因此於 1958 年藉由「蛋白質(尤其是胰島素)的構造研究」,得了他的第一個諾貝爾化學獎。

德國化學家梅爾荷費(J. Meierhofer)等人於 1963 年首次在實驗室中(化學)合成人類胰島素。1966 年時在中國及美國也有人工合成胰島素的報導。1974 年 Ciba‑Geigy 製藥公司[註 4]曾嘗試以合成法製造人類胰島素,但因太複雜、產量太低等經濟因素而作罷。因此儘管 2,000 公斤的豬胰臟大約只能萃取 30 公克的胰島素,人造胰島素一直無法與萃取的動物胰島素抗衡!豬的胰島素與人類的胰島素最相近,只差一個胺基酸而已;而牛的胰島素則具三個異於人類的胺基酸。顯然在脊椎動物的進化過程中,胰島素尚未分岔太遠:我們的防禦系統竟不掀旗反抗外來的動物胰島素!

-----廣告,請繼續往下閱讀-----

(繼續接著看:〈人造胰島素開啟生技產業——胰島素與生技產業的誕生(下)〉)

註解:

  • 1. 賴昭正,〈諾貝爾獎的爭議性〉,《科學月刊》,2016 年 12 月號。
  • 2. 多麼高尚的情操。反觀國內,士林地檢署偵辦「浩鼎案」,元月 9 日偵結,認定前中研院院長翁啟惠及浩鼎董事長張念慈(在技轉)涉期約收受賄賂及行賄罪嫌,決定起訴。
  • 3. 賴昭正,〈左旋還是右旋?化學對稱跟你我的身體有關!〉,泛科學,2015/9/25。
  • 4. 於 1996 年與 Sandoz 合併成今日之瑞士的國際大藥廠 Novartis。
-----廣告,請繼續往下閱讀-----
文章難易度
賴昭正_96
48 篇文章 ・ 60 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲它轉載我的科學月刊上的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
1

文字

分享

0
0
1
廁所裡的科學課:解碼尿液中的「泡泡警報」,抓住逆轉腎衰竭的黃金時機
careonline_96
・2025/09/12 ・3396字 ・閱讀時間約 7 分鐘

一位 60 歲的糖尿病患者,長期血糖控制不佳,糖化血色素(HbA1c)高達 10.2%,已進入第三期慢性腎臟病,尿蛋白指數偏高。衛生福利部南投醫院副院長莊宗芳醫師指出:「經過討論後,我們決定調整治療策略,將其中一種降血糖藥物更換為具有腎臟保護作用的排糖藥(SGLT2 抑制劑)。」

在長達兩年多的追蹤期間,患者的糖化血色素穩定降至 7.2%,腎絲球過濾率(eGFR)由 33 提升至 40 以上,尿白蛋白/肌酸酐比值(UACR)也從 200 降至約 102 mg/g,蛋白尿情形明顯改善。不僅血糖控制獲得良好成效,腎功能也呈現穩定甚至略為回升的趨勢,成功延緩腎臟功能惡化。莊宗芳醫師提到,透過適當的藥物選擇與持續的醫療追蹤,糖尿病患者的腎臟健康是有機會獲得改善的,也提醒民眾及早介入治療的重要性。

許多糖尿病患者認為只要血糖控制穩定,就不需要太擔心其他問題。但在臨床上,卻常見到血糖看似良好,腎功能卻悄悄惡化的案例。莊宗芳醫師指出,糖尿病的自然病程中,幾乎都會出現腎病變。由於病程進展緩慢,患者往往毫無察覺。如果同時沒有控制好血壓、飲食,或長期使用止痛藥(如 NSAIDs),就可能加速腎臟受損,進入「微量白蛋白尿期(microalbuminuria)」。

這個階段是腎臟開始受損的早期徵兆,若能及時發現並積極介入治療,腎功能仍有機會改善。但多數患者因為沒有症狀,也缺乏定期追蹤,病情往往持續惡化,最終進展為「明顯蛋白尿期(macroalbuminuria)」,此時尿液泡泡明顯且持久,代表腎臟損傷已不可逆,可能走向慢性腎衰竭。

-----廣告,請繼續往下閱讀-----

腎臟發出的求救訊號,你注意到了嗎?

糖尿病腎病變初期雖然沒有明顯症狀,但隨著腎功能惡化,身體會開始出現一些警訊,包括:

  • 清晨眼皮浮腫
  • 傍晚腳踝、小腿水腫:用手指按壓皮膚,凹陷超過 10 秒仍未回彈
  • 尿液泡泡多,持續 5-10 分鐘不消退
  • 半夜頻繁起床上廁所(夜尿 2-3 次)
  • 容易疲倦、食慾變差、噁心、皮膚搔癢

這些都是腎功能可能正在惡化的徵兆。一旦出現,應儘快安排腎功能(eGFR)與尿蛋白(UACR)等相關檢查,才能及早發現、及早治療,避免病情惡化到需要洗腎的地步。

莊宗芳醫師特別提醒:「微量白蛋白尿期是糖尿病腎病變的重要階段,幾乎每位糖友都會經歷。雖然沒有明顯症狀,但腎臟已開始受損。只要在這個階段積極控制血糖、血壓、血脂,並維持健康生活習慣,就有機會延緩腎功能惡化,守住腎臟健康!」

糖尿病患者不只要顧血糖,也要顧腎臟

許多糖友都知道要定期檢查糖化血色素(HbA1c),但其實,腎臟健康同樣重要!糖尿病腎病變常常在沒有症狀的情況下悄悄發生,因此建議定期檢查以下兩項指標:

-----廣告,請繼續往下閱讀-----
  • 腎絲球過濾率(eGFR):這是抽血後根據血液中的肌酸酐(Cr)數值,結合年齡、性別等條件,計算出腎臟的過濾能力。
    • eGFR ≥ 90:正常
    • eGFR 60–89:原則上腎臟的過濾功能正常,但必須排除蛋白尿,如果有微量白蛋白尿或巨量蛋白尿,仍應考慮可能是慢性腎臟病
    • eGFR < 60:腎功能開始下降,已進入慢性腎病第三期以上

值得注意的是,有些糖尿病患者在 eGFR 還沒下降前,就已經出現尿蛋白,代表腎臟可能已開始受損。

  • 尿蛋白與肌酸酐比值(UACR):這是檢查尿液中白蛋白與肌酸酐的比例,能早期偵測腎臟微血管的損傷情況。
    • UACR < 30 mg/g:正常
    • UACR 30–299 mg/g:微量白蛋白尿(早期、可逆轉)
    • UACR ≥ 300 mg/g:明顯蛋白尿(腎損傷通常不可逆)

糖尿病患者除了要控制血糖,也要定期檢查腎臟功能,才能預防糖尿病腎病變。建議依照以下原則進行檢查:

  • 初期糖尿病、尚未出現腎病變者:建議每年檢查一次 腎絲球過濾率(eGFR) 和 尿蛋白與肌酸酐比值(UACR)
  • 已診斷腎臟病者(eGFR<60 或 UACR≧30):建議每 3~6 個月 追蹤一次 eGFR 和 UACR,以掌握腎功能變化。

定期追蹤、積極治療,是延緩腎功能惡化的關鍵。尤其在「微量白蛋白尿期」就開始介入,有機會讓腎損傷逆轉,避免進展到不可逆的腎衰竭階段。 

吃藥會傷腎?其實正確用藥才是保護腎臟的關鍵!

許多患者對藥物有疑慮,認為「吃藥會傷腎」,因此不願意使用藥物來控制糖尿病、高血壓、高血脂等慢性病。但莊宗芳醫師提醒:「其實,正確使用藥物控制三高,反而能保護腎臟、延緩病情惡化!」

-----廣告,請繼續往下閱讀-----

近年來,糖尿病藥物持續進步,不僅副作用大幅降低,甚至有些藥物還具備保護腎臟的功能,莊宗芳醫師進一步說明,以 SGLT2 抑制劑來說,它俗稱「排糖藥」,作用機轉是抑制腎小管對葡萄糖的再吸收,讓多餘的糖分透過尿液排出,達到降血糖的效果。更重要的是,研究發現這類藥物還能降低腎絲球內的壓力與過濾負擔,改善腎臟微血管的高壓狀態,進而延緩腎功能惡化的速度。

糖尿病腎病變不一定走向洗腎,關鍵在於早期介入

有研究指出,若能在腎功能仍良好的階段(例如 eGFR 約 85)就開始使用其中一種 SGLT2 抑制劑,有機會延後長達 26.6 年才進入洗腎階段,甚至可能終身不需洗腎。對糖尿病患者而言,這無疑是一大福音。

除了保護腎臟,這類「排糖藥」也被證實能減緩心臟衰竭的惡化。對於有蛋白尿、腎功能下降,或具心血管疾病風險的糖友來說,排糖藥能同時照顧「血糖、心臟、腎臟」三大面向,是非常合適的治療選擇。

患者除了要控制血糖,也要密切注意血壓與尿蛋白的變化。莊宗芳醫師建議,糖友可加入「糖尿病健康照護網」,若已出現腎功能異常,可同時納入「早期腎病照護方案」,讓血糖與腎臟都能獲得整合性的管理與照護。

-----廣告,請繼續往下閱讀-----

筆記重點整理

  • 糖尿病腎病變初期無症狀,定期檢查才能早期發現:糖尿病腎病變在初期往往沒有明顯症狀,但腎功能可能已悄悄受損。建議糖友每年至少檢查1次腎絲球過濾率(eGFR)與尿蛋白/肌酸酐比值(UACR),若已出現異常,則每 3~6 個月追蹤一次。早期發現、積極介入,有機會延緩甚至逆轉腎功能惡化。
  • 正確用藥不傷腎,反而能保護腎臟:許多患者擔心「吃藥傷腎」,但事實上,控制血糖、血壓、血脂是保護腎臟的關鍵。像是 SGLT2 抑制劑(排糖藥)不僅能降血糖,還能減輕腎臟負擔、延緩腎功能惡化,甚至降低心臟衰竭風險。
  • 整合性照護是守護腎臟的關鍵:糖尿病患者不只要顧血糖,也要密切注意血壓與尿蛋白。建議加入「糖尿病健康照護網」,若已出現腎功能異常,可同步加入「早期腎病照護方案」,讓血糖與腎臟都能獲得整合性管理,提升治療成效與生活品質。

參考資料:

  • Diabetic Nephropathy Preeti Rout; Ishwarlal Jialal. 
  • Chronic Kidney Disease Satyanarayana R. Vaidya; Narothama R. Aeddula.
  • KDIGO 2024 clinical practice guideline on evaluation and management of chronic kidney disease: A primer on what pharmacists need to know
  • Fernández-Fernandez B, Sarafidis P, Soler MJ, Ortiz A. EMPA-KIDNEY: expanding the range of kidney protection by SGLT2 inhibitors. Clin Kidney J. 2023 Jun 16;16(8):1187-1198. doi: 10.1093/ckj/sfad082. PMID: 37529652; PMCID: PMC10387399
  • Perspectives on Chronic Kidney Disease With Type 2 Diabetes and Risk Management: Practical Viewpoints and a Paradigm Shift Using a Pillar Approach
-----廣告,請繼續往下閱讀-----

討論功能關閉中。